⑴ 专业介绍:物理
“Physics is the study of the basic laws of nature, including mechanics, sound, electricity and magnetism, optics, heat, and quantum theory.” – 2013 Book of Majors
如果有人问你:“为什么天空是蓝色的?”你会给他解释什么是波长吗?如果你的回答是肯定的,那么你已经了解了一些自然规律,而这些自然规律,就是物理学习的对象。物理学习就是探索我们的自然世界:大海到底有多深?明天的天气会怎样?世界的起源是何时?Kettering大学的Bahram Roughani教授说:“物理学对我们的贡献无可限量,但是我们如何利用物理学知识面临着各种困难。”你是否有勇气去迎接挑战?
专业内容
定义
物理学是研究基本自然规律的学科,包括力学,声学,电磁学,光学,热量,还有量子论。学生探究物质和系统,以及组成他们的粒子,以理解他们如何进行能量和动量交换,如何相互作用,如何在力的作用下运动。它的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,它是当今最精密的一门自然科学学科。
物理学可作为一个独立的系,但也有些学校因为物理学的广泛应用,而把物理学和其他专业划为一个系,比如Dartmouth College将物理学和天文学划到一个系,其下有物理专业,天文专业,还有工程物理专业。运用物理知识的相关科学有但不限于:航空学,应用物理,天文学,天体物理学,大气学,地球科学,海洋学等。
典型课程
Modern physics 近代物理
Classical mechanics 经典力学
Electricity and magnetism 电磁学
Thermodynamics 热力学
Statistical mechanics 统计力学
Quantum mechanics 量子力学
Computational physics 计算物理学
Advanced laboratory 高阶实验
Solid-state physics 固态物理学
Electronics 电子学
Nuclear physics 核物理学
Wave motion 波动
Particle physics 粒子物理学
Optics 光学
Acoustics 声学
研究领域
物理学的研究方向大致分为四个方面:
1
Astrophysics天体物理:重点做天文学的理论研究。研究星体,星系,以及宇宙本身的形成,演变,和活动规律。
2
Particle physics粒子物理:研究物质和能量的基本组元及它们间的相互作用。
3
Atom Physics & Molecular Physics & Optics原子,分子,和光学物理:研究原子尺寸或几个原子结构范围内,物质-物质和光-物质的相互作用。
4
Condensed Matter Physics凝聚态物理: 研究物质的宏观性质,是最大的研究领域。
物理学的研究包括理论研究(theoretical), 实验研究(experimental),以及观察研究(observational)。具体领域视学校具体设置而定,比如芝加哥大学的物理系的研究领域有:
Astrophysics & cosmology 天体物理&宇宙学
Atomic physics 原子物理
Beam physics 束流物理
Biological physics 生物物理
Condensed matter physics 凝聚态物理
General relativity 广义相对论
Micros 显微镜学
Nuclear physics 核物理
Particle physics 粒子物理
专业排名
毕业去向
学物理学的毕业生的就职方向有但不限于:研究人员,工程师,高中老师,教授,实验室技师,电脑程序员,金融分析师等。大部分物理学者在相关工业,政府机构,或者学术机构从事研究开发工作。一般来说在美国从事基本研究项目需要博士学位水平。硕士学位可以迈入制造业和应用研究项目的门槛。
应用物理学的毕业生主要在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作。科研工作包括物理前沿问题的研究和应用,技术开发工作包括新特性物理应用材料如半导体等,应用仪器的研制如医学仪器、生物仪器、科研仪器等。应用物理专业的就业范围涵盖了整个物理和工程领域,融物理理论和实践于一体,并与多门学科相互渗透。
学物理的学生应具有扎实的物理理论的功底和应用方面的经验,这样能够在很多工程技术领域成为专家。还要关注物理专业的交叉专业,比如化学,工程,生物等。美国的顶尖名校Dartmouth College就为学生提供 “Modified Major”。学生如果对工程物理,生物物理,化学物理,医药,医学影像,或其他健康相关专业感兴趣可以在系要求的课程之外选择自己感兴趣的课程,这样也能够拓展新的物理应用领域。
