导航:首页 > 物理学科 > 高分子物理中Kuhn是什么意思

高分子物理中Kuhn是什么意思

发布时间:2023-01-14 20:11:53

❶ 问历届诺贝尔化学奖得主

历届诺贝尔化学奖得主:
1901年 J. H. 范特·霍夫(荷兰人)发现溶液中化学动力学法则和渗透压规律
1902年 E. H. 费雪(德国人)合成了糖类以及嘌噙诱导体
1903年 S . A . 阿伦纽斯(瑞典人)提出电解质溶液理论
1904年 W . 拉姆赛(英国人)发现空气中的惰性气体
1905年 A .冯·贝耶尔(德国人)
从事有机染料以及氢化芳香族化合物的研究
1906年 H . 莫瓦桑(法国人)从事氟元素的研究
1907年 E .毕希纳(德国人)从事酵素和酶化学、生物学研究
1908年 E. 卢瑟福(英国人)首先提出放射性元素的蜕变理论
1909年 W. 奥斯特瓦尔德(德国人)从事催化作用、化学平衡以及反应速度的研究
1910年 O. 瓦拉赫(德国人)
脂环式化合物的奠基人
1911年 M. 居里(法国人)发现镭和钋
1912年 V. 格林尼亚(法国人)发明了格林尼亚试剂 —— 有机镁试剂
P. 萨巴蒂(法国人)使用细金属粉末作催化剂,发明了一种制取氢化不饱和烃的有效方法
1913年 A. 维尔纳 (瑞士人)从事分子内原子化合价的研究
1914年 T.W. 理查兹(美国人)致力于原子量的研究,精确地测定了许多元素的原子量
1915年 R. 威尔斯泰特(德国人)从事植物色素(叶绿素)的研究
1916---1917年 未颁奖
1918年 F. 哈伯(德国人)发明固氮法
1919年 未颁奖
1920年 W.H. 能斯脱(德国人)从事电化学和热动力学方面的研究
1921年 F. 索迪(英国人)从事放射性物质的研究,首次命名“同位素”
1922年 F.W. 阿斯顿(英国人) 发现非放射性元素中的同位素并开发了质谱仪
1923年 F. 普雷格尔(奥地利人)创立了有机化合物的微量分析法
1924年 未颁奖
1925年 R.A. 席格蒙迪(德国人)从事胶体溶液的研究并确立了胶体化学
1926年 T. 斯韦德贝里(瑞典人)从事胶体化学中分散系统的研究
1927年 H.O. 维兰德(德国人)
研究确定了胆酸及多种同类物质的化学结构
1928年 A. 温道斯(德国人)研究出一族甾醇及其与维生素的关系
1929年 A. 哈登(英国人),冯·奥伊勒 – 歇尔平(瑞典人)阐明了糖发酵过程和酶的作用
1930年 H. 非舍尔(德国人)从事血红素和叶绿素的性质及结构方面的研究
1931年 C. 博施(德国人),F.贝吉乌斯(德国人)发明和开发了高压化学方法
1932年 I. 兰米尔 (美国人) 创立了表面化学
1933年 未颁奖
1934年 H.C. 尤里(美国人)发现重氢
1935年 J.F.J. 居里,I.J. 居里(法国人)发明了人工放射性元素
1936年 P.J.W. 德拜(美国人)提出分子磁耦极矩概念并且应用X射线衍射弄清分子结构
1937年 W. N. 霍沃斯(英国人) 从事碳水化合物和维生素C的结构研究
P. 卡雷(瑞士人) 从事类胡萝卜、核黄素以及维生素 A、B2的研究
1938年 R. 库恩(德国人) 从事类胡萝卜素以及维生素类的研究
1939年 A. 布泰南特(德国人)从事性激素的研究
L. 鲁齐卡(瑞士人) 从事萜、聚甲烯结构方面的研究
1940年—1942年 未颁奖
1943年 G. 海韦希(匈牙利人)利用放射性同位素示踪技术研究化学和物理变化过程
1944年 O. 哈恩(德国人) 发现重核裂变反应
1945年 A.I.魏尔塔南(芬兰人)研究农业化学和营养化学,发明了饲料贮藏保养鲜法
1946年 J. B. 萨姆纳(美国人) 首次分离提纯了酶
J. H. 诺思罗普,W. M. 斯坦利(美国人) 分离提纯酶和病毒蛋白质
1947年 R. 鲁宾逊(英国人)从事生物碱的研究
1948年 A. W. K. 蒂塞留斯(瑞典人) 发现电泳技术和吸附色谱法
1949年 W.F. 吉奥克(美国人)
长期从事化学热力学的研究,物别是对超温状态下的物理反应的研究
1950年 O.P.H. 狄尔斯、K.阿尔德(德国人)发现狄尔斯 – 阿尔德反应及其应用
1951年 G.T. 西博格、E.M. 麦克米伦(美国人) 发现超铀元素
1952年 A.J.P. 马丁、R.L.M. 辛格(英国人)开发并应用了分配色谱法
1953年 H. 施陶丁格(德国人)从事环状高分子化合物的研究
1954年 L.C.鲍林(美国人)阐明化学结合的本性,解释了复杂的分子结构
1955年 V. 维格诺德 (美国人)
确定并合成了含硫的生物体物质(特别是后叶催产素和增压素)
1956年 C.N. 欣谢尔伍德(英国人)
N.N. 谢苗诺夫(俄国人)提出气相反应的化学动力学理论(特别是支链反应)
1957年 A.R. 托德(英国人)从事核酸酶以及核酸辅酶的研究
1958年 F. 桑格(英国人)从事胰岛素结构的研究
1959年 J. 海洛夫斯基(捷克人)提出极普学理论并发现“极普法”
1960年 W.F. 利时(美国人)发明了“放射性碳素年代测定法”
1961年 M. 卡尔文(美国人)
提示了植物光合作用机理
1962年 M.F. 佩鲁茨、J.C. 肯德鲁(英国人)
测定了蛋白质的精细结构
1963年 K. 齐格勒(德国人)、G. 纳塔(意大利人)
发现了利用新型催化剂进行聚合的方法,并从事这方面的基础研究
1964年 D.M.C. 霍金英(英国人)
使用X射线衍射技术测定复杂晶体和大分子的空间结构
1965年 R.B. 伍德沃德(美国人)
因对有机合成法的贡献
1966年 R.S. 马利肯(美国人)
用量子力学创立了化学结构分子轨道理论,阐明了分子的共价键本质和电子结构
1967年 R.G.W.诺里会、G. 波特(英国人)
M. 艾根(德国人)
发明了测定快速 化学反应的技术
1968年 L. 翁萨格(美国人)从事不可逆过程热力学的基础研究
1969年 O. 哈塞尔(挪威人)、K.H.R. 巴顿(英国人)
为发展立体化学理论作出贡献
1970年 L.F. 莱洛伊尔(阿根廷人)发现糖核苷酸及其在糖合成过程中的作用
1971年 G. 赫兹伯格(加拿大人)从事自由基的电子结构和几何学结构的研究
1972年 C.B. 安芬森(美国人)确定了核糖核苷酸酶的活性区位研究
1973年 E.O. 菲舍尔(德国人)、G. 威尔金森(英国人)从事具有多层结构的有机金属化合物的研究
1974年 P.J. 弗洛里(美国人)从事高分子化学的理论、实验两方面的基础研究
1975年 J.W. 康福思(澳大利亚人)研究酶催化反应的立体化学
V.普雷洛格(瑞士人)从事有机分子以及有机分子的立体化学研究
1976年 W.N. 利普斯科姆(美国人)从事甲硼烷的结构研究
1977年 I. 普里戈金(比利时人)主要研究非平衡热力学,提出了“耗散结构”理论
1978年 P.D. 米切尔(英国人)从事生物膜上的能量转换研究
1979年 H.C. 布朗(美国人)、G. 维蒂希(德国人)研制了新的有机合成法
1980年 P. 伯格(美国人)从事核酸的生物化学研究
W.吉尔伯特(美国人)、F. 桑格(英国人)确定了核酸的碱基排列顺序
1981年 福井谦一(日本人)、R. 霍夫曼(英国人) 确定了核酸的碱基排列顺序
1982年 A. 克卢格(英国人)开发了结晶学的电子衍射法,并从事核酸蛋白质复合体的立体结构的研究
1983年 H.陶布(美国人)阐明了金属配位化合物电子反应机理
1984年 R.B. 梅里菲尔德(美国人)开发了极简便的肽合成法
1985年 J.卡尔、H.A.豪普特曼(美国人)开发了应用X射线衍射确定物质晶体结构的直接计算法
1986年 D.R. 赫希巴奇、李远哲(中国台湾人)、J.C.波利亚尼(加拿大人)研究化学反应体系在位能面运动过程的动力学
1987年 C.J.佩德森、D.J. 克拉姆(美国人)
J.M. 莱恩(法国人)合成冠醚化合物
1988年 J. 戴森霍弗、R. 胡伯尔、H. 米歇尔(德国人)分析了光合作用反应中心的三维结构
1989年 S. 奥尔特曼, T.R. 切赫(美国人)发现RNA自身具有酶的催化功能
1990年 E.J. 科里(美国人)创建了一种独特的有机合成理论——逆合成分析理论
1991年 R.R. 恩斯特(瑞士人)发明了傅里叶变换核磁共振分光法和二维核磁共振技术
1992年 R.A. 马库斯(美国人)对溶液中的电子转移反应理论作了贡献
1993年 K.B. 穆利斯(美国人)发明“聚合酶链式反应”法
M. 史密斯(加拿大人)开创“寡聚核苷酸基定点诱变”法
1994年 G.A. 欧拉(美国人)在碳氢化合物即烃类研究领域作出了杰出贡献
1995年 P.克鲁岑(德国人)、M. 莫利纳、F.S. 罗兰(美国人)
阐述了对臭氧层产生影响的化学机理,证明了人造化学物质对臭氧层构成破坏作用
1996年 R.F.柯尔(美国人)、H.W.克罗托因(英国人)、R.E.斯莫利(美国人)
发现了碳元素的新形式——富勒氏球(也称布基球)C60
1997年 P.B.博耶(美国人)、J.E.沃克尔(英国人)、J.C.斯科(丹麦人)发现人体细胞内负责储藏转移能量的离子传输酶
1998年 W.科恩(奥地利)J.波普(英国)提出密度泛函理论
1999年 艾哈迈德-泽维尔(美籍埃及人)将毫微微秒光谱学应用于化学反应的转变状态研究
2000年 黑格(美国人)、麦克迪尔米德(美国人)、白川秀树(日本人)因发现能够导电的塑料有功
2001年 威廉·诺尔斯(美国人)、野依良治(日本人)
在“手性催化氢化反应”领域取得成就巴里·夏普莱斯(美国人)在“手性催化氧化反应”领域取得成就。

