㈠ 关键问题被转化为物理矛盾之后,可以用哪些方法解决
TRIZ理论中,如果一个关键问题被转化为物理矛盾可以尝试用以下分离矛盾需求、满足矛盾需求、绕过矛盾需求方法来解决。
【原题】
TRIZ理论中,如果一个关键问题被转化为物理矛盾可以尝试用以下()方法来解决。
A、分离矛盾需求。
B、满足矛盾需求。
C、绕过矛盾需求。
D、缩小矛盾需求。
【答案】ABC。
物理冲突的描述:
根据出发点不同,物理冲突有多种描述形式,其中最概括或最本质的描述是:
1、一个子系统有害功能的降低导致子系统中有用功能的降低;
2、子系统一种有用功能的增强导致子系统中有害功能的增强。
这个描述说明了物理冲突和技术冲突的根本区别,即“物理矛盾是单参数,而技术矛盾是双参数”。与技术冲突不同,物理冲突由同一个参数的两个相反方向组成,它无法从矛盾矩阵中得到理解。
㈡ 关键问题被转化为物理矛盾之后,不可以用哪些方法解决
不能用暴力解决。
建议使用好言相劝的方式进行解决。
物理矛盾是当一个技术系统的工程参数具有相反的需求,就出现了物理矛盾。比如说,要求系统的某个参数既要出现又不存在,或既要高又要低,或既要大又要小等等。相对于技术矛盾,物理矛盾是一种更尖锐的矛盾,创新中需要加以解决。
㈢ 物理矛盾可以通过分离矛盾的方法解决,有几种分离原则
解决物理矛盾的分离原则
1、空间分离:将矛盾双方在不同的空间分离以降低解决问题的难度。当系统矛盾双方在某一空间出现一方时、空间分离是可能的。
2、时间分离:将矛盾双方在不同的时间分离、以降低解决问题的难度。当系统 矛盾双方在某一时空中只出现一方时时间分离是可能的。
3、条件分离:将矛盾双方在不同的条件下分离、以降低解决问题的难度。当系统矛盾双方在某一条件下只出现一方时、条件分离是可能的。
4、整体与部分分离:将矛盾双方在不同的层次分离、以降低解决问题的难度。当系统矛盾双方在系统层次只出现一方时整体与部分分离是可能的。
㈣ 请列举5个属于物理矛盾的实例 急急急
例如:
1、房间应该尽量大,居住宽敞舒适,但是打扫卫生很累人,所以房间又应该尽量小。
2、快餐店(或者火锅店)的定制菜单上要填写数字,以便点菜,但是从节约纸的角度来说,填写了数字的菜单纸就不能给别人用,只能扔掉,所以制定菜单上又不能填写数字。
3、给缝衣针穿线的时候希望针眼大,好把线穿入到针眼中,缝衣服的时候希望针眼小。
4、过滤网的网眼应该尽量小,这样过滤效果好,但是为了过滤网的网眼不堵塞,网眼又应该大一些。
5、电子设备里的散热器体积应该尽量大一些,这样散热效果好,但是从节省空间的角度来看,散热器的体积又应该尽量小。
6、轮船要快速航行,船体就要尽量窄,轮船要稳定航行,船体就要尽量宽。
当一个技术系统的工程参数具有相反的需求,就出现了物理矛盾。比如说,要求系统的某个参数既要出现又不存在,或既要高又要低,或既要大又要小等等。相对于技术矛盾,物理矛盾是一种更尖锐的矛盾,创新中需要加以解决。
(4)物理矛盾的解决方法有哪些扩展阅读:
从功能实现的角度,物理矛盾可表现在:
1、为了实现关键功能,系统或子系统需要具有有用的一个功能,但为了避免出现有害的另一个功能,系统或子系统又不能具有上述有用功能;
2、关键子系统的特性必须是取大值,以取得有用功能,但又必须是小值以避免出现有害功能;
3、系统或关键子系统必须出现以获得一个有用功能,但系统或子系统又不能出现,以避免出现有害功能。
物理矛盾和技术矛盾是有相互联系的。例如,为了提高子系统Y的效率,需要对子系统Y加热;但是加热会导致其邻接子系统X的降解。这是一对技术矛盾。
同样,这样的问题可以用物理矛盾来描述,即温度要高又要低。温度高可提高Y的效率,但是恶化了X的工况;而温度低无法提高Y的效率,但也不会恶化X的工况。所以,技术矛盾与物理矛盾之间,是可以相互转化的。
㈤ 物理矛盾实例和解决方法
我们首先来看阿奇舒勒的矛盾矩阵。
阿奇舒勒矛盾矩阵由39个通用工程参数和40个创新原理构成,矛盾矩阵第一列表示改进的参数,第一行表示恶化的参数,共有39*39个小格子,每一个小格子代表一个工程矛盾(具体说明),非对角线上小格子所表达的矛盾为技术矛盾。该矛盾由对应小格子里所提供的创新原理解决(具体说明)。
需要说明:
1、不同的矛盾提供原理数不一样(1、
2、
3、4),尽可能应用所提供的创新原理解决问题,否则你定义的矛盾有问题;
