导航:首页 > 物理学科 > LTE的物理层处理过程有哪些

LTE的物理层处理过程有哪些

发布时间:2023-01-16 16:30:09

A. ue哪些过程是lte物理层处理过程

随机接入,功控,harq,ca

B. LTE里边层1层2层3都包括哪些

层1就是物理层
层2一般指的是mac层
层3是指rlc,pdcp和rrc

C. 预先编码适用于什么问题

预先编码适用于物理下行共享信道的几种主要传输模式。

预编码的基本原理:TD-LTE下行传输采用了MIMO-OFDM的物理层构架,通过最多4个发射天线并行传输多个(最多4个)数据流,能够有效地提高峰值传输速率。LTE的物理层处理过程中,预编码是其核心功能模块,物理下行共享信道的几种主要传输模式都是通过预编码实现的。

在MIMO系统中,当发射端不能获得任何信道状态信息(CSI,Channel State Information)时,各个并行数据流均等地分配功率与传输速率并分别采用全向发射的方式,就可以获得最优的性能。

预编码可以采用线性或非线性方法,但由于复杂度等方面的原因,在无线通信系统中一般只考虑线性预编码。

(3)LTE的物理层处理过程有哪些扩展阅读

预先编码发射机可以通过上下行信道之间的互易性或通过UE反馈方式获取CSI。基于发射机获得的CSI,预编码系统可以根据信道所能支持的并行传输流数量,将有限的发射功率分配给能够有效传输的数据流,从而避免发射功率的浪费。

从理论角度考虑,可以根据每个子信道的传输能力,按照类似注水定理的原则对每个数据流的功率分配进行优化,以提高MIMO链路的信道容量,同时可以通过自适应调制编码的方式使每个子信道的传输速率最大化。

在TD-LTE中采用了自适应编码调制的方式,可以根据最多两个等效子信道的信道质量选择适当的调制编码方案以实现吞吐量的最大化。

根据所选择的优化目标与具体的接收机检测算法的区别,预编码器的理论设计准则可以采用最小奇异值准则(MSV-SC,Minimum Singular Value Criterion)、均方误差准则(MSE-SC,Minmum Square Error Criterion)、最大容量准则(MC-SC,Maximum Capacity Criterion)与最大似然准则(ML-SC,Maximum Likelihood Criterion)等。

D. lte操作中涉及到哪些物理层过程

手机开机:和cell的pss,sss同步过程并接收广播消息mib和sib
然后:发起RA,random access

E. LTE包含物理层,MAC,和RRC,各层之间的相互关系是什么请读者快快帮回答啊,越详细越好,谢谢

LTE分为横向三层:物理层、数据链路层、网络高层。物理层给高层提供数据传输服务。数链层分为MAC子层,RLC子层,和两个依赖于服务的子层:PDCP协议层,BMC协议层。网络高层即RRC层。