还有一些热门的领域比如纳米技术研究。这类研究集中了物理学家,化学家和工程师一起探索小型材料的特性和应用。人才需求方面,我国对应用物理专业的人才需求仍旧是供不应求。
American Institute of Physics: https://www.aip.org/ 是一个比较大的美国物理学家和天文学家职业组织,学生可以参与项目,做实习。旗下有很多分支网站和杂志,都是关注物理学的前沿发展还有就业问题,其中Careers Using Physics:https://www.spsnational.org/ 可以为学生提供更多物理学相关职业。
毕业薪酬
根据美国PayScale网站,本科物理学专业毕业的学生在美国就业平均薪酬如下:
研究科学家:$71,216
机械工程师:$71,250
副教授,高校任教:$65,091
软件工程师:$38,541-$89,647
软件开发人员:$65,811
高级软件工程师:$121,074
iOS开发人员:$72,500
-payscale.com
⑵ 物理简介
研究物体运动的学科
物理(Physics)拼音:wù
lǐ,全称物理学。物理学是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的自然科学。在现代,物理学已经成为自然科学中最基础的学科之一。经过大量严格的实验验证的物理学规律被称为物理学定律。然而如同其他很多自然科学理论一样,这些定律不能被证明,其正确性只能经过反复的实验来检验。
“物理”一词的最先出自希腊文φυσικ,原意是指自然。古时欧洲人称呼物理学作“自然哲学”。从最广泛的意义上来说即是研究大自然现象及规律的学问。汉语、日语中“物理”一词起自于明末清初科学家方以智的网络全书式着作《物理小识》。
在物理学的领域中,研究的是宇宙的基本组成要素:物质、能量、空间、时间及它们的相互作用;借由被分析的基本定律与法则来完整了解这个系统。物理在经典时代是由与它极相像的自然哲学的研究所组成的,直到十九世纪物理才从哲学中分离出来成为一门实证科学。
物理学与其他许多自然科学息息相关,如数学、化学、生物、天文和地质等。特别是数学、化学、生物学。化学与某些物理学领域的关系深远,如量子力学、热力学和电磁学,而数学是物理的基本工具。
抄的
⑶ 物理是一门什么样的学科
物理学是研究物质运动最一般规律和物质基本结构的学科。
物理学是其他各自然科学学科的研究基础。研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,它的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,它是当今最精密的一门自然科学学科。
其他重要学科介绍:
化学是自然科学的一种,在分子、原子层次上研究物质的组成、性质、结构与变化规律;创造新物质的科学。世界由物质组成,化学则是人类用以认识和改造物质世界的主要方法和手段之一。
生物学是研究生物(包括植物、动物和微生物)的结构、功能、发生和发展规律的科学。自然科学的一个部分。目的在于阐明和控制生命活动,改造自然,为农业、工业和医学等实践服务。
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
⑷ 物理学的概念是什么 关于什么是物理学介绍
1、物理学是研究物质最一般的运动规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。
2、物理学是研究物质运动最一般规律及物质基本结构的学说。具体地说,按所研究的物质运动形态和具体对象,它涉及的范围包括:力学、声学、热学和分子物理学、电磁学、光学、原子和原子核物理学、基本粒子物理学、固体物理学以及对气体和液体的研究等。物理学包括实验和理论两大部分,经过实践检验被证实为可靠的理论物理包括:理论力学、热力学和统计物理学、电动力学、相对论、量子力学和量子场论。当然这些理论也只能是相对真理,有各自的局限性。运用物理学的基本理论和实验方法研究各种专门问题,使物理学中各种新的分支不断涌现和形成如流体力学、弹性力学、无线电电子学、金属物理学、半导体物理、电介质物理、超导体物理、等离子物理、固体发光、液晶及激光等。一些边缘学科也随物理的广泛应用而陆续形成如化学物理、生物物理、天体物理及海洋物理等等。
⑸ 物理学的发展和简介
物理学指事物的内在规律,事物的道理,是研究物质(质量)结构、物质相互作用和运动规律的自然科学,是一门以实验和观察为基础的自然科学。以下是由我整理关于什么是物理学的内容,希望大家喜欢!
