① 2020-07-08 38系列协议的基本认识(5G NR)
5G是第五代移动通信的简称,5G由另一个名称,新空口(new radio,NR)。NR和LTE系统都基于OFDM系统传输,主要区别是LTE的子载波间隔是15KHZ,NR存在6种子载波间隔,分别是15KHZ,30KHZ,
60KHZ,120KHZ,240KHZ,480HZ。
https://www.cnblogs.com/mway/p/5934654.html
https://blog.csdn.net/madongchunqiu/article/details/18614233/
第一版本的协议已经于2018年冻结了,38.2XX是关于物理层的R15协议。主要包括:
38.211是我们研究的重点
一帧是10ms,一帧分为10个子帧,一个子帧是1ms,一个子帧分为2个间隙,每个间隔是0.5ms,每个间隔分为14个符号。
时频资源、天线端口、载波带宽、RE(resource element)、RB(resource block)
各种调制方式、序列的产生方式,OFDM时域信号。
PUSCH加扰、调制、层映射、预编码、资源映射等;
PUCCH Format0-4序列产生、加扰、调制、预编码和映射;
PRACH序列产生和资源映射;
DM-RS、PT-RS和SRS信号产生和映射等。
PDSCH(物理下行分享信道)加扰、调制、层映射、天线端口映射、资源映射
PDCCH(物理下行控制信道)的CCE(信道控制元素),CORESET(控制资源集合)、加扰、调制、物理资源映射。
PBCH(物理广播信道)的加扰、调制、物理资源映射。
sss(二次同步信号)和PSS(初级同步信号)的产生和映射。
② 逻辑信道,传输信道和物理信道的区别,联系和功能
逻辑信道是MAC子层向上层提供的服务,表示承载的内容是什么(what),,按信息内容划分,分为两大类:控制信道和业务信道。
传输信道表示承载的内容怎么传,以什么格式传,分为两大类:专用传输信道和公用传输信道.
LONG TERM物理层协议根据传的内容和占用资源方式(频率和时间等)的不同定义了不同的物理信道,即按照将传输信道的不同的数据流按不同处理方式进行相关处理和数据的传输。
其实信道、链路等等都是人为的概念,是对一系列数据流或调制后的信号的分类名称,其名称是以信号的功用来确定的。
逻辑信道定义传送信息的类型,这些信息可能是独立成块的数据流,也可能是夹杂在一起但是有确定起始位的数据流,这些数据流是包括所有用户的数据。
传输信道是在对逻辑信道信息进行特定处理后再加上传输格式等指示信息后的数据流,这些数据流仍然包括所有用户的数据。
物理信道则是将属于不同用户、不同功用的传输信道数据流分别按照相应的规则确定其载频、扰码、扩频码、开始结束时间等进行相关的操作,并在最终调制为模拟射频信号发射出去;不同物理信道上的数据流分别属于不同的用户或者是不同的功用。
链路则是特定的信源与特定的用户之间所有信息传送中的状态与内容的名称,比如说某用户与基站之间上行链路代表二者之间信息数据的内容以及经历的一起操作过程。链路包括上行、下行等。
简单来讲,
逻辑信道={所有用户(包括基站,终端)的纯数据集合}
传输信道={定义传输特征参数并进行特定处理后的所有用户的数据集合}
物理信道={定义物理媒介中传送特征参数的各个用户的数据的总称}
打个比方,某人写信给朋友,
逻辑信道=信的内容
传输信道=平信、挂号信、航空快件等等
物理信道=写上地址,贴好邮票后的信件
2 逻辑信道、传输信道和物理信道分别有哪些?