2002年 约翰-B-芬恩(美国人)、田中耕一(日本人)在生物高分子大规模光谱测定分析中发展了软解吸附作用电离方法。
库特-乌特里希(瑞士人)以核电磁共振光谱法确定了溶剂的生物高分子三维结构。
2003年 阿格里(美国人)和麦克农(美国人)研究细胞隔膜
2004年诺贝尔化学奖授予以色列科学家阿龙·切哈诺沃、阿夫拉姆·赫什科和美国科学家欧文·罗斯,以表彰他们发现了泛素调节的蛋白质降解。其实他们的成果就是发现了一种蛋白质“死亡”的重要机理。
2005年
三位获奖者分别是法国石油研究所的伊夫·肖万、美国加州理工学院的罗伯特·格拉布和麻省理工学院的理乍得·施罗克。他们获奖的原因是在有机化学的烯烃复分解反应研究方面作出了贡献。烯烃复分解反应广泛用于生产药品和先进塑料等材料,使得生产效率更高,产品更稳定,而且产生的有害废物较少。瑞典皇家科学院说,这是重要基础科学造福于人类、社会和环境的例证。
2006
美国科学家罗杰·科恩伯格因在“真核转录的分子基础”研究领域所作出的贡献而独自获得2006年诺贝尔化学奖

❷ 自由旋转链的Kuhn链段长度和等效链段数以及柔顺性参数(特征比C和无扰尺寸A)。

高分子其构象被改变的性质被称为高分子的柔顺性。高分子的柔顺性受下述因素影响:

l 高分子的主链结构;

l 取代基的极性、数量、大小和排布间距;

l 分子链的长短;

l 分子间的作用力;

l 支化与交联的程度。

高分子的柔顺性表现了高分子链的卷曲程度。对于无规线团状高分子链的卷曲程度可以用

l 均方末端距

l 或均方旋转半径

定量描述其柔顺性。

末端距是一个线性分子链的两个末端基团之间的空间距离。由于分子链上单键的旋转,同一高分子链两个末端距离在不断的变化。因此在实际分析工作中用数理统计的方法得出的末端距被称为均方末端距。

对于线性高分子链,末端距具有明确的意义。当高分子链上含一个或多个侧链时,同一分子内拥有多个端点,这时均方末端距就失去了其应有的意义。对于枝化的高分子,采用从分子重心到各质点(基团)向量平方的质量平均值——均方旋转半径来表述分子的柔顺性。

3.高分子构象和柔顺的分析方法

电子显微镜:分析高分子链的构象

凝胶色谱:分析高分子的链段长度,枝化程度和柔顺性

数学模拟:利用热动力学,分子动力学,概率与数理统计方法建立高分子结构模型,通过计算得到高分子的构象、旋转势垒、均方末端距或均方旋转半径。

激光光散射法

原子力显微镜法

❸ 请学物理专业的来回答

首先严重同意楼上的观点,先要打下高等数学的良好基础,这是研究物理的奠基石,尤其是在这之后还要学到的数学物理方程,这很重要。相信你能明白。
其次是比较重要四大力学:理论力学、电动力学、热力学、量子力学,不过我认为固体物理也占有一席之地,所以我觉得这5个都挺重要的。

下面是北京大学物理学院,物理专业的课程设置:

序号 课程号 课程名 学分 周学时 总学时
1 00130201 高等数学(B)(一) 5.0 6.0 102.0
2 00130211 高等数学(B)(一)习题课 0.0 0.0 0.0
3 00131460 线性代数(B) 4.0 4.0 68.0
4 00131470 线性代数(B)习题 0.0 0.0 0.0
5 00132380 概率统计(B) 3.0 3.0 51.0
6 00430132 现代电子电路基础及实验(一) 3.0 4.0 60.0
7 00430151 现代物理前沿讲座Ⅰ 2.0 2.0 30.0
8 00430191 大气科学导论 2.0 2.0 30.0
9 00431110 力学 4.0 4.0 68.0
10 00431148 光学习题课 0.0 2.0 32.0
11 00431156 光学 4.0 4.0 60.0
12 00431157 原子物理 3.0 3.0 45.0
13 00431159 原子物理习题 0.0 2.0 32.0
14 00431165 近代物理 3.0 3.0 48.0
15 00431169 近代物理专题讨论 2.0 2.0 32.0
16 00431180 力学习题 0.0 0.0 0.0
17 00431211 普通物理实验(A) (一) 2.0 4.0 68.0
18 00431214 综合物理实验(一) 2.0 4.0 68.0
19 00431443 计算物理学 3.0 3.0 45.0
20 00431447 应用磁学基础 3.0 3.0 45.0
序号 课程号 课程名 学分 周学时 总学时
21 00431501 计算概论 3.0 4.0 68.0
22 00431502 计算概论上机 0.0 0.0 0.0
23 00431537 现代电子测量与实验 3.0 4.0 60.0
24 00431543 天体物理专题 3.0 3.0 45.0
25 00431544 等离子体物理 3.0 3.0 45.0
26 00432108 数学物理方法(上) 3.0 3.0 48.0
27 00432109 数学物理方法(下) 3.0 3.0 48.0
28 00432140 电动力学 (A) 4.0 4.0 68.0
29 00432141 电动力学(B) 3.0 3.0 48.0
30 00432150 量子力学 (A) 4.0 4.0 68.0
31 00432151 量子力学习题 0.0 0.0 0.0
32 00432161 宇宙概论 2.0 2.0 30.0
33 00432162 固体物理导论 2.0 2.0 30.0
34 00432204 数学物理方法习题 0.0 0.0 0.0
35 00432207 卫星气象学 3.0 3.0 45.0
36 00432211 理论力学 3.0 3.0 45.0
37 00432217 平衡态统计物理 3.0 3.0 45.0
38 00432223 核物理与粒子物理专题实验 2.0 4.0 60.0
39 00432232 粒子物理 3.0 3.0 45.0
40 00432237 现代光学及光电子学 3.0 3.0 45.0
序号 课程号 课程名 学分 周学时 总学时
41 00432247 大气物理学基础 3.0 3.0 45.0
42 00432249 流体力学 3.0 3.0 45.0
43 00432255 天气分析与预报 3.0 3.0 45.0
44 00432266 环境生态学 2.0 2.0 30.0
45 00432267 工程图学及其应用 2.0 2.0 30.0
46 00432268 自然科学中的混沌和分形 2.0 2.0 30.0
47 00432270 大气概论 2.0 2.0 30.0
48 00432274 大气探测原理 3.0 3.0 48.0
49 00433310 激光物理学 4.0 4.0 68.0
50 00433328 近代物理实验(II) 3.0 6.0 96.0
51 00433410 半导体物理学 4.0 4.0 68.0
52 00433520 超导物理学 4.0 4.0 68.0
53 00433682 天文文献阅读 2.0 2.0 34.0
54 00434010 量子场论 4.0 4.0 68.0
55 00434020 群论 4.0 4.0 68.0
56 00434030 高等量子力学 4.0 4.0 68.0
57 00434040 量子统计物理 4.0 4.0 68.0
58 00434092 纳米科技进展 2.0 2.0 34.0
59 00434321 量子光学 4.0 4.0 64.0
60 00434714 核科学前沿讲座 2.0 2.0 32.0