中文里的“物理”一词,最早出现在战国时期,《鹖冠子·王𫓧》一文中最早出现:“庞子云:‘愿闻其人情物理’,意思是事物的道理,之后被广泛运用,在《淮南子》,《庄子》,《荀子》等中国典籍中都有运用。
而外语中的“物理”(physics)一词最早出现于古希腊文φυσικ,原意是指自然。
早在石器时代前 ,人们就尝试着理解这个世界:为什么物体会往地上掉、为什么不同的物质有不同的性质等等。宇宙的性质同样是一个谜,譬如地球、太阳以及月亮这些星体究竟是遵循着什么规律在运动,并且是什么力量决定着这些规律。人们提出了各种理论试图解释这个世界,然而其中的大多数都是错误的。这些早期的理论在今天看来更像是一些哲学理论,它们不像今天的理论通常需要被有系统的实验证明。像托勒密(Ptolemy)和亚里士多德(Aristotle)提出的理论,其中有些与我们日常所观察到的事实是相悖的。当然也有例外,譬如印度的一些哲学家和天文学家在原子论和天文学方面所给出的许多描述是正确的,再举例如古希腊的思想家、哲学家、数学家、物理学家阿基米德(Archimedes)在力学方面导出了许多正确的结论,像我们熟知的阿基米德定律。
在十七世纪末期,由于人们乐意对原先持有的真理提出疑问并寻求新的答案,最后导致了重大的科学进展,被称为科学革命。科学革命的前兆回溯到在印度及波斯所做出的重要发展,包括:印度数学暨天文学家Aryabhata以日心的太阳系引力为基础所发展而成的行星轨道之椭圆的模型、哲学家Hin及Jaina发展的原子理论基本概念、由印度佛教学者Dignāga及Dharmakirti所发展之光即为能量粒子之理论,电磁学方面,发现了摩擦起电,由穆斯林科学家Ibn al-Haitham(Alhazen)所发展的光学理论、由波斯的天文学家Muhammad al-Fazari所发明的星象盘,以及波斯科学家Nasir al-Din Tusi所指出托勒密体系之重大缺陷。
萌芽时期
在古代,由于生产水平的低下,人们对自然界的认识主要依靠不充分的观察,和在此基础上进行的直觉的、思辨性猜测,来把握自然现象的一般性质,因而自然科学的知识基本上是属于现象的描述、经验的总结和思辨的猜测。那时,物理学知识是包括在统一的自然哲学之中的。在这个时期,首先得到较大发展的是与生产实践密切相关的力学,如静力学中的简单机械、杠杆原理、浮力定律等。在《墨经》中,有力的概念(“力,形之所以奋也”)的记述;光学方面,积累了关于光的直径、折射、反射、小孔成像、凹凸面镜等的知识。《墨经》上关于光学知识的记载就有八条。在古希腊的欧几里德(公元前450-380)等的着作中也有光的直线传播和反射定律的论述,并且对光的折射现象也作了一定的研究。发现磁石吸铁等现象,并在此基础上发明了指南针。声学方面,由于音乐的发展和乐器的创造,积累了不少乐律、共鸣方面的知识。物质结构和相互作用方面,提出了原子论、以太等假设。
在这个时期,观察和思辨虽然是人们认识自然的主要手段和方法,但也出现了一些类似于用实验来研究物理现象的方法。例如,我国宋代沈括在《梦溪笔谈》中的声音共振实验和利用天然磁石进行人工磁化的实验,以及赵友钦在《革象新书》中的大型光学实验等就是典型的事例。
总之,从远古直到中世纪,由于生产的发展,虽然积累了不少物理知识,也为实验科学的产生准备了一些条件并做了一些实验,但是这些都还称不上系统的自然科学研究。在这个时期,物理学尚处在萌芽阶段。
发展时期