8逻辑信道: MAC通过逻辑信道为上层提供数据传送服务。
逻辑信道 通常可以分为两类:控制信道和业务信道。控制信道用于传输控制平面信息,而业务信道用于传输用户平面信息。
其中,控制信道包括:
广播控制信道(BCCH):广播系统控制信息的下行链路信道。
寻呼控制信道(PCCH):传输寻呼信息的下行链路信道。
专用控制信道(DCCH):传输专用控制信息的点对点双向信道,该信道在UE有RRC连接时建立。
公共控制信道(CCCH):在RRC连接建立前在网络和UE之间发送控制信息的双向信道。(是双向吗?下行也这样使用?)(我个人认为是双向的见MAC层结构)
多播控制信道MCCH: 从网络到UE的MBMS调度和控制信息传输使用点到多点下行信道。
业务信道包括:
专用业务信道(DTCH):专用业务信道是为传输用户信息的,专用于一个UE的点对点信道。该信道在上行链路和下行链路都存在。
多播业务信道(MTCH):点到多点下行链路。
传输信道:物理层通过传输信道为上层提供数据传送服务。
物理层支持的传输信道:
下行共享信道DL-SCH: 支持HARQ,AMC,可以广播,可以波束赋形,可以动态或半静态资源分配,支持DTX,支持MBMS(FFS)
寻呼信道PCH: 支持DRX(UE省电),广播
广播信道 BCH
多播信道MCH: 广播,支持SFN合并,支持半静态资源分配(如分配长CP帧)
控制格式指示CFI
HARQ指示 HI
下行控制信息 DCI
上行共享信道UL-SCH: 支持HARQ,AMC,可以波束赋形(可能不需要标准化),可以动态或半静态资源分配
随机接入信道RACH: 有限信息,存在竞争
上行控制信息 UCI
根据传的内容和占用资源方式(频率和时间等)的不同LONG TERM物理层协议定义了不同的物理信道。各物理信道传输的内容和调制方式各不相同。
下行物理信道有:
PDSCH: 下行物理共享信道,承载下行数据传输和寻呼信息。
PBCH: 物理广播信道,传递UE接入系统所必需的系统信息,如带宽
天线数目、小区ID等
PMCH: 物理多播信道,传递MBMS(单频网多播和广播)相关的数据
PCFICH:物理控制格式指示信道,表示一个子帧中用于PDCCH的OFDM
符号数目
PHICH:物理HARQ指示信道, 用于NodB向UE 反馈和PUSCH相关的
ACK/NACK信息。
PDCCH: 下行物理控制信道,用于指示和PUSCH,PDSCH相关的
格式,资源分配,HARQ信息,位于子帧的前n个OFDM符号,n<=3.
上行物理信道有:
PUSCH:物理上行共享信道
PRACH:物理随机接入信道,获取小区接入的必要信息进行时间同步和小区
搜索等
PUCCH :物理上行控制信道,UE用于发送ACK/NAK,CQI,SR,RI信息。
3- 传输信道是如何映射到物理信道的?
物理层有6个下行物理信道,3个上行物理信道。传输信道和物理信道的映射关系如下表:
下行物理层信道与传输信道的映射关系如下表:
传输信道 物理信道
下行共享信道 DL-SCH 物理下行共享信道PDSCH
寻呼信道PCH 物理下行共享信道PDSCH
广播信道 BCH 物理广播信道PBCH
多播信道MCH 物理多播信道PMCH
控制信息 物理信道
控制格式指示CFI 物理控制格式指示信道PCFICH
HARQ指示 HI 物理HARQ指示信道 PHICH
下行控制信息 DCI 物理下行控制信息信道PDCCH
上行物理信道有:
PUSCH:物理上行共享信道
PRACH:物理随机接入信道,获取小区接入的必要信息进行时间同步和小区
搜索等
PUCCH :物理上行控制信道,UE用于发送ACK/NACK,CQI,SR,RI信息。
传信道信道/ 控制信息 物理信道
上行共享信道 UL-SCH 物理上行共享信道 PUSCH
随机接入信道 物理随机接入信道PRACH
上行控制信息 UCI PUCCH、PUSCH
③ 以下哪些信道属于下行物理信道
PAGING CHANNEL(寻呼信道)
PCH(PAGING CHANNEL)是寻呼信道,和AGCH,RACH同属于CCCH.
寻呼信道是用于传送与寻呼过程相关数据的下行传输信道,用于网络与终端进行初始化时。最简单的一个例子是向终端发起语音呼叫,网络将使用终端所在小区的寻呼信道向终端发送寻呼消息。
当网络想与某一MS建立通信时,它就会根据MS所登记的LAC号向所有具有该LAC号的小区的PCH信道上进行寻呼,寻呼MS的标识为TMSI或IMSI。用于传输基站寻呼移动台的信息,寻呼信道属于下行信道,点对多点传播方式。
在非组合CCCH的51复帧中共9个的CCCH块,其中包括PCH块和AGCH块.一般城市里AGCH设置为0,因为当PCH空闲时也可以做为AGCH来用.
不同的PCH信道可以用于不同的寻呼组进行寻呼,组合信道寻呼组会减少,非组合会增多.寻呼组越多,用户需要等待时间越长.