课程名称 教师 开课学期 开放范围 开课系所 课内学生数 浏览次数
大学物理B(1) 李列明 2007-2008春季学期 本班 物理系 100 391
量子与统计 吕嵘 2007-2008春季学期 本班 物理系 160 354
普通物理(3) 戴松涛 2007-2008春季学期 本班 物理系 148 304
大学物理B(1) 刘凤英 2007-2008春季学期 本班 物理系 179 268
基础物理实验(1) 朱鹤年 2007-2008春季学期 本班 物理系 274 256
量子与统计 杜春光 2007-2008春季学期 本班 物理系 136 242
电动力学 王青 2007-2008春季学期 本班 物理系 111 240
大学物理B(1) 王山鹰 2007-2008春季学期 本班 物理系 179 213
物理学导论 陈信义 2007-2008春季学期 本班 物理系 97 206
量子力学 郭永 2007-2008春季学期 本班 物理系 162 197
基础物理实验(3) 朱鹤年 2007-2008春季学期 本班 物理系 109 187
大学物理B(1) 邓新元 2007-2008春季学期 本班 物理系 180 184
大学物理B(1) 马万云 2007-2008春季学期 本班 物理系 180 152
普通物理(3) 蒋硕 2007-2008春季学期 本班 物理系 76 150
大学物理B(1) 朱美红 2007-2008春季学期 本班 物理系 180 144
大学物理B(1) 安宇 2007-2008春季学期 本班 物理系 180 121
文科物理 余京智 2007-2008春季学期 本班 物理系 240 94
文科物理 刘凤英 2007-2008春季学期 本班 物理系 77 84
大学物理A(2) 高原宁 2007-2008春季学期 本班 物理系 117 81

下面是全美物理排名第一的麻省理工的课程设置,帮助进行对比,其中Physics是指大学普通物理:

FIRST YEAR
8.01 Physics I
8.011 Physics I
8.012 Physics I
8.01L Physics I
8.02 Physics II
8.022 Physics II
UNDERGRADUATE
8.03 Physics III
8.033 Relativity
8.04 Quantum Physics I
8.044 Statistical Physics I
8.05 Quantum Physics II
8.06 Quantum Physics III
8.07 Electromagnetism II
8.08 Statistical Physics II
8.09 Classical Mechanics II
8.13 Experimental Physics I
8.14 Experimental Physics II
8.18 Special Problems in Undergraate Physics
8.19 Readings in Physics
8.20 Introction to Special Relativity
8.224 Exploring Black Holes: General Relativity and Astrophysics
8.225J Einstein, Oppenheimer, Feynman: Physics in the 20th Century
8.231 Physics of Solids I
8.242 Quantum Electronics and Laser Spectros
8.251 String Theory for Undergraates
8.261J Intro to Computational Neuroscience
8.276 Nuclear and Particle Physics
8.277 Introction to Particle Accelerators
8.282J Introction to Astrophysics and Astronomy
8.284 Modern Astrophysics
8.286 The Early Universe
8.287 Observational Techniques of Optical Astronomy
8.289 Techniques of Radio Astronomy
8.292J Fluid Physics
8.298 Selected Topics in Physics
8.299 Physics Teaching
8.UR Undergraate Research
8.THU Undergraate Physics Thesis
GRADUATE
8.311 Electromagnetic Theory
8.312 Electromagnetic Theory
8.321 Quantum Theory I
8.322 Quantum Theory II
8.323 Relativistic Quantum Field Theory I
8.324 Relativistic Quantum Field Theory II
8.325 Relativistic Quantum Field Theory III
8.333 Statistical Mechanics I
8.334 Statistical Mechanics II
8.351J Variational Mechanics:
A Computational Approach
8.361 Quantum Theory of Many-Particle Systems
8.371J Quantum Information Science
8.381, 8.382 Selected Topics in Theoretical Physics
8.391, 8.392 Special Problems in Graate Physics
8.395J Teaching College-Level Science
8.398 Selected Topics in Graate Physics
8.399 Physics Teaching
8.421 Atomic and Optical Physics I
8.422 Atomic and Optical Physics II
8.431J Nonlinear Optics
8.481, 8.482 Selected Topics in Physics of Atoms and Radiation
8.511 Theory of Solids I
8.512 Theory of Solids II
8.513 Many-Body Techniques in Condensed Matter Physics
8.514 Strongly Correlated Systems in CM Physics
8.532J Modern Topics in Solid State Physics
8.562 Correlations and Critical Behavior in Condensed Matter
8.575J Statistical Thermodynamics of Complex Liquids
8.581, 8.582 Selected Topics in Condensed Matter Physics
8.591J Quantitative Biology
8.592 Statistical Physics in Biology
8.593J Biological Physics
8.594J Introction to Neural Networks
8.613J Introction to Plasma Physics I
8.614J Introction to Plasma Physics II
8.624 Plasma Waves
8.641 Physics of High-Energy Plasmas I
8.642 Physics of High-Energy Plasmas II
8.681, 8.682 Selected Topics in Fluid and Plasma Physics
8.701 Intro to Nuclear and Particle Physics
8.711 Nuclear Physics
8.712 Advanced Topics in Nuclear Physics
8.731 Nuclear Physics Seminar
8.781, 8.782 Selected Topics in Nuclear Physics
8.811 Particle Physics II
8.821 String Theory
8.831 Supersymmetry
8.841 Electroweak Interactions
8.851 Strong Interactions/QCD
8.861 Advanced Topics in Superfluidity
8.871, 8.872 Selected Topics in Theoretical Particle Physics
8.881, 8.882 Selected Topics in Experimental Particle Physics
8.896J Supersymmetric Quantum Field Theories
8.901 Astrophysics I
8.902 Astrophysics II
8.913 Plasma Astrophysics I
8.914 Plasma Astrophysics II
8.921 Stellar Structure and Evolution
8.942 Cosmology
8.952 Particle Physics of the Early Universe
8.962 General Relativity
8.971, 8.972 Astrophysics Seminar
8.981, 8.982 Selected Topics in Astrophysics
8.THG Graate Physics Thesis