F. 请画出LTE系统的组网图及标注接口。

摘要 快速发展的数据业务对于无线网络的数据传输能力要求越来越高,LTE技术在这种需求下应运而生。反映数据下载能力的下行流量是衡量LTE系统性能的一个极其重要的指标。本文分析了TD-LTE系统中影响单用户下行流量的各种因素,并针对运营商的组网测试,对众多测试案例进行筛选,提出了一套测试下行流量的核心案例,并且介绍了这些案例的测试方法。这些测试案例也可以作为实验室测试下行流量功能的案例。 随着通信技术的蓬勃发展,3GPP开展UTRA长期演进技术的研究,即LTE技术,以实现3G技术向B3G和4G的平滑过渡。LTE的改进目标是实现更快的数据速率、更短的时延、更低的成本、更高的系统容量以及改进的覆盖范围。在3GPP LTE规范中,明显增加了峰值数据速率,要求在20MHz带宽上达到100Mbit/s的下行传输速率和50Mbit/s的上行传输速率。目前随着TD-SCDMA的广泛应用,由TD-SCDMA平滑演进到TD-LTE已经成为一种发展趋势。本篇文章着重阐述了在TD-LTE系统中如何优化单用户的下行流量测试。 无线网络侧用户数据处理的流程 图1-1 3GPP LTE网络的用户面协议栈 图1-1是3GPP LTE网络的用户面协议栈 [1]。左边蓝色框内是无线网络侧的用户面协议栈。下行数据从核心网传输到基站侧后,经过PDCP层、RLC层和MAC层的封装映射到物理层上,再通过空口传输到UE侧。UE侧经过相应层的解封装后,得到下行的数据包。 PDCP层从上层接收数据,对数据进行压缩和加密,然后再转发到RLC层。RLC层根据底层传输块大小对上层PDU进行分段,然后通过确认模式、非确认模式或者透明模式传输到MAC层,并通过ARQ机制进行错误修正。MAC层实现了UE间的动态调度,能通过HARQ进行错误纠正以及实现传输块格式的选择等功能。物理层为MAC层和高层提供信息传输的服务。在TD-LTE系统中,MAC层和物理层的配置和功能直接影响了用户的下行流量。 下行用户数据在MAC层是承载在传输信道DL-SCH上的。当基站发射数据的天线多于一根时,MAC层会将接收到的上层数据分成两个比特流。图1-2是传输信道DL-SCH在MAC层的一个比特流的处理流程 [2]。每一个比特流需要被附加24比特的CRC校验位,然后再进行比特加扰。如果比特流的大小大于传输信道的最大长度,比特流就会被分割成多个码块,每一码块都要加24比特的CRC校验位。经过码块分割后,每一个码块都要进行信道编码。DL-SCH传输信道使用的是Turbo 1/3 编码方式。编码后的数据进入HARQ软比特缓冲器后,进行HARQ的功能处理。从HARQ软比特缓冲器输出的比特流进行二次交织后,与控制信息复用,然后再映射到物理信道上。 图1-2传输信道DL-SCH在MAC层的处理流程 图1-3是物理信道PDSCH上两个码字的处理流程 [3]。首先,将传输信道DL-SCH上的码字进行加扰,然后再进行调制。PDSCH的调制方式可以是QPSK、16QAM或64QAM。经过调制后的码字是复值的调制符号,这些符号又会映射在一个或者多个的空间层上。在LTE系统中,空间复用可以有1、2、3或4层。每一层的复值信号经过预编码后映射在为这个PDSCH分配的资源单元上,然后再经过OFDM调制,被发送到天线端口上。 图1-3 PDSCH物理层处理流程 下行流量的潜在影响因素 用户面数据的处理流程描述了物理层和MAC层对用户数据的处理过程。物理层的配置决定了系统最终能够为用户提供的物理承载能力,而这些物理承载中映射的用户信息比特数是由MAC层所采用的编码率、调制方式以及是否有数据重传等因素决定的。所以,下面分别从物理层和MAC层分析影响下行流量的因素。 TD-LTE系统物理层的用户传输能力 图2-1是TD-LTE的帧结构 [3]。一个无线帧的长度是10ms,由两个结构一样的半帧组成,每个半帧中有五个子帧。子帧1是特殊时隙,用来传输DwPTS、GP和UpPTS。子帧0和子帧 2分别固定用作下行和上行。子帧 3和子帧4可以用作上行或者下行。 图2-1 TD-LTE帧结构 下行物理信道有物理下行共享信道(PDSCH),物理广播信道(PBCH),物理控制格式指示信道(PCFICH),物理下行控制信道(PDCCH),物理HARQ指示信道(PHICH)。每一个下行物理信道都是一系列的资源粒子RE的集合。除此之外,物理层上还有一些资源单元不对应物理信道,只是传输下行物理信号,其中包括参考信号和同步信号。