④ 物理下行信道中控制信道有哪些
LTE下行控制信道包括:
物理控制格式指示信道(PCFICH),指示用多少个OFDM 符号来传输PDCCH
物理HARQ指示信道(PHICH),用来反馈上行HARQ接收结果
物理下行控制信道(PDCCH),指示相应PDSCH信息以及其它的控制信息
物理广播信道(PBCH),用来传输MIB信息的物理广播信道
⑤ 5GNR漫谈1:NR物理层帧结构
5GNR标准是3GPP组织在4G LTE标准后,为适应新的移动通信发展需要,制订的新标准,它主要考虑的是大数据量、低时延、万物互联的应用场景。虽然是新的标准协议,但NR标准仍然处处有着LTE标准的“影子”,传统上做为代差最明显的物理层核心调制解调技术,NR和LTE采用的都是OFDM技术,这明显区别于2G的GSM采用TDMA/FDMA技术,3G的WCDMA和TD-SDMA采用的是CDMA技术。这也是众多的业内人士认为5G不够“新”的原因,理论技术创新应用不如前几代通信技术在改朝换代时那么明显。虽然在信道编码方面采用了LDPC和Polar编码,但两种编码方式与3G/4G时代用的Turbo编码在吐吞性能上相比,并没有数量级上质的飞跃,3GPP组织内部讨论采用何种信道编码方式时,也做了激烈的争论,最后由于LDPC和Polar工程上实现起来运算量更少利于实现,而最终做了权衡,长码字用LDPC,短码字用Polar,当然这里面也涉及到了产业内各大玩家参与者的利益之争。
从3G时代的CDMA时代开始,到4G/5G时代,无线空口的1个无线帧长(radio frame)都是10ms,体现了其技术体系的一脉相承。不过,NR相对于LTE的子帧(sub frame)和时隙(slot)结构有了很大的区别,LTE子帧固定为1ms,包含2个时隙,子载波间隔(subcarrier space)固定为15KHz,而NR在这方面则灵活变化得多。这种灵活变化,主要是为了适应NR时代的各种应用场景。标准协议定义了一个参数Numerologies(u )来体现这种变化,由 u值的不同,决定了子载波间隔的不同,进而定义了每个无线帧包含的时隙个数、每个子帧包含的时隙个数、每个时隙包含的OFDM符号数的不同。这里边最关键的定义依据来源,在于OFDM子载波间隔的改变,带来OFDM在时间符号长度上的改变。相同的是,NR在资源块(Resource Block,RB)的定义上仍然相同,频域占用12个子载波,时域占用一个时隙的长度。
理论上,OFDM时域符号长度(不包含保护间隔),由子载波间隔决定,为其倒数,由此可知,子载波间隔越大,OFDM时域符号长度就长小,这正有利于低时延场景的应用。
每个资源块(RB)占用带宽
子载波间隔与符号时长关系
NR物理层上行信道定义有随机接入信道PRACH、上行控制信道PUCCH、上行共享信道PUSCH,下行信道定义有主同步信道PSS、辅同步信道SSS、广播信道PBCH、下行控制信道PDCCH、下行共享信道PDSCH,由此可见,上行信道类型大体和LTE相同,但下行信道少了LTE的控制格式指示信道PCFICH和混合自动重传指示信道PHICH。前面说道NR定义了一个参数集Numerologies,那么,是不是每个上下行信道都可以对应多种 值呢?答案是否定的。
每个物理信道承载的业务类型是有其自身特点的,不必要求每个信道支持所有的 u值参数,那样系统过于复杂,也不利于工程实现。比如,NR仅在子载波为60KHz(u =2)的时候,支持Normal和Extended两种CP类型,其它子载波间隔的时候仅支持Normal CP类型。那么,在设计SSB(包含PSS、SSS、PBCH)信道的时候,就不支持子载波间隔为60KHz的场景,这是为了给终端在开机检测接收SSB的时候带来简便,节省时间和实现资源,因为如果SSB支持60KHz的场景,则要检测SSB的时候,就要从接收的空口基带数据中,找到无线帧起始,然后区分CP类型,从而再对接收数据进行相应的OFDM符号级提取数据处理,这无疑带来工程实现上的复杂繁琐