部分国内外优秀教材:
索书号 书名 / 作者 / 版次 出版社/出版年 现用院校及适用对象
O413 FN56 Quantum physics :a text for graate students/量子物理:一本研究生教材/Roger G. Newton./Graate texts in contemporary physics Springer/c2002. 本书内容丰富,层次清楚,每章都有精选的习题,适合作为物理、工程物理、等专业研究生的教材,也可以作为量子力学方面的参考书。
O413 FS93 The strange world of quantum mechanics/量子力学的奇妙世界/Daniel F. Styer Cambridge University Press/c2000 本书适合作为本科生学习量子力学知识的教材。
O413 FZ61 Quantum mechanics :concepts and applications/量子力学:概念和应用/Nouredine Zettili. Wiley/c2001. 本书内容阐述深入浅出,层次清楚,适合作为物理、工程物理、电子工程、材料科学等专业本科生的教材,也可以作为量子力学方面的参考书。
O413.1 FP63r Relativistic quantum mechanics/相对论量子力学/Hartmut M. Pilkuhn./Texts and monographs in physics Springer/c2003. 本书需要读者具有良好的数学基础,适合作为物理和与物理相关专业的研究生教材。
O413.1 FR13 2002 Quantum mechanics/量子力学/Alastair I.M. Rae./4th ed. Institute of Physics Publishing/c2002. 该书是第四版,与前三版相比,本书补充了近十年来量子力学的一些应用和发展,增加了相对论量子力学和量子场论的内容和介绍,每章都有精选的习题,适合作为物理和与物理相关专业的本科生教材。
O463 FY281 2002 Optical electronics in modern communications/现代通信光电子学/Amnon Yariv./5th ed./国外电子与通信教材系列 Publishing House of Electronics Instry/c2002. 本书是光电子学领域的权威着作,尤其突出了各种激光器在光纤通信中的应用,同时本书还附有大量习题和生动实例。既可以作为高等院校光电专业的核心教材,也可以作为从事实际工作的工程师们的参考用书。
O469 FS46 Selected topics in condensed matter physics/凝聚态物理专题/Ling Ye, Xiangyang Peng; 叶令, 彭向阳./Fudan series in graate textbooks Fudan University Press/c2003. 本书是一本教科书,适合有一定固体物理基础的研究生作为了解凝聚态物理领域的一些前沿问题的教材或参考资料。
O469 FS91 Condensed matter physics :crystals, liquids, liquid crystals, and polymers/固体物理:晶体、液体、液晶和聚合体/Gert Strobl ; translation of the original German version by Steven P. Brown. Springer/c2004. 固态物理是物理专业课程的重要内容之一,而学生往往只是学习其中的一部分,对液体、非晶态固体了解的并不多。基于此,本书在编写过程中约一半内容是介绍晶体物理,其余内容为液体、液晶和聚合物的相关知识。本书既可以作为高等院校物理、材料科学等专业的教材。
O469 FT24 A quantum approach to condensed matter physics/一个通向固体物理的量子途径/Philip L. Taylor, Olle Heinonen. Cambridge University Press/c2002. 本书通过基本的量子力学知识,向读者描述了固体中的很多复杂现象,使读者易于接受和理解固体物理的理论。适合用作物理、材料科学和电子工程专业高年级本科生和研究生的教材和参考书。
O48 FE46 The physics and chemistry of solids/固体物理与化学/S.R. Elliott J. Wiley/c1998 本书有以下几个特点:1、打破了固体物理和化学之间的人为的界线,比较全面地介绍了固体的研究方法;2、各章节相对独立,使读者阅读起来灵活方便;3、收录了许多参考文献,列举了实例和应用,并提出了200多个实际问题,其精心编排的内容有利于读者扩展知识面。本书适合作为物理、化学、材料科学与工程等专业高年级本科生和研究生的教材。
O48 FE46 The physics and chemistry of solids/固体物理与化学/S.R. Elliott J. Wiley/c1998 本书从固体物理的基本观点出发,介绍了固体物理、化学以及材料等方面的问题,并将三者紧密地联系了起来。其内容涵盖了最新发展起来的基本理论,如组合库合成、介孔材料、纳米管、光学束缚以及分数电荷的实验观察等。适合作为物理、化学、材料科学与工程等专业高年级本科生和研究生的教材。
O481 FM18 Introction to solid-state theory/固态理论导论/Otfried Madelung ; translated by B.C. Taylor. 世界图书出版公司/c2003. 本书力求为读者提供固态理论的基本体系框架和内容,既可以作为高等院校物理、材料科学、电子工程专业的核心教材,也可以作为从事固态物理研究的科研人员的参考用书。
O484 FV44 2003 Introction to surface and thin film processes/表面和薄膜过程导论/John A. Venables./第4版 世界图书出版公司/c2003. 本书全面介绍了表面和薄膜工艺的实验成果和理论基础,可作为研究生教材。
O484 FV44 2003 Introction to surface and thin film processes/John A. Venables./表面和薄膜过程导论/第4版 世界图书出版公司/c2003. 本书适合作为物理、化学、材料科学和工程等专业研究生阶段的教材。
P142 FB64 Dusty and self-gravitational plasmas in space/太空中的尘埃和自引力等离子体/by Pavel Bliokh,Victor Sinitsin, and Victoria Yaroshenko./Astrophysics and space science library v. 193 Kluwer Academic Publishers/c1995. 本书是迄今为止第一本讨论尘埃和自引力等离子体的专着。适合等离子体物理和天体物理领域的研究生和研究人员作为教材和参考书使用。
P145.8 FG14 galactic black hole :lectures on general relativity and astrophysics/银河黑洞:广义相对论和天体物理学讲稿/edited by Heino Falcke and Friedrich W. Hehl./Series in high energy physics, cosmology and gravitation Institute of Physics Pub./c2003. 本书是一本非常系统的教科书,适合物理、天体物理、天文和应用数学的研究生、博士后和研究人员使用。
P145.8 FH59 Black hole uniqueness theorems/黑洞唯一性定理/Markus Heusler.
Cambridge lecture notes in physics v6
Cambridge University Press/c1996. 这是一本关于黑洞唯一性定理的教科书,它提供了独立于黑洞数学理论的绪论和唯一性定理的富于条理性的展示。适合数学物理、广义相对论、天体物理领域和对于经典黑洞理论感兴趣的研究生作为教材使用。
P15 FP16 Physics of star formation in galaxies/星系中恒星形成的物理/F. Palla, H. Zinnecker ;edited by A. Maeder and G. Meynet ; with an introction by George Herbig./Saas-Fee advanced course 29 lecture notes v1999 Springer/c2002. 本书可以看作是一本教科书,适合天体物理研究生作为恒星物理方面的预先温习的教材使用。
P15 FW36 Measuring the universe :the cosmological distance ladder/测量宇宙:宇宙学距离阶梯/Stephen Webb/Springer/Springer-Praxis series in astronomy and astrophysics Published in association with Praxis Pub./c1999 本书是一本通俗易懂的教科书,适合作为学生了解天文学的基础教科书使用。
P152 FH24 Stellar interiors :physical principles, structure, and evolution/恒星内部:物理原理、结构和演化/Carl J. Hansen, S. D. Kawaler./Corrected 3rd printing./Astronomy and astrophysics library Springer-Verlag/c1994,1999. 本书是一本关于恒星结构和演化的教科书。书中介绍了基本的恒星结构和演化,强调了恒星生命循环和物理原因的一般图像。尤其注意了一般教科书中忽略的一些重要基本理论的推导。
P152 FH33 Accretion processes in star formation/恒星形成中的吸积过程/Lee Hartmann./Cambridge astrophysics series v32 Cambridge University Press/c1998. 本书是一本关于恒星形成的教科书,适合天体物理学研究生和研究人员作为教材和参考资料使用。
P152.4 FB54 Spiral structure in galaxies :|ba density wave theory/星系的螺旋结构:密度波理论/G. Bertin and C.C. Lin. MIT Press/c1996. 本书介绍了在过去三十年中不断被新的观测研究推进的星系螺旋结构的理论发展,描述了密度波理论的关键概念和易于理解的天体物理含义。是一本通俗易懂的教科书,适合作为星系结构方面和相近领域的研究生教材使用,也适合作为感兴趣的本科生了解天文学的课外读物。
P153 FH64 An introction to close binary stars/密近双星导论/R.W. Hilditch. Cambridge University Press/c2001. 本书是一本教科书,适合作为本科生和研究生学习理解双星系统、恒星结构和演化以及观测天体物理的教材。
P155.2 FD69 Astrophysics of the diffuse universe/弥散宇宙天体物理/M.A. Dopita, R.S. Sutherland. Springer/c2003. 本书是一本全面介绍星际物质的天体物理教科书,是作者把自己的讲稿和教学经历汇总而成,适合作为天体物理研究生和高年级本科生的教材。
P156 FM38 Statistics of the galaxy distribution/星系分布统计学/Vincent J. Martez, Enn Saar. Chapman & Hall/CRC/c2002. 本书适合作为研究生教材。
P156.2 FS82 Stellar candles for the extragalactic distance scale/作为河外星系距离标度的恒星标准烛光/D. Alloin, W. Gieren (eds.)/Lecture notes in physics v635 Springer/c2003. 本书是一本图文并茂的教科书,适合天体物理学和宇宙学方面的研究生作为教材使用,也适合对于星系距离测量感兴趣的读者阅读。
P159 FS79 Statistical physics for cosmic structures/宇宙结构的统计物理/A. Gabrielli ... [et al.] Springer/c2005. 本书是一本关于宇宙结构的教科书, 内容比较艰深,适合宇宙大尺度结构研究领域的研究生和科研人员学习参考。
P159.3 FH29 Stellar evolution/恒星演化/Amos Harpaz. A.K. Peters/c1994. 本书是一本教科书,适合作为天体物理方向本科生的教材。
P172.4 FS34 Cosmic ray astrophysics/宇宙线天体物理学/Reinhard Schlickeiser/Astronomy and astrophysics library Springer/c2002 详细的理论论述使得本书非常合适宇宙线领域的研究生作为教材和参考资料使用。
TB303 FS15 2003 Physical properties of carbon nanotubes/碳纳米管的物理特性/R. Saito, G. Dresselhaus & M. S. Dresselhaus Imperial College Press :World Scientific Publishing Co.Ltd/c2003. 本书自1998年初版以来,多次重印,深受读者的欢迎,适合作为物理学、化学和材料科学专业研究生的基础教材。
TB303-62 FS69 2004 Electrical properties of materials/材料的电学性能/L. Solymar and D. Walsh./7th ed. Oxford University Press/c2004. 本书深入浅出地介绍了该领域的基本概念和最新进展,每章后附有精心设计的练习题及参考答案,适合作为物理学、材料科学和电子学等相关专业高年级本科生的教科书。
TB383 FS96 Surfaces of nanoparticles and porous materials/纳米颗粒与多孔材料表面/edited by James A.Schwarz, Cristian I. Contescu Marcel Dekker/c1999 本书较为全面地介绍了具有大比表面积的纳米颗粒与多孔材料的合成与表征,适合作为物理、表面、化学、胶体、无机、有机、医学、材料科学、生物化学与生物物理等专业的高年级本科生和研究生的教材。
TB383 FS96 Surfaces of nanoparticles and porous materials/纳米颗粒与多孔材料表面/edited by James A.Schwarz, Cristian I. Contescu Marcel Dekker/c1999 本书较为全面地介绍了具有大比表面积的纳米颗粒与多孔材料的合成与表征。适合作为物理、表面、化学、胶体、无机、有机、医学、材料科学、生物化学与生物物理等专业的高年级本科生和研究生的教材。
TN201 FK19 Optoelectronics and photonics :principles and practices/光电子学与光子学的原理及应用/S.O. Kasap./通信与信息科学教育丛书 Publishing House of Electronics Instry :Pearson Ecation Inc./c2003. 本书是《通信与信息科学教育丛书》之一,这套丛书所选取的均是通信与信息科学领域国际上具有代表性的经典着作,它们在全世界许多大学被用做教材或教学参考书。本书是一本专业书籍,适合作为电子工程、工程物理、材料科学和工程学等本科生的教材,也可以根据光盘中提供的精选论题用于研究生的教学参考。

