‘壹’ 斜率怎么求,有哪些公式
1直线斜率k的公式 k=(y2-y1)/(x2-x1);如果直线与x轴垂直,直角的正切值无穷大,故此直线不存在斜率。当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像(直线)的斜率。
2直线斜率相关 当直线L的斜率不存在时,斜截式y=kx+b 当k=0时 y=b 当直线L的斜率存在时,点斜式y2—y1=k(X2—X1), 当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1 对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα 斜率计算:ax+by+c=0中,k=-a/b. 直线斜率公式:k=(y2-y1)/(x2-x1) 两条垂直相交直线的斜率相乘积为-1:k1*k2=-1. 当k>0时,直线与x轴夹角越大,斜率越大;当k<0时,直线与x轴夹角越小,斜率越小。
拓展资料
在物理中,斜率也有很重要的意义, 电源的电动势曲线和灯泡的伏安特性曲线的交点 就是灯泡在 这个电动势(实际电压)下工作的电流
‘贰’ 求图像的斜率用什么方法求,要方法就行了
选线上的两个点,最好相距远点,纵坐标之差除以横坐标之差就是斜率
‘叁’ 高中物理中的斜率怎么算
如果坐标系的横轴为x轴,纵轴为y轴,斜率为k,则斜率k=Δy/Δx
‘肆’ 高一物理V--T图像中的斜率怎么算
v-t图像中,图像的切线的斜率就是加速度;
图像的切线向上的方向与t轴的正方向的倾斜角为锐角时,斜率为正;
图像的切线向上的方向与t轴的正方向的倾斜角为钝角时,斜率为负;
图像的切线向上的方向与t轴的正方向的倾斜角为零度的角时,斜率为0;
图像的切线向上的方向与t轴的正方向的倾斜角为直角时,斜率不存在。
运动图像(motion diagram)包含了位移-时间图像(displacement-time graph)和速度-时间图像(velocity-time graph),其中位移与速度都是矢量(vector),矢量含有大小(magnitude)与方向(direction)。
位移—时间图象(s-t图像)
横轴表示时间,纵轴表示位移;
静止的x-t图像在一条与横轴
平行或重合的直线上;
匀速直线运动的s-t图像在一条倾斜直线上,所在直线的斜率表示运动速度的大小及方向;匀变速直线运动的s-t图像为抛物线。
速度—时间图像(v-t图像)
横轴表示时间,纵轴表示速度;
静止的v-t图像在一条与横轴重合的直线上;
匀速直线运动的v-t图像在一条与横轴平行的直线上;
匀变速直线运动的v-t图像在一条倾斜直线上,所在直线的斜率表示加速度大小及方向;
当直线斜率(加速度)与运动速度同号时,物体做匀加速直线运动;
当直线斜率(加速度)与运动速度异号时,物体做匀减速直线运动。
位移—速度图像(s-v图像)
横轴表示速度,纵轴表示位移;
图像与坐标轴围成面积的意义
v-t图像与坐标轴围成的面积表示位移。如右图3阴影部分的面积表示从t1到t2这段时间内的位移。
其公式为:(V0+Vt)(t2-t1)/2
‘伍’ 高中物理,斜率是什么意思怎么计算
时间位移图像x-t,斜率k=△x/△t,有没有发现这个斜率刚好是速度,V=k=△x/△t
速度时间图像v-t,斜率k=△v/△t,这个斜率刚好是加速度,a=k=△v/△t,所形成的图形面积就是位移
这是图像是直线的情况,还可以求导,比如:位移时间函数,x=3t²+5t+10。位移对时间求导就是速度即V=x'=6t+5,这是速度和时间函数关系。速度对时间求导就是加速度,即a=v'=6
‘陆’ 斜率怎么求
斜率计算:ax+by+c=0中,k=-a/b。
直线斜率公式:k=(y2-y1)/(x2-x1)
两条垂直相交直线的斜率相乘积为-1:k1*k2=-1。
曲线y=f(x)在点(x1,f(x1))处的斜率就是函数f(x)在点x1处的导数
当直线L的斜率存在时,斜截式y=kx+b 当k=0时 y=b
当直线L的斜率存在时,点斜式y2—y1=k(X2—X1),