在这些所有的物理资源上,只有PDSCH是用来传输用户数据的。表2-1举例说明了物理信道PDSCH在特定系统配置下能够提供的最大资源单元 (RE)。 表2-1 物理信道PDSCH基于特定系统配置下可用的资源单元 物理信道PDSCH可用的资源单元的数量直接影响了用户的下行流量。所以,物理层对下行流量的影响是在于不同的系统配置。这些配置因素包括带宽、多天线技术、上下行时隙比、下行控制信道的OFDM符号数(CFI)和特殊时隙的配置。表2-2是这些影响因素的常用配置。 表2-2 物理层对下行流量的影响因素及常用配置 MAC层影响下行流量的因素分析 MAC层的数据传输是通过HARQ的多个进程来实现。每个HARQ进程就是一个输入数据比特的缓冲器。输入的数据流经过速率匹配后,与PDSCH上能够传输的比特数匹配。系统会根据UE反馈的ACK/NACK后,决定发送新的数据还是重传旧的数据。对于每次重传,使用不同的信道冗余版本,这些冗余版本是预先定义好的。所以,HARQ进程数,最大重传次数和冗余版本的设置直接影响了下行数据的传输速率。 MAC层还有对用户面数据处理的控制功能,即链路自适应功能。MAC层根据UE反馈的信道质量指示,RI的指示和ACK/NACK的上报,决定为该用户分配的传输块大小、编码率和调制方式。信道编码率是下行信息比特数与PDSCH物理信道比特数的比值 [4]。 Coderate = Nsys / NRM Coderate是信道编码率。Nsys 是在一个TTI内用户信息的比特数。NRM是经过速率匹配后映射到物理信道PDSCH上的比特数。NRM 用 RM (Nphy) 表示。Nphy 是物理信道PDSCH能够传输的比特数。 Nphy = NRE * RI * Nmod NRE是物理信道PDSCH所占的资源单元数。RI是数据传输在空间的级数,可以取1或者2。当天线采用发射分集的方式时,RI等于1。当天线采用空分复用的方式时,RI等于2。Nmod是一个调制符号所代表的比特数。Nmod可以取2,4或者6,分别对应的是QPSK,16QAM或者是64QAM的调制方式。 所以,Nsys = coderate * RM (NRE * RI * Nmod)。其中NRE与系统的基本配置相关。RI、Nmod和coderate的取值和链路自适应的功能相关。 基于以上分析,MAC层对单用户下行流量的影响体现在特定系统配置和不同的信道环境下,链路自适应功能和HARQ功能的实现,如图2-2所示。 图2-2 MAC层对下行流量的影响因素和常用配置 下行流量在组网测试中的测试案例选择 在测试学的理论中,覆盖测试常用的测试模型有:block coverage、branch coverage、C-use coverage、P-use coverage、DUD-chains和DU-pairs。图3-1表示的是不同的覆盖测试模型下 [5],覆盖率和检测出的缺陷数之间的关系。从图中可以看出,即便是在效率最高的blocks coverage模型下,覆盖率在达到85%左右后,检测出的缺陷数基本保持不变。所以,测试不是追求100%覆盖,而是要在一定的时间和成本下,寻找到一套有效的测试方法来保证产品的质量。这种测试理论同样适用于运营商的组网测试。 图3-1 覆盖率和检测出错误数的关系 组网测试主要是针对TD-LTE系统在实际应用的网络中最常规和最大量应用的场景进行测试。理想信道下的测试衡量的是系统最大的传输能力。非理想信道下的测试反映了近似于真实环境下的系统传输能力。下面分别在这两种测试环境下,结合上述对下行流量影响因素的分析,选择了一组核心的测试案例,如表3-1和表3-2所示。其中包括测试目的、系统配置、测试方法以及预期的测试结果。这些测试案例中选取的系统配置可以根据实际网络的需求情况,作出相应的调整,以便测试能够更好地为组网应用提供保障。 表3-1下行流量在理想信道环境下的核心测试案例 表3-2下行流量在非理想信道环境下的核心测试案例 总结 从测试理论来看,测试不是追求100%覆盖,而是要根据特定的测试目的,寻找到一套有效的测试方法来保证产品的质量。TD-LTE系统组网测试应该主要是针对实际应用的网络中最常规和最大量应用的场景进行测试。本文从理论上分析了物理层和MAC层对下行流量的主要影响因素和常用配置,提出了运营商组网测试中理想信道环境下和非理想信道环境下针对下行流量的核心测试案例,其中的系统配置可以根据运营商具体的网络应用需求作出调整。这些测试案例可以作为运营商TD-LTE网络入网测试时针对下行流量测试的主要测试案例。