❹ 20世纪化学的三个重大发现

化学是在原子,分子层次上研究物质的组成,结构,性质及其变化规律的一门科学,它涉及存在于自然界的物质(如矿物,空气中的气体,海洋里的水和盐,动植物体内的化学成分),以及由化学家创造的新物质,它涉及自然界的变化(如因闪电而着火的树木,生命过程中的化学变化),还有那些由化学家发明创造的新变化.作为自然科学中的一门基础学科,化学是当代科学技术和人类物质文明迅猛发展的基础和动力,是一门中心的,实用的和创造性的科学,是一门古老而又生机勃勃的科学.
现在很多化学工作者都在预测21世纪化学学科发展的前景,推测21世纪化学会在哪些方面取得重大突破 会遇到哪些挑战和难题 什么是未来化学的新生长点 化学在整个科学体系中占有什么地位 实际上,我们只要温故以知新,就不难看出未来化学发展的动向.
1.20世纪化学的辉煌成就
20世纪人类对物质需求的日益增加以及科学技术的迅猛发展,极大的推动了化学学科自身的发展.化学不仅形成了完整的理论体系,而且在理论的指导下,化学实践为人类创造了丰富的物质.从19世纪的经典化学到20世纪的现代化学的飞跃,从本质上说是从19世纪的道尔顿原子论,门捷列夫元素周期表等在原子的层次上认识和研究化学,进步到20世纪在分子的层次上认识和研究化学.如对组成分子的化学键的本质,分子的强相互作用和弱相互作用,分子催化,分子的结构与功能关系的认识,以至1900多万种化合物的发现与合成;对生物分子的结构与功能关系的研究促进了生命科学的发展.另一方面,化学过程工业以及与化学相关的国计民生的各个领域,如粮食,能源,材料,医药,交通,国防以及人类的衣食住行用等,在这100年中发生的变化是有目共睹的.过去的100年间化学学科的重大突破性成果可从历届诺贝尔化学奖获得者的重大贡献中获悉(见表1).
表1 历届诺贝尔化学奖获奖简况
获奖年份
获奖者
国籍
获奖成就
1901
J. H. van't Hoff
荷兰
溶剂中化学动力学定律和渗透压定律
1902
E. Fisher
德国
糖类和嘌啉化合物的合成
1903
S. Arrhenius
瑞典
电离理论
1904
W. Ramsay
英国
惰性气体的发现及其在元素周期表中位置的确定
1905
A. von Baeyer
德国
有机染料和氢化芳香化合物的研究
1906
H. Moissan
法国
单质氟的制备,高温反射电炉的发明
1907
E. Buchner
德国
发酵的生物化学研究
1908
E. Rutherford
英国
元素嬗变和放射性物质的化学研究
1909
W. Ostwald
德国
催化,电化学和反应动力学研究
1910
O.Wallach
德国
脂环族化合物的开创性研究
1911
M.Curie
波兰
放射性元素钋和镭的发现
1912
V. Grignard
P. Sabatier
法国
法国
格氏试剂的发现
有机化合物的催化加氢
1913
A. Werner
瑞士
金属络合物的配位理论
1914
Th. Richards
美国
精密测定了许多元素的原子量
1915
R. Willstatter
德国
叶绿素和植物色素的研究
1916

1917

1918
F.Haber
德国
氨的合成
1919

1920
W. Nernst
德国
热化学研究
1921
F. Soddy
英国
放射性化学物质的研究及同位素起源和性质的研究
1922
F. W. Aston
英国
质谱仪的发明,许多非放射性同位素及原子量的整数规则的发现
1923
F. Pregl
奥地利
有机微量分析方法的创立
1924

1925
R. Zsigmondy
德国
胶体化学研究
1926
T. Svedberg
瑞士
发明超速离心机并用于高分散胶体物质研究
1927
H. Wieland
德国
胆酸的发现及其结构的测定
1928
A. Windaus
法国
甾醇结构测定,维生素D3的合成
1929
Harden
H. von Euler-Chelpin
英国
法国
糖的发酵以及酶在发酵中作用的研究
1930
H. Fischer
德国
血红素,叶绿素的结构研究,高铁血红素的合成
1931
Bosch
F. Bergius
德国
德国
化学高压法
1932
J. Langmuir
美国
表面化学研究
1933

1934
H. C. Urey
美国
重水和重氢同位素的发现
1935
F. Joliot-Curie
I. Joliot-Curie
法国
法国
新人工放射性元素的合成
1936
P. Debye
荷兰
提出了极性分子理论,确定了分子偶极矩的测定方法
1937
W. N. Haworth
P. Karrer
英国
瑞士
糖类环状结构的发现,维生素A,C和B12,胡萝卜素及核黄素的合成
1938
R. Kuhn
德国
维生素和类胡萝卜素研究
1939
F. J. Butenandt
L. Ruzicka
德国
瑞士
性激素研究
聚亚甲基多碳原子大环和多萜烯研究
1940

