导航:首页 > 物理学科 > 物理的Ps是岩石的什么指标

物理的Ps是岩石的什么指标

发布时间:2022-12-29 02:10:30

⑴ 地质勘察报告中的ps(kpa)是什么意思

地基承载力特征值。
地质勘查从广义上可理解为地质工作,是根据经济建设、国防建设和科学技术发展的需要,运用测绘、地球物理勘探、地球化学探矿、钻探、坑探、采样测试、地质遥感等地质勘查方法,对一定地区内的岩石、地层构造、矿产、地下水、地貌等地质情况进行的调查研究工作。
基本定义:地质勘查还包括各种比例尺的区域地质调查、海洋地质调查、地热调查与地热田勘探、地震地质调查和环境地质调查等。地质勘查必须以地质观察研究为基础,根据任务要求,本着以较短的时间和较少的工作量,获得较多、较好地质成果的原则,选用必要的技术手段或方法,如测绘、地球物理勘探、地球化学探矿、钻探、坑探、采样测试、地质遥感等等。这些方法或手段的使用或施工过程,也属于地质勘查的范围。狭义地说,在中国实际地质工作中,还把地质勘查工作划分为5个阶段,即区域地质调查、普查、详查、勘探和开发勘探。

⑵ 什么等于ps物理公式

F=ps
f=ps表示压力。压强=压力/受力面积(p=F/S);压力=压强*受力面积(F=pS);受力面积=压力/压强(S=F/p)。
这s是指物体受力面积,且当物体放在比它打的面积上,取物体的底面积,反之一样

⑶ 岩石的物理性质指标有哪些

岩石物理性质指岩石的力学、热学、电学、声学、放射学等特性参数和物理量。
岩石的物理性质包括:颜色、条痕、光泽、透明度、硬度、解理、断口、脆性和延展性、弹性和挠性、相对密度、磁性、发光性、电性、其它性质。在力学特征中包括渗流特性和机械特性。

⑷ ps是什么单位

ps是公制马力单位和时间单位。

1、ps是物理上计算公制马力的单位名称。1马力是在1秒钟内完成75千克力米的功。即:1马力=75千克力·米/秒=735.49875瓦特(1ps=735.49875W)。

2、ps是时间单位,皮秒,符号是ps,来自中国天文学名词审定委员会审定发布的天文学专有名词。1皮秒=1000000渺秒,1 皮秒 =1000飞秒;1皮秒等于一万亿分之一(即10的负12次方)秒。

(4)物理的Ps是岩石的什么指标扩展阅读:

皮秒单位换算:

1皮秒=1000000渺秒

1 皮秒 =1000飞秒

1,000 皮秒 = 1纳秒

1,000,000 皮秒 = 1微秒

1,000,000,000 皮秒 = 1毫秒

1,000,000,000,000 皮秒 = 1E12皮秒=1秒

60,000,000,000,000皮秒=6E13皮秒=1分钟

3,600,000,000,000,000 皮秒=3.6E15皮秒=1小时

86,400,000,000,000,000 皮秒=8.64E16皮秒=1天

31,536,000,000,000,000,000 皮秒=3.1536E19皮秒=1年(平年)

参考资料来源:

网络——皮秒

网络——PS(公制马力单位)

⑸ 岩土物理力学性质指标统计选用的公式

岩石的力学指标主要有抗压强度、抗剪强度和弹性模量及变形模量等等。关于强度主要关注,岩石受到很多复杂因素影响,影响的规律也较复杂,一般受岩石的类型、完整性、风化程度及含水条件等诸多因素的控制;软岩一般破碎、风化程度高,浸水状态时,强度低,反之,则强度都较大。
公式一:抗压强度计算公式如下:
p=P/A
式中 p为抗压强度,以每平方吋多少磅(psi)、每平方公分多少公斤为单位,P为压力,以磅、公斤为单位,A为剖面面积,以平方公分、平方吋为单位。
公式二:库伦定律土的抗剪强度公式如下
τ=σtanφ+c
其中φ为内摩擦角,c为土的粘聚力
公式三:弹性模量公式如下
E=2.06e11Pa=206GPa
(e11表示10的11次方)它只与材料的化学成分有关,与温度有关。与其组织变化无关,与热处理状态无关。各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。
公式四:变形模量公式如下
Eo=βEsEo/Es
其比值在0~1之间变化,即一般Eo小于Es。但很多情况下Eo/Es 都大于1。其原因为:一方面是土不是真正的弹性体,并具有结构性;另一方面就是土的结构影响;三是两种试验的要求不同。