G. 在LTE里什么是 层1 层2 层3 都有什么参数各个参数都有什么作用

层1是物理层,包括编码,调制,多天线映射等物理层过程,为MAC层提从传输信道
层2是MAC层,包括混合ARQ,上下行调度,为RLC层提供逻辑信道
层3是RLC层,包括重传,PDCP的分割与组合等,为PDCP提供无线承载(radio bearers)

H. td-lte空中接口的物理层

OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM是MCM Multi-Carrier Molation,多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰 ICI 。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。在向B3G/4G演进的过程中,OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。包括以下类型:V-OFDM,W-OFDM,F-OFDM,MIMO-OFDM。
1.1发展历史
上个世纪70年代,韦斯坦(Weinstein)和艾伯特(Ebert)等人应用离散傅里叶变换(DFT)和快速傅里叶方法(FFT)研制了一个完整的多载波传输系统,叫做正交频分复用(OFDM)系统。
OFDM是正交频分复用的英文缩写。正交频分复用是一种特殊的多载波传输方案。OFDM应用离散傅里叶变换(DFT)和其逆变换(IDFT)方法解决了产生多个互相正交的子载波和从子载波中恢复原信号的问题。这就解决了多载波传输系统发送和传送的难题。应用快速傅里叶变换更使多载波传输系统的复杂度大大降低。从此OFDM技术开始走向实用。但是应用OFDM系统仍然需要大量繁杂的数字信号处理过程,而当时还缺乏数字处理功能强大的元器件,因此OFDM技术迟迟没有得到迅速发展。
近些年来,集成数字电路和数字信号处理器件的迅猛发展,以及对无线通信高速率要求的日趋迫切,OFDM技术再次受到了重视。在上个世纪60年代已经提出了使用平行数据传输和频分复用(FDM)的概念。1970年,美国申请和发明了一个专利,其思想是采用平行的数据和子信道相互重叠的频分复用来消除对高速均衡的依赖,用于抵制冲激噪声和多径失真,而能充分利用带宽。这项技术最初主要用于军事通信系统。但在以后相当长的一段时间,OFDM理论迈向实践的脚步放缓了。由于OFDM各个子载波之间相互正交,采用FFT实现这种调制,但在实际应用中,实时傅立叶变换设备的复杂度、发射机和接收机振荡器的稳定性以及射频功率放大器的线性要求等因素部成为OFDM技术实现的制约条件。在二十世纪80年代,MCM获得了突破性进展,大规模集成电路让FFT技术的实现不再是难以逾越的障碍,一些其它难以实现的困难也部得到了解决,自此,OFDM走上了通信的舞台,逐步迈向高速数字移动通信的领域。
1.2应用情况
由于技术的可实现性,在二十世纪90年代,OFDM广泛用干各种数字传输和通信中,如移动无线FM信道,高比特率数字用户线系统(HDSL),不对称数字用户线系统(ADSL),甚高比特率数字用户线系统HDSI,数字音频广播(DAB)系统,数字视频广播(DVB)和HDTV地面传播系统。1999年,IEEE802.lla通过了一个无线局域网标准,其中OFDM调制技术被采用为物理层标准,使得传输速率可以达54MbPs。这样,可提供25MbPs的无线ATM接口和10MbPs的以太网无线帧结构接口,并支持语音、数据、图像业务。这样的速率完全能满足室内、室外的各种应用场合。欧洲电信组织(ETSl)的宽带射频接入网的局域网标准也把OFDM定为它的调制标准技术。