1941

1942

1943
G. Heresy
匈牙利
利用同位素示踪研究化学反应
1944
O. Hahn
德国
重核裂变的发现
1945
A. J. Virtamen
荷兰
发明了饲料贮存保鲜方法,对农业化学和营养化学做出贡献
1946
J. B. Sumner
J. H. Northrop
W. M. Stanley
美国
美国
美国
发现酶的类结晶法
分离得到纯的酶和病毒蛋白
1947
R. Robinson
英国
生物碱等生物活性植物成分研究
1948
A. W. K. Tiselius
瑞典
电泳和吸附分析的研究,血清蛋白的发现
1949
W. F. Giaugue
美国
化学热力学特别是超低温下物质性质的研究
1950
O. Diels
K. Alder
德国
德国
发现了双烯合成反应,即Diels-Alder反应
1951
M. Mcmillan
G. Seaborg
美国
美国
超铀元素的发现
1952
J. P. Martin
R. L. M. Synge
英国
英国
分配色谱分析法
1953
H. Staudinger
德国
高分子化学方面的杰出贡献
1954
L. Pauling
美国
化学键本质和复杂物质结构的研究
1955
V. . Vigneand
美国
生物化学中重要含硫化合物的研究,多肽激素的合成
1956
C. N. Hinchelwood
英国
苏联
化学反应机理和链式反应的研究
1957
A. Todd
英国
核苷酸及核苷酸辅酶的研究
1958
F. Sanger
英国
蛋白质结构特别是胰岛素结构的测定
1959
J. Heyrovsky
捷克
极谱分析法的发明
1960
W. F. Libby
美国
14C测定地质年代方法的发明
1961
M. Calvin
美国
光合作用研究
1962
M. F. Perutz
J. C. Kendrew
英国
英国
蛋白质结构研究
1963
K. Ziegler
G. Natta
德国
意大利
Ziegler-Natta催化剂的发明,定向有规高聚物的合成
1964
D. C. Hodgkin
英国
重要生物大分子的结构测定
1965
R. B. Woodward
美国
天然有机化合物的合成
1966
R. S. Mulliken
美国
分子轨道理论
1967
M. Eigen
R. G. W. Norrish
G. Porter
德国
英国
英国
用驰豫法,闪光光解法研究快速化学反应
1968
L. Onsager
美国
不可逆过程热力学研究
1969
H. R. Barton
O. Hassel
英国
挪威
发展了构象分析概念及其在化学中的应用
1970
L. F. Leloir
阿根廷
从糖的生物合成中发现了糖核苷酸的作用
1971
G. Herzberg
加拿大
分子光谱学和自由基电子结构
1972
C .B. Anfinsen
S. Moore
W. H. Stein
美国
美国
美国
核糖核酸酶分子结构和催化反应活性中心的研究
1973
Wilkinson
E. O. Fischer
英国
德国
二茂铁结构研究,发展了金属有机化学和配合物化学
1974
P. J. Flory
美国
高分子物理化学理论和实验研究
1975
J. W. Cornforth
V. Prelog
英国
瑞士
酶催化反应的立体化学研究
有机分子和反应的立体化学研究
1976
W. N. Lipscomb, Jr.
美国
有机硼化合物的结构研究,发展了分子结构学说和有机硼化学
1977
I. Prigogine
比利时
研究非平衡的不可逆过程热力学
1978
P. Mitchell
英国
用化学渗透理论研究生物能的转换
1979
C. Brown
G. Wittig
美国
德国
发展了有机硼和有机磷试剂及其在有机合成中的应用
1980
P. Berg
F. Sanger
W. Gilbert
美国
英国
美国
DNA分裂和重组研究,DNA测序,开创了现代基因工程学
1981
Kenich Fukui
R. Hoffmann
日本
美国
提出前线轨道理论
提出分子轨道对称守恒原理
1982
A. Klug
英国
发明了"象重组"技术,利用X-射线衍射法测定了染色体的结构
1983
H. Taube
美国
金属配位化合物电子转移反应机理研究
1984
R. B. Merrifield
美国
固相多肽合成方法的发明
1985
H. A. Hauptman
J. Karle
美国
美国
发明了X-射线衍射确定晶体结构的直接计算方法
1986
李远哲
D. R. Herschbach
J. Polanyi
美国
美国
加拿大
发展了交叉分子束技术,红外线化学发光方法,对微观反应动力学研究作出重要贡献
1987
C. J. Pedersen
D. J. Cram
J-M. Lehn
美国
美国
法国
开创主-客体化学,超分子化学,冠醚化学等新领域
1988
J. Deisenhoger
H. Michel
R. Huber
德国
德国
德国
生物体中光能和电子转移研究,光合成反应中心研究
1989
T. Cech
S. Altman
美国
美国
Ribozyme的发现
1990
E. J. Corey
美国
有机合成特别是发展了逆合成分析法
1991
R. R. Ernst
瑞士
二维核磁共振
1992
R. A. Marcus
美国
电子转移反应理论
1993
M. Smith
K. B. Mullis
加拿大
美国
寡聚核苷酸定点诱变技术
多聚酶链式反应(PCR)技术
1994
G. A. Olah
美国
碳正离子化学
1995
M. Molina
S. Rowland
P. Crutzen
墨西哥
美国
荷兰
研究大气环境化学,在臭氧的形成和分解研究方面作出重要贡献
1996
R. F. Curl
R. E. Smalley
H. W. Kroto
美国
美国
英国
发现C60
1997