⑹ 岩石的物理力学性质与可钻性

(一)岩石的物理性质

岩石的物理性质是指岩石的基本工程地质性质。主要物理性质指标包括:岩石密度、孔隙性、含水性、透水性、裂隙性、松散性、流散性和稳定性等。

1.岩石密度

岩石密度是指岩石单位体积的质量。表达式为:

岩石密度=岩石质量÷岩石体积

岩石密度通常有如下几种表示方法:

(1)岩石密度

岩石密度是指单位体积岩石固体部分的质量。它取决于组成岩石的矿物密度及其在岩石中的相对含量。

(2)岩石容重

岩石容重是单位体积岩石的重量。

按岩石的含水状况不同,容重可分为天然容重、干容重和饱和容重。天然容重决定于组成岩石的矿物成分,空隙发育程度及其含水情况。

2.岩石孔隙性

岩石孔隙性系指岩石孔隙性和裂隙性的统称,常用孔隙率表示。

3.岩石吸水性

是岩石在一定试验条件下的吸水性能。它取决于岩石空隙数量、大小、开闭程度和分布情况。表示岩石吸水性的指标有吸水率、饱水率和饱水系数。

(二)岩石的力学性质

岩石的力学性质是指岩石在各种静力、动力作用下所表现的性质。主要力学性质指标包括:岩石的硬度、强度、研磨性、可钻性等。

1.岩石硬度

岩石硬度是指岩石表面抵抗其他刚性物体压入的能力。岩石的硬度一般可分为十个等级;习惯上通常把如下岩石,即:滑(石)、石(膏)、方(解石)、萤(石)、磷(灰石)、长(正长石)、石(英)、黄(玉)、刚(玉)、金(刚石)作为这十个等级的代表性岩石。表1-5分别列出了上述十个等级代表性岩石的标准矿物的摩氏硬度及显微硬度。

表1-5 不同岩石硬度等级代表性岩石的标准矿物摩氏硬度及显微硬度

2.岩石强度

岩石强度是指岩石在各种外力(如拉、压、弯曲、剪切)作用下,岩石整体抵抗破碎的能力。

3.岩石研磨性

岩石研磨性是指岩石磨损切削工具的能力。一般可分为强、中、弱研磨性三个种类。

(三)岩石的可钻性

1.岩石可钻性的含义

岩石可钻性是指在现有技术条件下,反映钻进中岩石抵抗破碎的一种综合能力表现。

2.岩石可钻性等级划分

按压入硬度、摆球硬度、机械钻速等测定方法进行综合划分,岩石的可钻性分为12个等级,其中:Ⅰ级最低,可钻性难度最小;Ⅻ级最高,可钻性难度最大。岩石可钻性分类如表1-6所示。

⑺ 岩石的工程地质性质有哪些表征岩石工程地质性质的指标有哪些

(一)岩石的工程地质性质:
1、岩石的风化程度
2、岩石的坚硬程度
3、岩体的完整程度
4、岩石的软化性
(二)表征岩石工程地质性质的指标
1、岩石的物理性质(重度、空隙性)
2、岩石的水理性质(吸水性、透水性、溶解性、软化性、 抗冻性)
3、岩石的力学性质(坚硬程度、变形、强度)