2、如果非对角线上小格子里面没有数字,表明该矛盾在实际工程中不存在;
3、对角线上小格子里面没有数字,并不表示不存在矛盾,而是另一类矛盾。
我们知道,技术矛盾是两个参数之间形成的矛盾,即当一个参数改进时,引起另一个参数的恶化;当我们用同样的方式描述对角线上小格子所表达的矛盾时,应该是“当一个参数改进时,又引起该参数的恶化”,也就是说,对角线上小格子对应的正反两个参数是一个参数,说明这些参数自身产生了矛盾,这样的矛盾称物理矛盾。例如,笔记本携带时应该小点,使用时应该大点,对笔记本的尺寸相反的要求就构成了物理矛盾。本章研究物理矛盾及其解决方法。
幻灯片2
§1 物理矛盾的定义
•物理矛盾的定义:
•当一个技术系统中对同一个参数具有相互
排斥(相反的或是不同的)需求时,所产生的
矛盾称为物理矛盾。
对于技术系统的元素,物理矛盾有以下三种情况:
第一种情况,这个元素是通用工程参数,不同的设计条件对它提出了完全相反的要求,例如:对于建筑领域,墙体的设计应该有足够的厚度以使其坚固,同时墙体又要尽量薄以使建筑进程加快并且总重比较轻。建筑结构的材料密度应接近零以使其轻便,同时材料密度也应该足够高以使其具有一定的承重能力。另外还有:温度既要高又要低;尺寸既要长又要短;材质既要软又要硬等等。
第二种情况,这个元素是通用工程参数,不同的工况条件对它有着不同(并非完全相反)的要求,例如:灯泡的功率既要是25瓦,又要是100瓦;一个工件的形状,既要是直的,又要是弯的等等。
第三种情况,这个元素是非工程参数,不同的工况条件对它有着不同的要求,例如:冰箱的门既要经常打开,又要经常保持关闭;道路上既要有十字路口,又要没有十字路口。
㈥ 物理矛盾的例子及解决从日常生活中遇到的问题中,选择有技术冲突的一个事例进
1.工作背景:圆环的研磨.原来使用滚筒研磨,现使用磁力平面研磨.
2.问题描述:滚筒可以使工件自我摩擦,去除毛刺.抛光机不能使工件有效相对运动.
3.思路简述:如想达到自我摩擦的效果必须使工件相互摩擦,选择工件上下运动,或左右运动.
因磁力太小,选择左右运动.
4.解决过程:增加一个圆环的支撑架,使磁力旋转时,带动支架,是工件左右运动.
5.应用:缺少必要条件,发现--解决
㈦ 什么是物理矛盾如何定义物理矛盾
一、物理矛盾
在上节中我们定义了技术矛盾,即如果我们增加叁数A, 或表现有利的变化, 那么叁数 B 就会减少, 或者表现恶化. 现在设想我们有一个叁数C, 基于一些理由,我们想要增加它;同时基于另外的理由,我们又想要减少它. Altshuller 把这种情形叫物理矛盾,即一个叁数有着矛盾的本身.
举例来说, 再一次考虑我们的离心调节器问题. 球的重量应该提高以产生离心的力量,同时为了增加飞机的负载量,球的重量应该是小的. 这就是物理矛盾. 再一次说明,典型的工程方式是将两者进行妥协处理, 但是那种方式不导致发明. 发明战胜矛盾.
二、技术矛盾与物理矛盾的转化及其应用
技术矛盾和物理矛盾看起来是两种完全不同的矛盾,但实际上却存在着许多的联系。
技术矛盾向物理矛盾的转换:
技术矛盾和物理矛盾是可以相互转换的。许多技术矛盾在经过分解和细化后最终都可以转换为物理矛盾,然后用四大分离原理来解决问题。下面就用几个例子说明这种转换方法:
案例一:
要设计一个杯子,使得该杯子可以方便携带同时又有较大的盛水量。
首先看这个案例的技术矛盾:
需要改善的技术参数为:运动物体的体积;NO.7
引起恶化的技术参数为:杯子的适应性(方便携带);NO.35
通过查TRIZ的矛盾矩阵表,可以得到适用的发明原理有:NO.15,NO.29;
现在用另外一个角度来分析问题:
需要改善的技术参数是“运动物体的体积”,它的技术要求是“增加物体的体积或容量”;
而引起恶化的技术参数为“杯子的适应性(方便携带)”,而改善这个技术参数的技术要求同时表达为:“减少物体的体积或容量”。
这样就把上面的技术矛盾转换为这样一对物理矛盾:
“杯子的体积(容量)既要增加又要减少。”
一般而言,技术矛盾的存在隐含物理矛盾的存在。技术矛盾总是涉及到两个基本参数A与B,当参数A得到改善时,参数B变得更差。
如果参数A得到改善时需要子系统C的某种变化;而参数B变得更差时也是子系统C的某种变化;这样原来的技术矛盾A与B就可以变成物理矛盾C!