❺ 到现在为止,诺贝尔化学奖的得主有几位,是谁

1990年—1999年

1990年:伊莱亚斯•科里(美)开发了计算机辅助有机合成的理论和方法。

1991年:理乍得•恩斯特(瑞士)对开发高分辨率核磁共振(NMR)的贡献。

1992年:罗道夫•阿瑟•马库斯(美)对创立和发展电子转移反应的贡献。

1993年:凯利•穆利斯(美)迈克尔•史密斯(加)对DNA化学的研究,开发了聚合酶链锁反应(PCR)。

1994年:乔治•欧拉(美)对碳正离子化学反应的研究。

1995年:保罗•克鲁岑(荷)马里奥•莫利纳(墨)弗兰克•罗兰(美)对大气化学的研究。

1996年:罗伯特•苛尔(美)哈罗德•沃特尔•克罗托(英)理乍得•斯莫利(美)发现富勒烯。

1997年保罗•博耶(美)约翰•沃克尔(英)阐明了三磷酸腺苷合成酶的机理 延斯•克里斯汀•斯科(丹)离子传输酶的发现,钠钾离子泵。

1998年:沃特•科恩(美)密度泛函理论的研究, 约翰•波普(英)量子化学计算方法的研究。

1999年:艾哈迈德•兹韦勒(美)用飞秒激光光谱对化学反应中间过程的研究。

2015年10月7日,瑞典斯德哥尔摩,托马斯·林达尔、保罗·莫德里奇和阿齐兹·桑贾尔获得诺贝尔化学奖,以表彰他们在DNA修复的细胞机制方面的研究。

2015年10月7日,瑞典斯德哥尔摩,托马斯·林达尔、保罗·莫德里奇和阿齐兹·桑贾尔获得诺贝尔化学奖,以表彰他们在DNA修复的细胞机制方面的研究。

2000年—2016年

2000年:艾伦•黑格(美)艾伦•麦克迪尔米德(美/新西兰)白川英树(日)对导电聚合物的研究。

2001年:威廉•诺尔斯(美)野依良治(日)手性催化还原反应,巴里•夏普莱斯(美)手性催化氧化反应。

2002年库尔特•维特里希(瑞士)约翰•贝内特•芬恩(美)田中耕一(日)对生物大分子的鉴定和结构分析方法的研究。

2003年:彼得•阿格雷(美)罗德里克•麦金农(美)对细胞膜中的水通道的发现以及对离子通道的研究。

2004年:阿龙•切哈诺沃(以)阿夫拉姆•赫什科(以)欧文•罗斯(美)发现了泛素调解的蛋白质降解。

2005年:罗伯特•格拉布(美)理乍得•施罗克(美)伊夫•肖万(法)对烯烃复分解反应的研究。

2006年:罗杰•科恩伯格(美)对真核转录的分子基础所作的研究。

2007年:格哈德•埃特尔(德),在“固体表面化学过程”研究中作出的贡献。

2008年:下村修(日)、马丁•查尔菲(美)、钱永健(美),发现并发展了绿色荧光蛋白(GFP)。

2009年:万卡特拉曼•拉玛克里斯南(英)、托马斯•斯泰茨(美)、阿达•约纳什(以色列),在核糖体结构和功能研究中做出贡献。

2010年:理乍得•赫克(美)、根岸英一(日)、铃木章(日),发明新的连接碳原子的方法。

2012年:罗伯特•莱夫科维茨(美)、布莱恩•克比尔卡(美),因“G蛋白偶联受体研究”获奖。

2013年:马丁•卡普拉斯(美)、迈克尔•莱维特(英、美)、阿里耶•瓦谢勒(美、以色列),在开发多尺度复杂化学系统模型方面做出贡献。

2014年:埃里克•贝齐格(美)、威廉•莫纳(美)、斯特凡•黑尔(德),为发展超分辨率荧光显微镜做出贡献。

2015年:托马斯•林达尔(瑞典)、保罗•莫德里奇(美)、阿齐兹•桑贾尔(土耳其、美),因“DNA修复的细胞机制研究”获奖。

2016年:让-皮埃尔•索维奇,J•弗雷泽•斯托达特和伯纳德•L•费林加三位科学家因“设计和合成分子机器”获奖。

❻ 诺贝尔物理学奖有女性获得过吗

2000年为止,全世界有467人获得诺贝尔奖,其中诺贝尔物理奖得主有162人。

在这467位诺贝尔奖得主中,有四位曾两次获奖。

其中,波兰裔法国女物理学家、化学家Marie Sklodowska Curie(玛丽‧居礼)(即居礼夫人)获得1903年的诺贝尔物理奖与1911年诺贝尔化学奖

美国物理学家John Bardeen(约翰‧巴丁)获得1956年与1972年的诺贝尔物理奖。

在所有得奖科学家中,有三对夫妻共同得奖。

法国物理学家Pierre Curie(皮耶‧居礼)和Marie Sklodowska Curie(玛丽‧居礼)夫妇获得1903年物理奖。

在所有得奖科学家中,包含有5对父子。共同得到1915年物理奖的是William Henry Bragg & William Lawrence Bragg(布拉格父子);分别得到1906年物理奖和 1937年物理奖的是Joseph John Thomoson & George Paget Thomson(汤姆逊父子);分别得到1922年物理奖和1975年物理奖的是Niels Bohr & Aage Niles Bohr(波尔父子);分别得到1924年物理奖和1981年物理奖的是Karl Manne Georg Siegbahn & Kai Manne Borje Siegbahn(赛格巴恩父子)。

在所有得奖科学家中,有10位女性科学家。其中得到物理奖的是1903年得奖的Marie Sklodowska Curie(玛丽‧居礼)与 1963年得奖的Maria Goeppert Mayer(玛丽雅‧梅耶)。

在所有得奖科学家中,有6位是华裔科学家。分别是1957年物理奖的杨振宁和李政道;1976年物理奖的丁肇中;1986年得化学奖的李远哲;1997年得物理奖的朱棣文;1998年得物理奖的崔琦。

诺贝尔化学奖得主

时间 姓名 中文译名 国别 获奖原因
1901年 J.H.van't Hoff范霍夫荷兰研究化学动力学和渗透压的规律
1902年 E.FischerE.费歇尔德国合成糖和嘌呤衍生物
1903年 S.Arrhenius阿累尼乌斯瑞典提出电离学说
1904年 W.Ramsay拉姆塞英国发现惰性气体
1905年 A.von Baeyer拜耳德国研究有机染料和芳香族化合物
1906年 H.Moissan莫瓦桑法国制备单质氟
1907年 E.Buchner布赫纳德国发现非细胞发酵现象
1908年 E.Rutherford卢瑟福英国提出放射性元素蜕变理论
1909年 F.W.Ostwald奥斯特瓦尔德德国研究催化、化学平衡、反应速

1910年 O.Wallach瓦拉赫德国研究脂环族化合物
1911年 M.CurieM.居里德国发现钋和镭
1912年 V.Grignard格林尼亚法国发现用镁做有机反应的试剂(被称为格式试剂)P.Sabatier萨巴蒂埃法国研究有机化合物的催化氢化反应
1913年 A.Werner维尔纳瑞士提出配位化学理论
1914年 T.W.Richards理查兹美国精确测定许多元素的原子量
1915年 R.Willstater威尔施泰特德国研究植物色素,特别是叶绿素
1916年 未颁奖
1917年
1918年 F.Haber哈伯德国发明合成氨法
1919年 未颁奖
1920年 W.Nerst能斯特德国研究热化学,提出热力学第三定律
1921年 F.Soddy索迪英国首次提出同位素概念,并证明了位移定律
1922年 F.W.Aston阿斯顿英国发明质谱仪,用它测定非放射性元素的同位素
1923年 F.Pregl普雷格尔奥地利发明有机化合物的微量分析法
1924年 未颁奖
1925年 R.Zsigmondy齐格蒙迪奥地利阐明胶体溶液的多相性,创立胶体化学的现代研究方法
1926年 T.Svedlberg斯维德伯格瑞典发明超离心机,用于研究分散体系
1927年 H.Wieland维兰德德国研究胆酸组成
1928年 A.Windaus文道斯德国研究胆固醇的组成及其与维生素的关系
1929年 A.Harden哈登英国阐明糖的发酵过程以及酶和辅酶的作用
H.von Euler-Chelpin奥伊勒-凯尔平瑞典
1930年 H.FischerH.费歇尔德国研究血红素和叶绿素,合成血红素
1931年 C.Bosch波施德国研究化学上应用的高压方法
F.Bergius贝吉乌斯德国
1932年 I.Langmuir兰米尔美国研究表面化学和吸附理论
1933年 未颁奖
1934年 H.C.Urey尤里美国发现重氢
1935年 F.Joliot-CurieF.约里奥-居里法国人工合成放射性元素
I.Joliot-CurieI.约里奥-居里法国
1936年 P.Debye德拜荷兰提出偶极矩概念并利用它和X射线衍射法研究分子结构
1937年 W.Haworth霍沃斯英国研究碳水化合物和维生素C的结构
P.Karrer卡雷瑞士研究类胡萝卜素、核黄素、维生素A和B2的结构
1938年 R.Kuhn库恩德国研究类胡萝卜素和维生素
1939年 A.Butenandt布特南特德国研究性激素
L.Ruzicka卢齐卡瑞士研究聚亚甲基和高级萜烯
1940年 未颁奖
1941年
1942年
1943年 G.Hevesy海维西匈牙利利用同位素示踪法研究化学过程
1944年 O.Hahn哈恩德国发现重核裂变现象
1945年 A.Virtanen维尔塔宁芬兰发明饲料贮藏保鲜法
1946年 J.B.Sumner萨姆纳美国分离和提纯结晶蛋白质酶
L.H.Northrop诺思罗普美国制备纯净状态的酶和病毒蛋白质
W.M.Stanley斯坦利美国
1947年 R.Robinson鲁宾逊英国研究生物碱
1948年 A.W.K.Tiselius梯塞留斯瑞典研究电泳和吸附分析,发现血清蛋白的组分
1949年 W.F.Giauque吉奥克美国研究超低温下物质的特

