㈠ 什么叫线性和非线性
非线性:
非线性,即变量之间的数学关系,不是直线而是曲线、曲面、或不确定的属性,叫非线性。
非线性是自然界复杂性的典型性质之一;与线性相比,非线性更接近客观事物性质本身,是量化研究认识复杂知识的重要方法之一;凡是能用非线性描述的关系,通称非线性关系。
什么叫线性:
对线性的界定,一般是从相互关联的两个角度来进行的:其一,叠加原理成立:“如果ψl,ψ2是方程的两个解,那么aψl+bψ2也是它的一个解,换言之,两个态的叠加仍然是一个态。”
叠加原理成立意味着所考察系统的子系统间没有非线性相互作用。
其二,物理变量间的函数关系是直线,变量间的变化率是恒量,这意味着函数的斜率在其定义域内处处存在且相等,变量间的比例关系在变量的整个定义域内是对称的。
㈡ 什么叫线性和非线性
1.两个变量之间的关系是一次函数关系的——图象是直线,这样的两个变量之间的关系就是“线性关系”;如果不是一次函数关系的——图象不是直线,就是“非线性关系”。
2.比如说y=kx 就是线形的 而y=x^2就是非线形的 线形的图形一般是一条直线。
3.“非线性”的意思就是“所得非所望”。一个线性关系中的量是成比例的:十枚橘子的价钱是一枚的十倍。非线性意味着批发价格是不成比例的:一大箱橘子的价钱比一枚的价钱乘以橘子的个数要少。这里重要的观念是“反馈”——折扣的大小反过来又影响顾客购买的数量。
(2)什么叫做线性物理扩展阅读
线性和非线性的区别:
线性linear,指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;非线性non-linear则指不按比例、不成直线的关系,一阶导数不为常数。
线性特性是卷积运算的性质之一,即设a,b为任意常数,则对于函数f(z,y),h(x,y)和g(x,y),
{af(x,Y)+bh(z,y)}*g(z,y)=-af(x,y)*g(x,y)+bh(x,y)*g(z,y)。
同样有:
f(x,y)*{ah(x,y)+bg(x,y)=af(x,y)*h(x,y)+bf(x,y)*g(x,y) 。
㈢ 动量也称线性动量,线性动量里的线性代表什么潜规则意思为什么可以在动量前加线性
这里的“线性”不是相对于“线性代数”的“线性”。
物理上一般认为物体/参考系/坐标系有两种移动方式:平动和转动
这里的线性动量又叫“平动动量”(translational momentum),顾名思义,是相对于“转动动量”(rotational momentum)而言的,这个所谓“转动动量”就是我们熟悉的角动量,包括轨道角动量和自选角动量。
希望能帮到你~
㈣ 物理中的线性关系是什么
两个变量之间存在一次函数关系,就称它们之间存在线性关系。通俗一点讲,如果把这两个变量分别作为点的横坐标与纵坐标,其图象是平面上的一条直线,则这两个变量之间的关系就是线性关系
㈤ 物理上线性关系与非线性关系有什么区别
非线性是指两个变量间的关系,是不成简单比例(即线性)关系的。
所谓线性,从数学上来讲,是指方程的解满足线性叠加原理。即方程任意两个解的线性叠加仍然是方程的一个解。线性意味着系统的简单性,但自然现象就其本质来说,都是复杂的,非线性的。所幸的是,自然界中的许多现象都可以在一定程度上近似为线性。传统的物理学和自然科学就是为各种现象建立线性模型,并取得了巨大的成功。但随着人类对自然界中各种复杂现象的深入研究,越来越多的非线性现象开始进入人类的视野。
㈥ 什么是线性
线性指的是诸如此类
关系
y=a1*x_1+b2*x_2+...an*x_n
注意其中(1)x_i是未知量,可以是函数表达式等
(2)ai是与未知量x无关的量
其中第二点最重要
例如在线性空间中,线性的意思大概是