比如:我们使用的空调,我们需要有制冷的功能以提供舒适的环境,但制冷的噪音却严重影响我们的舒适环境。
通过分析我们发现:制冷的功能是需要制冷机的存在,但制冷机的存在却带来严重的噪音,所以我们又不希望制冷机的存在
㈧ triz理论中物理矛盾分离原理包含有
triz理论中物理矛盾分离原理包含有空间分离、时间分离、条件分离、整体与部分分离。
空间分离原理
所谓空间分离原理,就是把冲突的两边分开在不同的空间,分别处理,从而解决现有的冲突,解决问题。当所讨论的同一个关键子系统的冲突双方可以在空间上分开,即可以保证(或通过某种修改后保证)某个空间只出现一方,那么空间分离原理是可行的。
基于条件的分离
所谓有条件的分离,就是通过设置不同的条件,让冲突的双方都实现分离,从而降低解题难度。关键子系统冲突的两面在一定条件下只能出现一面,即如果一种物质在一定条件下表现出一种特性,在另一种条件下表现出另一种特性,那么就可以应用基于条件的分离原理。
整体和局部分离
所谓整体和局部分离,是指冲突在不同层次的分离,以降低解题难度。当冲突的双方在关键子系统的不同层次中只有一方,而这一方没有出现在子系统的其他层次中时,整体和局部的分离都是可能的。
㈨ 如何确定选用哪条分离原理
分离原理.控制理论中的分离原理(separationprinciple),之前曾称为估测及控制分离原理()是指若一些假设条件成立的前提下,一随机系统的最佳回授控制器设计,可以先设计最佳的状态观测器,观测系统状态,再将状态反馈到决定性的最佳控制器中,即可求解因此问题可以分离为二个部份,有助于控制器的设计。已证明若已针对一线性时不变系统设计了BIBO稳定的状态观测器,以及稳定的状态反馈,将此状态估测器及控制器合并之后的系统也是稳定的。解决物理矛盾的核心思想是实现矛盾双方的分离。TRIZ理论在总结物理矛盾解决的各种研究方法的基础上,将各种分离原理总结为4种基本类型,即空间分离、时间分离、条件分离和整体与部分分离。这4种分离方法的核心思想是完全相同的,都是为了将针对同一对象(系统、参数、特性、功能等)的相互矛盾的需求分离开,从而使矛盾的双方都得到完全的满足。
㈩ triz创新思维培训的解决方法是怎样的
1、技术系统进化理论
技术系统的进化不是随机的,而是遵循一定的客观规律;同生物系统的进化类似,技术系统也面临着自然选择和优胜劣汰。在TRIZ理论中,技术进化系统的S曲线是一个技术系统从孕育、成长、成熟到衰退的变化规律的曲线,主要评估现有技术的成熟度,有利于合理投入和分配。每个技术系统都是经过这样4个时期,不断地被新的技术系统代替,出现新的技术,从而形成循环的S曲线。
2、矛盾、矛盾矩阵与创新原理
①技术矛盾
技术矛盾是指在技术系统里当某一特性的改善不可避免地引起系统其他特性的恶化,两个参数之间存在相互制约,这就是技术矛盾。把实际问题转化为技术矛盾后,利用矛盾矩阵,可以得到相对应的创新原理,然后根据实际问题,把这些创新原理作为启发,针对实际问题提出解决方案。
②物理矛盾
物理矛盾是指技术系统中两个因素对同一性能的要求完全不同或相互排斥。物理矛盾的解决方法主要是分离原理,空间分离、时间分离、条件分离、整体和部分分离:空间分离是指将矛盾双方在不同的空间上分离,以降低解决问题的难度进而找到解决问题的方法;时间分离是指将矛盾双方在不同的时间段上分离,以减低解决问题的难度;条件分离是指将矛盾双方在不同的条件下分离,以减低解决问题的难度;整体与部分的分离是指将冲突双方在不同的层次上分离,以减低解决问题的难度。
3、物质--场分析法
物质--场分析法是指从物质和场的角度分析和构造最小技术系统的理论和方法,是TRIZ理论中一种常用的解决问题的方法。一个技术如果想要发挥其功能就至少构成一种最小的系统模型,这个系统模型应当具备三个必要的元素:两个物质S1,S2和一个场F。
4、ARIZ
ARIZ(Algorithm for Inventive-Problem Solving,发明问题解决算法),是TRIZ理论的一个主要分析问题、解决问题的方法。由于有些情景比较复杂,矛盾及其相关部件不明确的技术系统无法分析出明显的矛盾,不能直接依靠矛盾矩阵和物质--场分析解决,必须对其分步进行分析,不断对问题进行细化,直到找出问题解决方案。它是一个对初始问题进行一系列变形及再定义等非计算性的逻辑过程,实现对问题的逐步深入分析和转化,最终解决问题。在ARIZ中,创新问题求解的过程是对问题不断描述,不断标准化的过程。在解决问题的过程中,初始问题最根本的矛盾不容易被描述,如果方案库里已有的数据能够用于该问题则是标准解;如果已有的数据不能解决该问题则无标准解,需要通过ARIZ算法的过程实现。