⑻ 岩石的力学性质包括哪些

①岩石的变形
岩石受力作用会产生变形,在弹性变形范围内用弹性模量和泊桑(松)比两个指标表示。弹性模量是应力与应变之比,以“帕斯卡”为单位,用符号Pa表示。相同受力条件下,岩石的弹性模量越大,变形越小。即弹性模量越大,岩石抵抗变形的能力越强。泊松比是横向应变与纵向应变的比。泊桑(松)比越大,表示岩石受力作用后的横向变形越大。
岩石并不是理想的弹性体,岩石变形特性的物理量也不是一个常数。通常所提供的弹性模量和泊桑(松)比,只是在一定条件下的平均值。
②岩石的强度
岩石的强度是岩石抵抗外力破坏的能力,也以“帕斯卡”为单位,用符号Pa表示。岩石受力作用破坏,表现为压碎、拉断和剪切等,故有抗压强度、抗拉强度和抗剪强度等。
a.抗压强度。抗压强度是岩石在单向压力作用下抵抗压碎破坏的能力,是岩石最基本最常用的力学指标。在数值上等于岩石受压达到破坏时的极限应力。抗压强度主要与岩石的结构、构造、风化程度和含水情况等有关,也受岩石的矿物成分和生成条件的影响。
所以,岩石的抗压强度相差很大,胶结不良的砾岩和软弱页岩小于20MPa,坚硬岩浆岩大于245MPa.
b.抗拉强度。抗拉强度是岩石抵抗拉伸破坏的能力,在数值上等于岩石单向拉伸破坏时的最大张应力。岩石的抗拉强度远小于抗压强度,故当岩层受到挤压形成褶皱时,常在弯曲变形较大的部位受拉破坏,产生张性裂隙。
c.抗剪强度。抗剪强度是指岩石抵抗剪切破坏的能力,在数值上等于岩石受剪破坏时的极限剪应力。在一定压应力下岩石剪断时,剪破面上的最大剪应力,称为抗剪断强度,其值一般都比较高。抗剪强度是沿岩石裂隙或软弱面等发生剪切滑动时的指标,其强度远远低于抗剪断强度。
三项强度中,岩石的抗压强度最高,抗剪强度居中,抗拉强度最小。抗剪强度约为抗压强度的10%~40%,抗拉强度仅是抗压强度的2%~16%.岩石越坚硬,其值相差越大,软弱岩石的差别较小。岩石的抗压强度和抗剪强度,是评价岩石(岩体)稳定性的主要指标,是对岩石(岩体)的稳定性进行定量分析的依据之一。

⑼ 岩石物理性质和热物理性质评价

岩石物理性质包括岩石的结构、构造、矿物成分、密度、孔隙率、弹性波速、磁化率、电阻率、放射性等,岩石热物理性质包括岩石热导率、热容量、生热率。在浅层地温研究中关注更多的是密度、孔隙率和热物理性质。

(一)岩石密度、孔隙度、含水率

1.岩石密度

岩石密度是指单位体积岩石的质量,用ρ表示:

浅层地温能资源评价

式中:ρ———密度(g/cm3);

m———质量(g);

V———体积(cm3)。

岩石的密度与化学成分、矿物组成、结构构造、孔隙度以及它所处外部条件有关。

岩浆岩的密度与化学成分有直接关系,总体讲由基性岩到酸性岩密度减小。化学成分相同时,侵入岩密度大于喷出岩,这是由喷出岩中孔隙度比侵入岩大所致。

沉积岩的密度取决于沉积物矿物组成、孔隙度和孔隙内充填物的密度。沉积岩孔隙度变化范围较大,一般为2%~2.5%,高者达50%,松散沉积物孔隙度更大。因此,沉积岩密度变化大。随埋藏深度增加和成岩作用的加深,密度增大,形成了同种岩性埋藏深度越大则密度越大、地层成岩时代越老则岩石密度越大的规律。

变质岩的密度取决于矿物组成。变质岩中孔隙度很小,一般为0.1%~3%,极少达到5%,岩石密度受孔隙影响很小,而受变质作用性质影响较大。在区域变质岩中绿片岩相岩石密度小于原岩,角闪岩、麻粒岩、榴辉岩等中深度变质岩密度大于原岩,这是由于化学成分中镁铁元素集中的结果。在动力变质过程中有矿物重结晶者密度大于原岩,无重结晶者密度小于原岩,原因在于无重结晶者使岩石产生了裂隙。

2.岩石孔隙度

岩石孔隙度又称孔隙率,是岩石的孔隙体积与包括空隙体积在内的岩石总体积之比。孔隙度是表示岩石孔隙性的数量指标,反映岩石颗粒接触关系和成岩及后期淋滤作用的综合结果。

岩石的孔隙度取决于岩石的结构和形成条件。岩浆岩的孔隙度与形成环境相关,喷出岩孔隙度大于侵入岩。变质岩由于在变形条件下伴有组分变化,且在一定压力下孔隙度变小。沉积岩在不同的成岩阶段孔隙度变化很大,沉积物组成、结构中的支撑关系、成岩作用和成岩后淋滤作用都对孔隙度产生影响;沉积岩孔隙度不但影响油气迁移富集,而且对岩石热导率和热容量也有重要影响。