对任何一个空间中的元素
b
可以由其基底的线性组合表示,即元素的关系是线性的
b=a1*b1+a2*b2+...+an*bn;
其中ai与基底无关是常量
等你学到线性代数中的线性方程组和矩阵时就能彻底理解什么叫线性了,它是相对于非线性而言,比较容易处理
㈦ 物理学中的“线性系统”,是什么意思
线性系统是变量遵循线性变化的系统。线性指的是变量之间的关系成一次函数的直线关系。比如纯电阻电路可以看成是线性系统,因为各物理量符合欧姆定律的线性关系。
以上只是简单的线性系统概念,在数学里面,有更复杂的概念和内涵。
㈧ 什么是线性科学非线性科学
非线性科学
nonlinear
science
研究各类系统中非线性现象的共同规律的一门交叉科学。
所谓线性,指两个变量之间可用直角坐标中一段直线表示的一种关系,例如正比关系。由线性关系描述的系统满足叠加原理,通过研究其对简单输入的响应,叠加起来就可导出和描述其他输入的响应。线性系统的整体性态通常可由各局部性态叠加或放大得到,从而比较容易分析,但也限制了它的适用范围。在自然科学和工程技术里,不少现象不能采用线性模型描述,如摆的大幅度摆动,继电器二极管的特性,自激振荡电路的机理等。从逻辑上说,非线性就是不满足线性叠加原理的性质。但人们真正关注的,是仅用线性理论所不能解释的那些现象,统称为非线性现象。
每一门科学有它自己的非线性问题,并形成各自的非线性学科分支。非线性科学不是各门非线性学科的简单综合
,它研究出现于各种具体的非线性现象中的那些共性。这些共性有的已可以用适当的数学工具描述,表现为一些数学定律,但有的还难找到相应的数学描述,没有严格的数学理论。非线性科学着眼于定量的规律,主要用于自然科学和工程技术,对社会科学的应用一般还局限在类比和猜测,难以有实质性的定量结果。
非线性科学中较成熟的部分是非线性动力学,19世纪末法国H.庞加莱的两项工作——常微分方程的定性理论和天体运动中定量计算使他成为非线性科学最早的代表人物。20世纪前叶,无线电技术促使非线性振动理论的诞生,继承和发展了庞加莱的成果。20世纪60年代后,大气科学和流体力学中利用计算机进行的数值研究,分析力学中数学理论的进展,以及统计物理中远离平衡态系统性态的研究等等,促进了在横向联系上发现并研究各类不同系统由于非线性而导致的共性,即非线性科学。
一般认为非线性科学应包括以下3个主要部分:孤立波,混沌,分形。孤立波是在传播中形状不变的单波,有些孤立波在彼此碰撞后仍能保持原形,带有粒子的性质,称为孤立子,它们在不少自然现象和工程问题中遇到,如光导纤维通信技术的改进需要对光学孤立子性质有进一步的了解。混沌是一种由确定性规律支配却貌似无规的运动过程。近几十年通过数值实验、物理观测和数学分析得到确认并在自然和工程系统里找到许多有趣的例子。分形是一个几何概念,它由像云彩、海岸线、树枝、闪电等不规整但具有某种无穷嵌套自相似性的几何图形抽象概括得出。按照这种理论例如可测出某一段海岸线可能是
1.32维的分形。上述3项内容在一个具体的非线性课题里又往往是联系着的。如耗散系统的混沌过程往往可用相空间里一个分形描述。又如近代前沿课题图型动力学里,某一系统的整体空间图型可能是分形,而局部的时间动态又要用混沌过程刻画。再如在分岔理论里,要考虑系统怎样由于其参量改变而导致性态发生定性的变化,它除了引用传统的平衡、振动、稳定性等概念外,也考虑涉及混沌动态和分形图型的分岔问题。
由于学科的交叉性,非线性科学和一些新学术如突变论、协同论、耗散结构论有相通处,并从中吸取有用的概念理论。但非线性现象很多,实证的非线性科学只考虑那些机制比较清楚,现象可以观测、实验,且通常还有适当的数学描述和分析工具的研究领域。随着科学技术的发展,这个范围将不断扩大。