⑴ 自相关函数为门函数,这个信号物理可实现吗
比如产生多路信号,为了分析多路信号之间的相关性,可以用自相关函数来看一下,具体情况需要具体分析。
⑵ 到底什么是相关函数,自相关函数
1、相关函数是描述信号X(s),Y(t)(这两个信号可以是随机的,也可以是确定的)在任意两个不同时刻s、t的取值之间的相关程度。
2、自相关函数在不同的领域,定义不完全等效。在某些领域,自相关函数等同于自协方差(autocovariance)。自相关也叫序列相关,是一个信号于其自身在不同时间点的互相关。非正式地来说,它就是两次观察之间的相似度对它们之间的时间差的函数。
(2)自相关函数包含原信号哪些物理分量扩展阅读
1、在信号处理中,相关函数的应用很广,主要有信号中隐含周期性的检测,确定未知参数的线性系统的频域响应,噪声中信号中的检测,噪声中信号的提取等
2、信号处理中,自相关可以提供关于重复事件的信息,例如音乐节拍(例如,确定节奏)或脉冲星的频率(虽然它不能告诉我们节拍的位置)。另外,它也可以用来估计乐音的音高。
⑶ 自相关函数是什么它的概念是怎么样的它怎么样计算
自相关函数和互相关函数的matlab计算和作图
1. 首先说说自相关和互相关的概念。
这个是信号分析里的概念,他们分别表示的是两个时间序列之间和同一个时间序列在任意两个不同时刻的取值之间的相关程度,即互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度,自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2的取值之间的相关程度。互相关函数给出了在频域内两个信号是否相关的一个判断指标,把两测点之间信号的互谱与各自的自谱联系了起来。它能用来确定输出信号有多大程度来自输入信号,对修正测量中接入噪声源而产生的误差非常有效.
事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别是f(t)和g(t),则互相关函数定义为R(u)=f(t)*g(-t),它反映的是两个函数在不同的相对位置上互相匹配的程度。那么,如何在matlab中实现这两个相关并用图像显示出来呢?
dt=.1;
⑷ 根据自相关函数图形如何确定该信号中的常值分量和周期成分
在自相关函数图形中可看出:信号的常值分量是自相关函数的常值分量的平方根,周期就是自相关函数的周期,幅值也可以计算出来。
⑸ 随机过程里的自相关函数有什么物理意义举个比较详细得例子说明下行不
自相关函数应用非常广泛,在不同的应用领域中它具有不同的物理意义
例如,在电学、信号处理方面,一个随机过程(信号)的自相关函数与该随机过程(信号)的功率谱或能量谱成傅立叶变换对的关系。
⑹ 通信原理里的自相关函数是什么意思,有什么作用
....你看的是什么书啊,,,这都不解释,,,,
是表达信号和他的多径信号的相似度的
就是表达一个信号经过反射啊,折射啊之类延时后的副本信号与
原信号的相似程度
同样的,可以根据此原理,进行信号接收时来进行信号的识别,
或反过来对信号进行时延调整
还有可以用它的傅立叶变化算信号的功率谱
⑺ 自相关函数有什么意义
自相关函数在分析随机信号时候是非常有用的。
通过傅里叶变换可以将一个时域信号转变为频域,这样可以更简单地分析这个信号的频谱。但这有个前提,那就是我们分析的信号是确定信号,即无噪声的信号(sin就是sin,cos就是cos)。
而在真正的通信中,我们的传输环境是非常复杂的,充满了噪声。很多时候噪声的分布服从高斯分布(噪声幅度低的概率大,噪声幅度高的概率小)我们称这种噪声叫高斯白噪声(其对应的信道叫AWGN信道)。
而自相关函数的定义都知道,Rx(Δt)=E[x(t)*x(t+Δt)],会发现,如果同一个信号x(t)进行自相关后,还是自己,而不同的信号进行自相关后,数值会变得很小。不论Δt取多少,在发送端发出的信号始终不变。
那么确定信号经过自相关运算后就保存了下来,而由于噪声每一时刻都不同,自相关后噪声就趋近于0了。然后又知道维纳-辛钦定理,自相关函数的傅里叶变换是功率谱,这样又一次将时域信号转换到频域进行分析,同时还滤除了噪声。
自相关函数定义:
在统计学上,自相关被定义为,两个随机过程中不同时刻的数值之间的皮尔森相关(Pearson correlation)。
如果X为广义平稳过程,则期望以及标准差不随时间t变化,则自相关函数可以表示为时间延迟的函数,如下信号处理,其中“*”是卷积算符,为取共轭。
同一时间函数在瞬时t和t+a的两个值相乘积的平均值作为延迟时间t的函数,它是信号与延迟后信号之间相似性的度量。延迟时间为零时,则成为信号的均方值,此时它的值最大。
简而言之,自相关函数是表达信号和它的多径信号的相似程度。一个信号经过类似于反射、折射等其它情况的延时后的副本信号与原信号的相似程度。