不同于LTE里面的TDD帧结构定义了7种上下行时隙配比无线帧模式,以及9种特殊子帧导频时隙DwPTS、UpPTS的时长,NR并没有预先定义严格的上下行配比以及特殊子帧配比,代之以灵活的广播通知模式,在广播消息里告知上下行结构模式,在一个上下行发射周期内(Transmission Periodicity),通过告知下行时隙个数(nrofDownlinkSlots),下行符号个数(nrofDownlinkSymbols),上行符号个数(nrofUplinkSymbols),上行时隙个数(nrofUplinkSlots)来确定上下行时间结构。通过这种手段,使得NR帧结构可以适应更为灵活的业务结构。
协议里面包含了6种上下行(UL/DL)周期( Periodicity,P)模式,系统可支持其中一种或者多种模式。
以eMBB(增强型无线宽带)场景,30KHz子载波间隔为例,这里例举实现中3种各厂家可能的帧结构。
第一种:
2.5ms双周期结构,在5ms里面有两个不同类型的周期,第一个2.5ms为DDDSU,第二个2.5ms为DDSUU,合在一起为:DDDSUDDSUU。这种类型有两个连续上行时隙,意味着能够接收更远的随机接入申请,有利于提升上行覆盖。
第二种:
2.5ms单周期结构,以2.5ms为周期,重复发射模板DDDSU。这种类型下行时隙多,有利于增大下行吞吐量。
第三种:
2ms单周期结构,以2ms为周期,重复发射DSDU。这种模式上下行转换较为均衡,有效减少网络时延。但上下行切换频繁,需要在上行时隙中牺牲一部分符号做切换。
由前所述,虽然灵活的上下行时隙配置,给灵活的实现各类场景的业务,带来技术实现上的便利,却也给传统的直放站(RP repeater)厂商带来了麻烦。直放站为了解决信号覆盖差的问题,在5G以前的时代,技术上可以实现搜索无线帧边界和确定上下行切换时间点后,对接收的无线帧信号进行中继放大。因为5G前时代的技术标准,上下行帧结构的切换模式较为固定,变化最多的LTE也不超过10种,这种上下行变化少的帧结构特点,给技术上工程实现信号的再生放大带来简单化。然而NR标准中上下行帧结构的不确定性,给实现信号的再生放大,带来了巨大挑战。当然,并非不可实现。
声明:部分图片来源于http://www.sharetechnote.com/
⑥ 5gnr物理信道包括
⑦ 与lte相比,5g的下行物理信道信号少了哪些
物理信号的话,这个应该是比较少的,我们因为5G信号里面是比较强的。
⑧ lte下行物理信道主要有几种模式
6种。lte下行物理信道主要有6种,分别是物理下行共享信道、物理广播信道、物理多播信道、物理控制格式指示信道、物理下行控制信道和物理HARO指示信道。信道就是传输信息的通道,物理信道一般是指依托物理媒介传输信息的通道。
⑨ 什么是上行和下行信道
信道
信息是抽象的,但传送信息必须通过具体的媒质。例如二人对话,靠声波通过二人间的空气来传送,因而二人间的空气部分就是信道。邮政通信的信道是指运载工具及其经过的设施。无线电话的信道就是电波传播所通过的空间,有线电话的信道是电缆。每条信道都有特定的信源和信宿。在多路通信,例如载波电话中,一个电话机作为发出信息的信源,另一个是接收信息的信宿,它们之间的设施就是一条信道,这时传输用的电缆可以为许多条信道所共用。在理论研究中,一条信道往往被分成信道编码器、信道本身和信道译码器。人们可以变更编码器、译码器以获得最佳的通信效果,因此编码器、译码器往往是指易于变动和便于设计的部分,而信道就指那些比较固定的部分。但这种划分或多或少是随意的,可按具体情况规定。例如调制解调器和纠错编译码设备一般被认为是属于信道编码器、译码器的,但有时把含有调制解调器的信道称为调制信道;含有纠错编码器、译码器的信道称为编码信道。
分类
物理信道分为上行物理信道和下行物理信道。
1)上行物理信道,即输入信道。包括:物理随机接入信道(PRACH)、物理公共分组信道(PCPCH)、上行专用物理控制信道(DPCCH)和上行专用物理数据信道(DPDCH);
2)下行物理信道,即输出信道。包括:下行专用物理信道(DPCH)、物理下行共享信道(PDSCH)、主/辅公共控制物理信道(P/S_CCPCH)、同步信道(SCH)、寻呼指示信道(PICH)、捕获指示信道(AICH)、公共导频信道(CPICH)、CPCH状态指示信道(CSICH)和碰撞检测/信道分配指示信道(CD/CA-ICH) 。