1. 梯度散度旋度的物理含义
都是顾名思义。
梯度用来形容一个标量场,他表示这个标量场沿某一方向的变化率。学过2维的导数吧,变量y沿x坐标的梯度就是y沿x方向的导数。导数越大,表示这个量变化的越快。
散度形容一个向量场的在空间的敛散强度。散度的正负表示该向量场的收敛还是发散,大小表示该量场通量的空间体密度。举个例子:你发想在一个封闭曲面内,某一个向量场做散度计算为零,那么你选的这个曲面内部一般没有这个向量场的激发源,如果是正的,说明向量场从你选的空间内对外膨胀,发散,越大说明强度越猛。负的,表示该向量场在你选的空间内部发生了湮灭,越大,说明湮灭的强度越猛。
旋度表示向量场对其作用的元素的旋转强度。他的正负代表他会对其作用的元素朝着顺时针或逆时针方向旋转,他的大小表示这个旋转力的大小。举个例子:你站在漩涡中,水流的推力的旋度肯定是垂直水平的,垂直水平向上代表(按右手定则)你会被逆时针卷入漩涡,旋度朝下反之;显然你在漩涡中心和漩涡边缘受到的推力大小肯定不一样,说明漩涡中间的旋度比边缘的大。旋度反映了向量场超某个面的面密度。
2. 谁能给我解释一下旋度具体的物理意义
旋度
表示曲线、流体等旋转程度的量。
定义
设有向量场
<math>\mathbf(x,y,z)=P(x,y,z)\mathbf+Q(x,y,z)\mathbf+R(x,y,z)\mathbf</math>,
在坐标上的投影分别为
<math>\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}</math>,<math>\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}</math>,<math>\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}</math>
的向量叫做向量场A的旋度,记作 rot A,即
<math>\mathbf\ \mathbf=(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})\mathbf+(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x})\mathbf+(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\mathbf</math>
行列式记号
旋度rot A的表达式可以用含列式记号形式表示:
<math>\mathbf\ \mathbf=\begin \mathbf & \mathbf & \mathbf \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac {\partial}{\partial z} \\ P & Q & R \end</math>
3. 考研'高等数学中'向量场的通量'散度'环流量'旋度有啥物理意义呀'如何理解帮助记忆
散度就是通量密度,表示出了源的发散强度,在流体,还有电磁都会用到;
rot A=2ω,ω是角速度(且为矢量),A是向量场
4. 散度和旋度的通俗解释
散度是标量,物理意义为通量源密度.对场(电场磁场等)而言散度为零,说明是无源场;散度不为零时,则说明是有源场(有正源或负源)
旋度是矢量;其物理意义为环量密度.对场(电场磁场等)而言旋度为零,说明是无旋场;旋度不为零时,则说明是有旋场.
5. 散度和旋度的物理意义是什么
散度与旋度是曲线积分和曲面积分的一个应用。
旋度的物理意义是设想将闭合曲线缩小到其内某一点附近,那么以闭合曲线L为界的面积也将逐渐减小。一般说来,这两者的比值有一极限值,即记作单位面积平均环流的极限。
散度的物理意义是描述空气从周围汇合到某一处或从某一处流散开来程度的量。水平散度是气体在单位时间内水平面积的变化率。
如果面积增大,散度取正值,为水平辐散;如果面积缩小,散度取负值,为水平辐合。三维空间的散度表示任意气块在单位时间内其单位体积的变化率。气块的体积膨胀称为辐散,气块体积收缩称为辐合。
应用:
散度可以表示流体运动时单位体积的改变率。简单地说,流体在运动中集中的区域为辐合,运动中发散的区域为辐散。散度值为负时为辐合,此时有利于气旋等对流天气系统的的发展和增强,为正时表示辐散,有利于反气旋等天气系统的发展。
散度等于零的矢量场称为无源场或管形场。流体力学中,密度散度为零的流体称为不可压缩流体,也就是说每个微小时间间隔中流入一个微小体元的流体总量都等于在此时间间隔内流出此体元的流体总量。
以上内容参考:网络-散度
6. 旋度公式的物理意义
如何旋度公式 的理解 书 知乎
旋度是向量分析中的一个向量算子,可以表示三维向量场对某一点附近的微元造成的旋转程度。 这个向量提供了向量场在这一点的旋转性质。
旋度的例子
下面是两个简单的例子,用以说明旋度的直观意义。第一个例子是向量场 (如图1):直观上,可以看出向量场是表示一个向顺时针方向旋转的趋势。假如在图中放一个点,它会被向量场“推动”,沿顺时针方向绕圈运动。根据右手定则,旋度的方向应该是朝向页面内。按照右手系座标的方向,旋度的方向是 轴的负方向。经过计算可以得出,向量场的旋度为和直观的推断相符合。以上的计算表明,对于该矢量场,旋度是一个恒定的量,也就是说,每一点上旋转的程度都是一样的。旋度图象为图2:第二个例子是向量场 (如右图3):向量场的作用是向下,越是靠近两侧,向下的趋势越显着。假想这个向量场是一个力场,一块薄板水平放在图的右边,那么由于更靠右的地方受到向下的力更大,薄板会顺时针转动。类似地,如果将薄板水平放在图的左边,则会逆时针转动。所以的旋转作用是右侧顺时针、左侧逆时针,而且越偏离中心,作用越大。按照右手定则,旋度应该是右侧朝 轴负方向(指向页面内),左侧朝 轴正方向(指向页面外)。实际的计算可以得到:所以 时是朝 轴负方向, 时是朝 轴正方向,和直观推断相符合。
求解旋度基本公式的证明(拉普拉斯算子)
wenku./view/0ac68f0fba1aa8114431d912