3.岩石含水率

岩石含水率是岩石中水的质量与岩石矿物或颗粒质量之比。含水率与孔隙度直接相关。孔隙是岩石充水的前提条件,岩石中孔隙都被水充填时岩石达到水饱和状态。

(二)岩石热导率、比热容、生热率

物质热传导都是物质内部微观粒子相互碰撞和传递的结果。不同物质处于不同状态时,结构不同,导热机理不尽相同。固体中的热传导机制主要由两部分组成:①电子传导(依靠电子相互作用和碰撞传递热量);②晶格原子传导(依靠晶体点阵和晶格振动传递热量)。一般金属中热量主要由电子传导,硅质物质中的传热主要由晶格原子完成。

岩石热导率(K)、热容(C)和生热率(A)是基本热物理参数,分别反映了岩石对热能量传输、储存和生热的能力。浅层岩石土壤热导率(K)、热容(C)、生热率(A)是影响浅层地温能资源质量的主要因素。

1.岩石热导率(K)

热导率是反映物质导热能力的性质参数,一般通过理论计算和实验测试来确定热导率,后者是获得物质热导率的主要途径。

岩石传热机理是通过造岩矿物晶格振动和矿物晶体点阵振动进行的,主要是传导方式。岩石热导率指沿热流传递方向单位长度(l)上温度(T)降低1℃时单位时间(t)内通过单位面积(S)的热量(Q)。根据傅里叶定律,物质热导率与热流密度成正比,与温度梯度成反比,用如下关系式表达:

浅层地温能资源评价

热导率受矿物成分(岩性)和矿物间接触关系即岩石结构影响,同时受外部环境影响,如岩石裂隙、孔隙及含水率、压力条件等(对于松散堆积物的热导率影响的因素更为复杂),一般情况下岩石热导率随压力、密度、湿度增大而增大。均质物质热导率可用一个数值表征,非均质材料热导率不能用一个数值来表征,岩石属非均质体,特别是具有层理、片理、叶理以断层等外部条件约束时,热导率就不可用简单关系描述。

总体上,结晶岩热导率数值高于沉积岩,且随岩石中镁铁组分增高而增大,表2-9是根据杨淑贞对华北地壳上部岩石热传导结构探讨,熊亮萍等对中国东南地区岩石热导率值分析,邱楠生对西北塔里木、准噶尔、柴达木三盆地岩石热导率研究和吴乾蕃对松辽盆地地热场研究资料汇总简化而成。由表2-9可见,岩浆岩、变质岩热导率普遍高于沉积岩,沉积岩热导率随颗粒粒径增大而增大,化学沉积岩热导率随成分而异并随结晶程度增高而增大。

表2-9 中国各地岩石热导率表

沉积岩热导率变化较大,沉积物颗粒成分、形状、接触关系、孔隙度、含水率等对热导率有直接影响。此外,热导率还受岩石所处构造环境影响。同一种岩性固态颗粒,由细到粗热导率增大,压力增大热导率升高,孔隙含水率增大热导率增大,温度升高热导率减小。对于松散沉积物来讲,其孔隙度大、含水率不同,热传输的影响因素不仅有传导形式,还有水参与下的对流和无水孔隙中的辐射,其热传输机理较复杂。

孔隙中含水程度不同,热导率不同,在成岩岩石中热导率与孔隙度呈指数关系,表2-10是杨淑贞等于1986年对砂岩与泥岩的研究成果,以图2-19表示;表2-11是对岩石不同含水率下的热导率的测试结果,显示当孔隙一定时,热导率随含水率增大而增大,呈线性关系。图2-20这种线性形式可用K=A+B·W表示,式中,K为热导率,A为初始热导率,B为变化系数,W为含水量。

表2-10 饱和水和风干状态孔隙岩石热导率表

注:K=A+Blogφ,回归系数r为0.9748或0.9660。(据杨淑贞,1986,略修改)

图2-19 砂岩(砂质泥岩)热导率与孔隙度关系图(据杨淑贞,1986)