1950年 O.Diels第尔斯德国发现双烯合成反应
K.Alder阿尔德

1951年 E.M.McMillan麦克米伦美国 人工合成超铀元素
G.T.Seaborg西博格美国
1952年 A.Martin马丁英国 发明分配色谱法
R.Synge辛格英国
1953年 H.Staudinger施陶丁格德国 提出高分子概念
1954年 L.Pauling鲍林美国 阐明化学键的本质以解释复杂分子结构
1955年 V.Du Vigneaud杜·维尼奥美国 研究生物化学中的重要含硫化合物,合成多肽激素
1956年 N.Semyonov谢苗诺夫前苏联 研究气相反应的化学动力学
C.Hinshelwood欣谢尔伍德美国
1957年 A.R.Todd托德英国 研究核苷酸和核苷酸辅酶
1958年 F.Sanger桑格英国 测定胰岛素的分子结构
1959年 J.Heyrovsky海洛夫斯基捷克 发明极谱分析法
1960年 W.F.Libby利比美国 发明放射性碳素测年法
1961年 M.Calvin开尔文美国 研究光合作用的化学过程
1962年 M.F.Perutz佩鲁兹英国 测定血红蛋白结构
J.C.Kendrew肯德鲁英国
1963年 K.Ziegler齐格勒德国 研究乙烯聚合的催化剂
G.Natta纳塔意大利 研究丙烯聚合的催化剂
1964年 D.C.Hodgkin霍奇金夫人英国 测定维生素B12等大分子结构
1965年 R.B.Woodward伍德沃德美国 人工合成维生素B12、胆固醇、叶绿素等复杂有机物
1966年 R.S.Mulliken马利肯美国 创立化学结构分子轨道理论
1967年 R.G.W.Norrish诺里什英国 发明测定快速反应技术
G.Porter波特英国
M.Eigen艾根德国
1968年 L.Onsager翁萨格美国 创立不可逆过程的热力学理论
1969年 D.H.R.Barton巴顿英国 研究有机化合物的三维构象
O.Hassel哈塞尔挪威
1970年 L.F.Leloir莱洛伊尔阿根廷 发现糖核苷酸及其在碳水化合物生物合成中的作用
1971年 G.Herzberg赫茨伯格加拿大 研究分子光谱学,特别是自由基的电子结构和几何结构
1972年 C.B.Anfinsen安分森美国 研究核苷核酸酶的三维结构与功能的关系和蛋白质的折叠链的自然现象
S.Moore莫尔美国
W.H.Stein斯坦美国
1973年 E.O.FischerE.O.费歇尔德国 制备和测定了夹心面包结构的金属有机化合物
1974年 P.J.Flory弗洛里美国 研究长链高分子及高分子的物理性质与结构的关系
1975年 J.W.Cornforth康福斯英国 研究有机分子和酶催化反应的立体休学
V.Prelog普雷洛格瑞士 从事有机分子及其反应的立体化学研究
1976年 W.N.Lipscomb利普斯科姆美国 研究硼烷和碳硼烷的结构
1977年 I.Prigogine普里戈金比利时 研究热力学中的耗散结构理论
1978年 P.D.Mitchell米切尔英国 研究生物系统中的能量转移过程
1979年 H.C.Brown布朗美国 在有机合成中利用硼和磷的化合物
G.Wittig维蒂希德国 发现维蒂希重排反应,提供了新的制烯方法
1980年 P.Berg伯格美国 操纵基因重组脱氧核糖核酸分子
W.Gilbert右尔伯特美国 用化学方法决定脱氧核糖核酸中核苷酸的排列
F.Sanger桑格英国
1981年 福井谦一日本 创立前线轨道理论
R.Hoffmann霍夫曼美国 提出分子轨道对称守恒原则
1982年 A.Klug克卢格英国 以电子显微镜和X射线衍射法研究核酸-蛋白质复合体
1983年 H.Taube陶布美国 研究金属配位化合物的电子转移机理
1984年 B.Merifield梅里菲尔德美国 研究多肽的合成
1985年 H.A.Hauptman豪普特曼美国 开发了应用X射线衍射法确定物质晶体结构的直接计算法
J.Karle卡尔勒美国
1986年 D.R.Herschbach赫希巴赫美国 研究交叉分子束方法和化学反应动力学
李远哲美籍华人
J.C.Polanyi波拉尼美国
1987年 C.Pedersen佩德森美国 合成能模拟重要生物过程的有机化合物,为超分子化学奠定基础
J.-M.Lehn莱恩法国
D.Cram克拉姆美国
1988年 J.Deisenhofer戴森霍弗德国
解析了细菌光合作用反应中心的立体结构,阐明了其光合作用进行的机制
R.Huber胡伯尔德国
H.Michel米歇尔德国
1989年 S.Altman奥尔特曼美国 发现核糖核酸具有酶的催化功能
T.R.Cech切赫美国
1990年 E.J.Corey科里美国 提出有机合成的逆合成分析原理
1991年 R.R.Ernst恩斯特瑞士 发展高分辨核磁共振波谱学方法
1992年 R.A.Marcus马库斯美国 创立溶液中的电子转移过程理论
1993年 K.B.Mullis穆利斯美国 发明多聚酶链式反应技术
M.Smith史密斯加拿大 发明寡聚核苷酸基定点诱变技术
1994年 G.A.Olah欧拉美国 研究碳正离子化学
1995年 P.Crutzen克鲁岑德国 阐述对臭氧层厚度产生影响的化学机理,证明化学物质对臭氧层构成破坏作用
M.Molina莫利纳美国
F.S.Roweland罗兰美国
1996年 H.W.Kroto克罗特英国 发现富勒烯
R.F.Curl,Jr.苛尔美国
R.E.Smalley斯莫利美国
1997年 P.B.Boyer博耶美国 发现人体细胞内负责储藏转移能量的离子传输酶
J.E.Walker沃克尔英国
J.C.Skou斯科丹麦
1998年 W.Kohn科恩奥地利 提出密度泛函理论,开辟处理复杂多电子体系的新方法
J.Pople波普英国
1999年 A.Zewail兹韦勒美籍埃及人 利用激光闪烁研究化学反应(飞秒化学)
2000年 艾伦·黑格美国 有关导电聚合物的发现
白川英树日本
艾伦·马克迪尔米德美国

历届有趣的诺贝尔奖得主

■首届诺贝尔奖得主

南方网讯 1901年12月10日,第一届诺贝尔奖颁发的5个奖项得主分别是:因发现X射线获诺贝尔物理学奖的德国科学家伦琴。因化学动力学和渗透压定律获诺贝尔化学奖的荷兰科学家范托霍夫。因血清疗法防治白喉、破伤风获诺贝尔生理学或医学奖的德国科学家贝林。因《命运》、《幸福》、《眼睛》等散文和《论艺术》、《诗句的断想》等着作获诺贝尔文学奖的法国作家苏利。普吕多姆。因创立国际红十字会和因创立国际和平联盟及各国议会联盟而共同获诺贝尔和平奖的瑞士人桂南和法国人帕西。

■第一位经济学奖得主

1969年12月10日,诺贝尔经济学奖首次颁发,挪威经济学家弗里希、荷兰经济学家丁柏根因创立计量经济学,运用动态模型分析经济活动而共同获得首次设立颁发的诺贝尔经济学奖。

■四人两次获诺贝尔奖

波兰裔法国物理学家、化学家居里夫人:因发现放射性物质和发现并提炼出镭和钋而荣获1903年的诺贝尔物理学奖和1911年的化学奖。

美国物理学家巴丁:因发明世界上第一支晶体管和提出超导微观理论分获1956年和1972年诺贝尔物理学奖。

美国化学家鲍林:因为将量子力学应用于化学领域并阐明了化学键的本质,致力于核武器的国际控制并发起反对核实验运动而荣获1954年的化学奖和1962年的和平奖。

英国生物化学家桑格:因发现胰岛素分子结构和确定核酸的碱基排列顺序及结构而分获1958年和1980年的诺贝尔化学奖。

■获诺贝尔奖的夫妇

法国科学家皮埃尔。居里和玛丽。居里夫妇:1903年诺贝尔物理学奖得主

法国科学家约里奥。居里夫妇:1935年诺贝尔化学奖得主

科里夫妇:1947年诺贝尔生理学或医学奖得主

■获诺贝尔奖的父子

布拉格父子:共同荣获1915年诺贝尔物理学奖

汤姆逊父子:分别荣获1906年和1937年诺贝尔物理学奖

奥伊勒父子:分别荣获1929年和1970年诺贝尔生理学或医学奖

玻尔父子:分别荣获1922年和1975年诺贝尔物理学奖

西格巴恩父子:分别荣获1924年和1981年诺贝尔物理学奖

阅读全文

与高分子物理中Kuhn是什么意思相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1401
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1039
一氧化碳还原氧化铝化学方程式怎么配平 浏览:881
数学c什么意思是什么意思是什么 浏览:1405
中考初中地理如何补 浏览:1296
360浏览器历史在哪里下载迅雷下载 浏览:698
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1020
win7如何删除电脑文件浏览历史 浏览:1052
大学物理实验干什么用的到 浏览:1481
二年级上册数学框框怎么填 浏览:1696
西安瑞禧生物科技有限公司怎么样 浏览:962
武大的分析化学怎么样 浏览:1244
ige电化学发光偏高怎么办 浏览:1334
学而思初中英语和语文怎么样 浏览:1647
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1483
数学中的棱的意思是什么 浏览:1054