当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα
(6)物理实验图像的斜率怎么求扩展阅读
(1)顾名思义,“斜率”就是“倾斜的程度”。过去我们在学习解直角三角形时,教科书上就说过:斜坡坡面的竖直高度h与水平宽度l的比值i叫做坡度;如果把坡面与水平面的夹角α叫做坡度,那么;坡度越大<=>α角越大<=>坡面越陡,所以i=tanα可以反映坡面倾斜的程度。
现在我们学习的斜率k,等于所对应的直线(有无数条,它们彼此平行)的倾斜角(只有一个)α的正切,可以反映这样的直线对于x轴倾斜的程度。实际上,“斜率”的概念与工程问题中的“坡度”是一致的。
(2)解析几何中,要通过点的坐标和直线方程来研究直线通过坐标计算求得,使方程形式上较为简单。如果只用倾斜角一个概念,那么它在实际上相当于反正切函数值arctank,难于直接通过坐标计算求得,并使方程形式变得复杂。
(3)坐标平面内,每一条直线都有唯一的倾斜角,但不是每一条直线都有斜率,倾斜角是90°的直线(即x轴的垂线)没有斜率。在今后的学习中,经常要对直线是否有斜率分情况进行讨论。
‘柒’ 求斜率的五种公式
求斜率的五种公式如下:
1、已知两点求斜率的公式。如果已知直线上两点的坐标(x1,y1), (x2,y2),很多人就会想到用待定系数法求斜率,然而这里是有一个斜率公式的,即过这两点的直线斜率k=(y1-y2)/(x1-x2)或k=(y2-y1)/(x2-x1)。
2、已知直线在两条坐标轴上的截距的斜率公式。如果已知直线与纵轴的交点是(0,b),与横轴的交点是(c,0),那么直线的斜率k=-b/c. 这个公式其实是第一个公式的特例。因为将两点的坐标代入第一个公式,就可以得到这个公式。
3、正比例函数。正比例函数y=kx这种特例。只要知道正比例函数上一点的坐标(x0,y0)(非原点),就可以求得它的斜率是k=y0/x0。这个公式也是第一个公式的特例。因为除了这个点,还有原点的坐标是已知的,把它们的坐标代入第一个公式,就可以得到这个公式了。
4、直线解析公式。我们知道直线解析式的一般式Ax+By+C=0时,我们可以求得直线的斜率k=-A/B。只要将一般式化为点截式y=-Ax/B-C/B,就可以得到这个公式了。
5、斜率的本质公式。最后一个公式最能体现斜率的本质,它指的是直线与x轴的右上夹角的正切值。当直线与x轴的右上夹角为θ时,k=tanθ。
‘捌’ 高考物理实验题图像的的斜率怎么画得或测得准
有两种情况:
1、大多数高中物理的实验图像多是倾斜的直线,这种处理实验数据的方法是画图时:让大多数点发布在直线上,其他的分布在直线的两侧,这种方法能减小实验误差。求斜率时,在直线上取相距较远的两点求解。(如,v-t图求加速度)
2、有些图象是曲线的,(如,小灯泡的伏安特性曲线)用平滑的曲线描点,这种只能按要求求电阻,因为在不同的电流或电压下,电阻不等。
‘玖’ 测普朗克常量中,作出了U-v的实验数据图,怎么求得斜率
答案:光电效应测普朗克常数的斜率是h/e
根据爱因斯坦光电效应方程:hv=1/2mv^2+A
入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低时也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电流才为零,此时有关系
eU0 = hν-A
此式表明截止电压U0是频率 ν 的线性函数,直线斜率k = h/e,只要用实验方法得出不同的频率对应的截止电压,求出直线斜率,就可算出普朗克常数h。
‘拾’ 有关物理中利用表格画图法求斜率的问题
首先画出的直线要比较准确,尽可能使线在点之间。以下分两种情况:
1、点基本上都在直线上。随便在线上取两点计算斜率。
2、点分布在直线的上下。画出直线,尽可能取离原点(数据点)较远的两点计算斜率。因为靠近原点(数据点)的数据可能误差较大,但是直线的作用就是减小误差,所以选取离原点(数据点)较远的点计算斜率,误差较小。在题目给的答案当中,斜率是有一定范围的,一般误差在正负百分之五可以接受。
第2点无论是哪种情况都适用,是一种更一般的解决方法。