五世纪末叶,资本主义生产关系的产生,促进了生产和技术的大发展;席卷西欧的文艺复兴运动,解放了人们的思想,激发起人们的探索精神。近代自然科学就在这种物质的和思想的历史条件下诞生了。系统的观察实验和严密的数学演绎相结合的研究方法被引进物理学中,导致了十七世纪主要在天文学和力学领域中的“科学革命”。牛顿力学体系的建立,标志着近代物理学的诞生。整个十八世纪,物理学处在消化、积累、准备的渐进阶段。新的科学思想、方法和理论,得到了传播、完善和扩展。牛顿力学完成了解析化工作,建立了分析力学;光学、热学和静电学也完成了奠基性工作,成为物理学的几门基础学科。人们以力学的模型去认识各种物理现象,使机械论的自然观成为十八世纪物理学的统治思想。到了十九世纪,物理学获得了迅速和重要的发展,各个自然领域之间的联系和转化被普遍发现,新数学方法被广泛引进物理学,相继建立了波动光学、热力学和分子运动论、经典电磁场理论等完整的、解析式的理论体系,使经典物理学臻于完善。由物理学的巨大成就所深刻揭示的自然界的统一性,为辨证唯物主义的自然观提供了重要的科学依据。
现代
十九世纪末叶,物理学上一系列重大发现,使经典物理学理论体系本身遇到了不可克服的危机,从而引起了现代物理学革命。由于生产技术的发展,精密、大型仪器的创制以及物理学思想的变革。这一时期的物理学理论呈现出高速发展的状况,研究对象由低速到高速,由宏观到微观,深入到广垠的宇宙深处和物质结构的内部,对宏观世界的结构、运动规律和微观物质的运动规律的认识,产生了重大的变革。
相对论和量子力学的建立,克服了经典物理学的危机,完成了从经典物理学到现代物理学的转变,使物理学的理论基础发生了质的飞跃,改变了人们的物理世界图景。1927年以后,量子场论、原子核物理学、粒子物理学、天体物理学和现代宇宙学,得到了迅速的发展。
物理学向其它学科领域的推进,产生了一系列物理学的新部门和边缘学科,并为现代科学技术提供了新思路和新方法。现代物理学的发展,引起了人们对物质、运动、空间、时间、因果律乃至生命现象的认识的重大变化,对物理学理论的性质的认识也发生了重大变化。
越来越多的事实表明,物理学在揭开微观和宏观深处的奥秘方面,正酝酿着新的重大突破。现代物理学的理论成果应用于实践,出现了像原子能、半导体、计算机、激光、宇航等许多新技术科学。这些新兴技术正有力地推动着新的科学技术革命,促进生产的发展。而随着生产和新技术的发展,又反过来有力地促进物理学的发展。这就是物理学的发展与生产发展的辩证关系。
牛顿力学(Mechanics)与理论力学(Rational mechanics)研究物体机械运动的基本规律及关于时空相对性的规律
电磁学(Electromagnetism)与电动力学(Electrodynamics)研究电磁现象,物质的电磁运动规律及电磁辐射等规律
热力学(Thermodynamics)与统计力学(Statistical mechanics)研究物质热运动的统计规律及其宏观表现
相对论(Relativity)研究物体的高速运动效应以及相关的动力学规律
量子力学(Quantum mechanics)研究微观物质运动现象以及基本运动规律
此外,还有:
⑹ 什么是物理
物理:(1)事物的内在规律,事物的道理。(2)物理学。物理是研究物质结构、物质相互作用和运动规律的自然科学。是一门以实验为基础的自然科学,物理学的一个永恒主题是寻找各种序(orders)、对称性(symmetry)和对称破缺(symmetry-breaking)、守恒律(conservation laws)或不变性(invariance)。
目录
学科分支
历史起源
发展阶段(一)物理学萌芽时期
(二)经典物理学时期
(三)现代物理学时期
力学概念基本介绍
经典力学
牛顿力学
分析力学
理论力学
运动学
动力学
弹性力学
连续介质力学
力的含义
力的三要素
张力
力的单位
牛顿
重力
重量
物性
物理变化