南京大学肖琳对不同孔隙度与含水量的土体热导率进行了实验室热线法研究,得出不同土体热导率随含水量及孔隙度的变化规律是:孔隙度一定时,土体热导率随含水量增大而增大;含水量一定时土体热导率随孔隙度增大而减小。由图2-21可见,土体热导率随孔隙度、含水量变化规律在不同土体中表现形式不同。对于粉砂和粉土热导率与含水量呈对数关系,含水量增大至一定量时,热导率趋于稳定;粉质粘土热导率与含水量呈指数关系,热导率在较大含水量范围内增加急剧,达一定量时趋于稳定。土体热导率随孔隙度增大而减小,粉砂和粉土热导率与孔隙度呈指数函数,先急剧增大后趋稳定;粉质粘土热导率与孔隙率呈对数函数,随孔隙度增长先平缓减小后急剧增加。

表2-11 不同含水率时孔隙岩石热导率表

(据杨淑贞等,1985)

图2-20 孔隙岩石热导率与含水率的关系图(据杨淑贞,1986)

这项研究还表明,孔隙岩石中热导率随含水率变化是有临界值的,含水率增加到临界值时,热导率不再增加。究其原因是因为粘土颗粒的热传递依靠颗粒接触进行,水的加入使颗粒接触面积增大,热导率升高,当水量达到使颗粒充分接触时,水量再继续增加,颗粒有效接触面积不会增加。所以,热导率趋于稳定。北京地区实际测试岩土体热导率结果也支持这一结论。

图2-21 含水量对土样(不同孔隙率)热导率的影响图(据肖玉林等,2008)

沉积岩(物)热导率随压力增大、埋藏深度增大、岩石地层形成年龄增长而增大的根本原因在于岩石中孔隙度随上述因素增加而减小、颗粒质点接触面积加大。

沉积岩(物)热导率随温度升高而降低,但降低数量级在10-3上,影响很小。虽然这一数量级对热导率影响较小,但这一变化规律在地温场研究中非常重要。据张延军研究,在0℃以上,粘土和中细砂热导率与温度有以下线性关系:

粘土:k=-0.0016T+1.2269,β=1.30×10-3

中砂:k=-0.0057T+1.8819,β=3.03×10-3

细砂:k=-0.0099T+1.8957,β=5.22×10-3

式中:k———热导率(W/(m·K));

T———温度;

β———温度影响系数。

2.岩石比热容(C)

岩石比热容指使单位质量物质温度变化1K所必需的热量,单位为J/(kg·K)。

C=Q/(m·ΔT)

式中:C———比热容;

m———质量(kg);

ΔT———温度变化。

比热容是反映物质吸热或放热能力的物理量。任何物质都有自己的比热容,同种物质在不同状态下,比热容也不同。比热容与过程有关,可分为定压比热容和定容比热容。从工程手册上可以查阅的比热容为物质的平均比热容(表2-12)。

松散沉积物比热容是(颗粒)固态物质与孔隙及填充物比热容之和。不同物质成分、结构岩性层构成的堆积体比热容采用加权平均法计算;对同一岩性,饱和水状态与非饱和水状态、均质状态和非均质状态下,比热容有显着差别。

比热容是计算热量的主要参数之一,岩土体的比热容可以通过多种测试方法获得,也可查阅各种工程手册获得。

表2-12 几种岩石土壤比热容表

(据胡芃等,2009)

3.岩石生热率(A)

岩石生热率是指单位体积岩石在单位时间内生成热量的总和,是表征岩石自身生热能力高低的性质参数。一般认为,地壳浅部热源是由岩石中U,Th,K三种放射性元素衰变产生的,可以用下式来求取岩石热量:

浅层地温能资源评价

式中:A———岩石生热率(μW/m3);

w(U),w(Th),w(K)———U,Th,K在岩石中的质量分数(10-6)。

岩石生热率与岩性密切相关,岩浆岩由基性到酸性生热率增高;沉积岩随颗粒减小生热率增高;变质岩生热率变化较大,为0.3~10.9μW/m3,以变粒岩最大。三大岩类的生热率排列为岩浆岩>沉积岩>变质岩。

岩石生热率随深度(z)分布呈指数递减,表达式为

A(z)=A(0)·exp(-z/H)

式中:A(z)———岩石生热率随深度变化值;

A(0)———地表岩石生热率;

H———对数缩减量。

地球不同深度带生热率估计如下:0~100km大地热流为50%;100~200km为25%;200~300km为15%;300~400km为8%;>400km为2%。