物质
物体
诺贝尔奖学科分支
历史起源
发展阶段 (一)物理学萌芽时期
(二)经典物理学时期
(三)现代物理学时期
力学概念 基本介绍
经典力学
牛顿力学
分析力学
理论力学
运动学
动力学
弹性力学
连续介质力学
力的含义
力的三要素
张力
力的单位
牛顿
重力
重量
物性
物理变化
物质
物体
诺贝尔奖
展开
⑺ 物理学介绍
物理学介绍:
学科:理学
门类:物理学类
专业名称:物理学
业务培养目标:本专业培养掌握物理学的基本理论与方法,具有良好的数学基础和实验技能,能在物理学或相关的科学技术领域中从事科研、教学、技术和相关的管理工作的高级专门人才。
业务培养要求:本专业学生主要学习物质运动的基本规律,接受运用物理知识和方法进行科学研究和技术开发训练,获得基础研究或应用基础研究的初步训练,具备良好的科学素养和一定的科学研究与应用开发能力。
毕业生应获得以下几方面的知识和能力:
1.掌握数学的基本理论和基本方法,具有较高的数学修养;
2.掌握坚实的、系统的物理学基础理论及较广泛的物理学基本知识和基本实验方法,具有一定的基础科学研究能力和应用开发能力;
3.了解相近专业的一般原理和知识;
4.了解物理学发展的前沿和科学发展的总体趋势;
5.了解国家科学技术、知识产权等有关政策和法规;
6.掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法;具有-定的实验设计,创造实验条件,归纳、整理、分析实验结果,撰写论文,参与学术交流的能力。
主干学科:物理学
主要课程:高等数学、普通物理学、数学物理方法、理论力学、热力学与统计物理、电动力学、量子力学、固体物理学、结构和物性、计算物理学入门等。
主要实践性教学环节:包括生产实习,科研训练,毕业论文等,一般安排10-20周。
修业年限:四年
授予学位:理学学士
应用物理学介绍:
学科:理学
门类:物理学类
专业名称:应用物理学
业务培养目标:本专业培养掌握物理学的基本理论与方法,能在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作的高级专门人才。
业务培养要求:本专业学生主要学习物理学的基本理论与方法,具有良好的数学基础和实验技能,受到应用基础研究、应用研究和技术开发以及工程技术的初步训练,具备良好的科学素养适应用新技术发展的需要,只有较强的知识更新能力和较广泛的科学适应能力。
毕业生应获得以下几方面的知识和能力:
1.掌握系统的数学、计算机等方面的基本原理、基本知识;
2.掌握较坚实的物理学基础理论、较广泛的应用物理知识、基本实验方法和技能;具备运用物理学种某一专门方向的知识和技能进行技术开发、应用研究、教学和相关管理工作的能力;
3.了解相近专业以及应用领域的一般原理和知识;
4.了解我国科学技术、知识产权等方面的方针、政策和法规;
5.了解应用物理的理论前沿、应用前景和最新发展动态以及相关高新技术产;业的发展状况;
6.掌握资料查询、文献检索及运用现代信息技术获取最新参考文献的基本方法;具有一定的实验设计,创造实验条件,归纳、整理、分析实验结果.撰写论文,参与学术交流的能力。
主干学科:物理学
主要课程:高等数学、普通物理学、电子线路、理论物理、结构与物性、材料物理、固体物理学、机械制图等课程。
主要实践性教学环节:根据课程要求,安排与应用领域有关的教学实习。包括生产实习,科研训练或毕业论文等,一般安排10-20周。
修业年限:四年
授予学位:理学或工学学士
希望可以帮到你~~
⑻ 物理知识科普
物理知识在生活中运用非常广泛,大家了解过吗?以下是我带来的物理知识科普,一起阅读吧!