岩石放射性是地壳温度场分布的主要控制因素,是地球内部驱动深部构造热过程的重要动力来源,在浅层地温场评价中应予高度重视。

表征岩石热物理性质的参数还有热阻率、热扩散率、不同传热形式的热流密度等。热导率、比热容和生热率是岩石最基本的热物理性质参数,以此为基础,利用其他物性参数和相应关系可以导出岩石的其他热物理性质参数。

⑽ 主要的岩土性质指标及地基承载力

一、主要的岩土性质指标

(一)土的物理力学性质指标

1)土的主要物理性质指标有天然含水量、天然重度、相对密度(比重)、孔隙比、液限、塑限、塑性指数、液性指数和渗透系数等。

2)土的力学性质指标有压缩性(压缩系数、压缩模量、变形模量)、抗剪强度(内摩擦角、黏聚力)和无侧限抗压强度等。

(二)岩石的物理力学性质指标

1)岩石的主要物理性质指标有天然密度、相对密度(比重)、孔隙率、吸水率、饱和系数和软化系数等。

2)岩石的主要力学性质指标有抗压强度、抗拉强度、抗剪强度(摩擦系数、黏聚力)及变形特性(静弹性模量、动弹性模量、泊松比)等。

二、主要的岩土性质指标经验值及地基承载力

(一)土的主要物理力学性质指标经验值及地基承载力

1996年,通过对深圳地区大量岩土试样物理力学性质试验成果的统计,并将统计结果编入深圳市标准《深圳地区地基处理技术规范》(SJG 04-96)附录A、B、C中,经多年在工程项目中应用及不断积累和补充,与《岩土工程试验监测手册》和《工程地质手册》(第四版)中的“有关土的经验数据”对比,提出“深圳地区第四系黏性土层和全、强风化岩的物理力学性质指标经验值”(表2-2-53)、“深圳地区第四系黏性土层静三轴、固结、渗透试验指标经验值”(表2-2-54)、“砂土的物理力学性质指标经验值”(表2-2-55)和“深圳地区第四系砂土及风化岩体渗透系数指标经验值”(表2-2-56)。

(二)岩石的主要物理力学性质指标经验值

根据广东省标准《建筑地基基础设计规范》(DBJ15-31-2003)条文说明中的表4.4.1一1(深圳地区各种岩石饱和单轴抗压强度新老方法统计对照表),《工程地质手册》(第四版)岩石的物理力学性指标中的表3-1-41(岩石的物理性质指标)、表3-1-42(几种岩石力学强度的经验数值)和表3-1-43(岩石力学性质指标经验数据);《岩土工程试验监测手册》表4.8-2(混凝土与岩石现场直剪试验数据与有关资料)、表4.8-3(各类岩石现场直剪试验数据及有关说明)和表4.8-4(岩石软弱结构面、软弱岩石现场直剪试验数据及有关说明)等,综合深圳地区的经验值,编制《深圳地区岩石物理力学性质指标的经验数据》(表2-2-57)。

表2-2-53 深圳地区第四系黏性土层和全、强风化岩物理力学性质指标经验值

表2-2-54 深圳地区第四纪黏性土层静三轴、固结、渗透试验指标经验值

表2-2-55 砂层物理力学性质指标经验值

表2-2-56 深圳地区第四纪砂土及风化岩体渗透系数指标经验值

表2-2-57 深圳地区岩石物理力学性质指标的经验数据

阅读全文

与物理的Ps是岩石的什么指标相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:739
乙酸乙酯化学式怎么算 浏览:1404
沈阳初中的数学是什么版本的 浏览:1350
华为手机家人共享如何查看地理位置 浏览:1042
一氧化碳还原氧化铝化学方程式怎么配平 浏览:884
数学c什么意思是什么意思是什么 浏览:1408
中考初中地理如何补 浏览:1299
360浏览器历史在哪里下载迅雷下载 浏览:701
数学奥数卡怎么办 浏览:1387
如何回答地理是什么 浏览:1023
win7如何删除电脑文件浏览历史 浏览:1055
大学物理实验干什么用的到 浏览:1484
二年级上册数学框框怎么填 浏览:1699
西安瑞禧生物科技有限公司怎么样 浏览:969
武大的分析化学怎么样 浏览:1247
ige电化学发光偏高怎么办 浏览:1337
学而思初中英语和语文怎么样 浏览:1650
下列哪个水飞蓟素化学结构 浏览:1423
化学理学哪些专业好 浏览:1486
数学中的棱的意思是什么 浏览:1057