物理介绍【1】
物理方法 -物理 物理的定义
物理学简称物理。
欧洲“物理”一词的最先出自希腊文φυσικ??,原意是指自然。
古时欧洲人称呼物理学为“自然哲学”。
综述
物理学(英语:Physics)是一种自然科学,主要研究的是物质,在时空中物质的运动,和所有相关概念,包括能量和作用力。
更广义地说,物理学是对于大自然的研究分析,目的是为了要明白宇宙的行为。
物理学是最古老的学术之一。
在过去两千年,物理学与哲学,化学等等经常被混淆在一起,相提并论。
直到十六世纪科学革命之后,才单独成为一门现代科学。
现在,物理学已成为自然科学中最基础的学科之一。
物理理论通常是以数学的形式表达出来。
经过大量严格的实验验证的物理学规律被称为物理定律。
然而如同其他很多自然科学理论一样,这些定律不能被证明,其正确性只能靠着反复的实验来检验。
物理学的影响深远,这是因为物理学的突破时常会造成新科技的出现,物理学的新点子很容易会引起其它学术领域产生共鸣。
例如,在电磁学的进展,直接地导致像电视,电脑,家用电器等等新产品,大幅度地提升了整个社会的生活水平;核裂变的成功,使得核能发电不再是梦想。
坐过山车,理解物理知识【2】
我们都去过游乐园,对过山车并不陌生。
大部分过山车的每个车厢可容纳2人、4人或6人、8人,这些车厢利用勾子相互连结起来,就像火车一样,按照蜿蜒的轨道行驶。
由于蜿蜒的轨道,那种惊险、刺激也让很多人为之兴奋、着迷。
其实,乘坐过山车不仅能够让我们体验到冒险、刺激的感觉,还可以让我们更好地理解物理学上的很多原理。
在过山车开始启动后,把一节节小车厢推到最高点靠的是一个机械装置提供的动力,但第一次下去之后,就再也没有任何机械装置提供动力了。
也许你会很好奇,那一节节小车厢是靠什么来进行下面的运转呢?实际上,推动一节节小车厢的动力是引力势能,即引力势能和动能之间不断转化的过程。
下面我们就具体来讲讲,到底是怎么转化的。
首先,我们要了解一下什么是引力势能?引力势能通俗来讲就是物体所处的位置高度和由引力产生的加速度而拥有的能量。
那么一开始过山车靠着机械装置提供的动力一点点升高,与此同时,过山车的引力势能也在一点点增加,当过山车处于最高点时,引力势能也便达到了最大值。
当过山车开始下降时,由于高度的降低,在这一过程中,引力势能是不断减少的。
根据能量守恒定律,能量既不会消失,也不会产生,它只是从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在这个转化或者转移的过程中,其总能量是不变的。
在这里,减少的引力势能是转化为动能了。
而这个动能便是推动过山车继续运行的动力。
那减少的势能是全部转化为动能了吗?实际上不是的, 过山车的车轮与轨道是有摩擦的,摩擦会产生热量,而热能便会损耗一部分动能和势能。
这样一来,转化的动能不能推动过山车达到之前的高度了。
这也就是为什么过山车后面的坡度都比最开始的坡度小的原因。
下面我们再来看看过山车带给我们的刺激是怎么一回事,体现了什么样的物理原理。
首先,我们要明白坐过山车最刺激的车厢在最后面。
因为引力作用于过山车中部的质量中心,所以最后面一节车厢达到和通过最高点时的速度都比最前面的车厢要快。
这样一来,乘客便会有一种被甩出去的感觉。
如果尾部车厢的车轮没有很牢固地扣在轨道上,那么很有可能发生事故,即在最后的车厢达到或者通过最高点时就可能脱轨被甩出去。
因此,想要更加刺激就坐在过山车最后面。
为什么说最前面的车厢就不是这种情况了呢?因为它的质量中心在它后面,短时间内,它虽然是在下降,但是它要等质量中心越过高点才能被引力推动。
⑼ 物理是什么简介
基本定义
物理学是一门自然科学,注重于研究物质、能量、空间、时间,尤其是它们各自的性质与彼此之间的相互关系。物理学是关于大自然规律的知识;更广义地说,物理学探索并分析大自然所发生的现象,以了解其规则。
物理学(physics)的研究对象:物理现象、物质结构、物质相互作用、物质运动规律。
物理学研究的尺度——物质世界的层次和数量级
按空间尺度划分:量子力学、经典物理学、宇宙物理学。
按速率大小划分: 相对论物理学、非相对论物理学。
按客体大小划分:微观、介观、宏观、宇观。
按运动速度划分:低速、中速、高速。
按研究方法划分:实验物理学、理论物理学、计算物理学。
粒子物理学、原子核物理学、原子与分子物理学、固体物理学、凝聚态物理学、激光物理学、等离子体物理学、地球物理学、生物物理学、天体物理学等。