2001年,IEEE802.16通过了无线城域网标准,该标准根据使用频段的不同,具体可分为视距和非视距两种。其中,使用许可和免许可频段,由于在该频段波长较长,适合非视距传播,此时系统会存在较强的多径效应,而在免许可频段还存在干扰问题,所以系统采用了抵抗多径效应、频率选择性衰落或窄带干扰上有明显优势的OFDM调制,多址方式为OFDMA。而后,IEEE802.16的标准每年都在发展,2006年2月,IEEE802.16e(移动宽带无线城域网接入空中接口标准)形成了最终的出版物。当然,采用的调制方式仍然是OFDM。
2004年11月,根据众多移动通信运营商、制造商和研究机构的要求,3GPP通过被称为Long Term Evolution(LTE)即“3G长期演进”的立项工作。项目以制定3G演进型系统技术规范作为目标。3GPP经过激烈的讨论和艰苦的融合,终于在2005年12月选定了LTE的基本传输技术,即下行OFDM,上行SC。OFDM由于技术的成熟性,被选用为下行标准很快就达成了共识。而上行技术的选择上,由于OFDM的高峰均比(PAPR)使得一些设备商认为会增加终端的功放成本和功率消耗,限制终端的使用时间,一些则认为可以通过滤波,削峰等方法限制峰均比。B3G/4G的目标是在高速移动环境下支持高达100Mb/S的下行数据传输速率,在室内和静止环境下支持高达1Gb/S的下行数据传输速率。2010年全球首个TD-LTE-A的规模实验网将在上海世博会向媒体开放。4G是基于OFDM加MIMO的技术组合,但整体结构不一样,基于OFDM和MIMO的有两套标准,一个是IEEE802-16M,一个是LTE-Advanced,而OFDM技术是关键核心技术之一。
1.4优势与不足
优势:OFDM存在很多技术优点见如下,在3G、4G中被运用,作为通信方面其有很多优势:
(1) OFDM技术在窄带带宽下也能够发出大量的数据,能同时分开至少1000个数字信号,而且在干扰的信号周围可以安全运行的能力将直接威胁到目前市场上已经开始流行的CDMA技术的进一步发展壮大的态势,正是由于具有了这种特殊的信号“穿透能力”使得OFDM技术深受欧洲通信营运商以及手机生产商的喜爱和欢迎,例如加利福尼亚Cisco系统公司、纽约工学院以及朗讯工学院等开始使用,在加拿大WiLAN工学院也开始使用这项技术。
(2) OFDM技术能够持续不断地监控传输介质上通信特性的突然变化,由于通信路径传送数据的能力会随时间发生变化,所以OFDM能动态地与之相适应,并且接通和切断相应的载波以保证持续地进行成功的通信.该技术可以自动地检测到传输介质下哪一个特定的载波存在高的信号衰减或干扰脉冲,然后采取合适的调制措施来使指定频率下的载波进行成功通信。
(3) OFDM技术特别适合使用在高层建筑物、居民密集和地理上突出的地方以及将信号散播的地区。高速的数据传播及数字语音广播都希望降低多径效应对信号的影响。
(4) OFDM技术的最大优点是对抗频率选择性衰落或窄带干扰。在单载波系统中,单个衰落或干扰能够导致整个通信链路失败,但是在多载波系统中,仅仅有很小一部分载波会受到干扰。对这些子信道还可以采用纠错码来进行纠错。
(5) OFDM技术可以有效地对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输。当信道中因为多径传输而出现频率选择性衰落时,只有落在频带凹陷处的子载波以及其携带的信息受影响,其他的子载波未受损害,因此系统总的误码率性能要好得多。
(6) OFDM技术通过各个子载波的联合编码,具有很强的抗衰落能力。OFDM技术本身已经利用了信道的频率分集,如果衰落不是特别严重,就没有必要再加时域均衡器。通过将各个信道联合编码,则可以使系统性能得到提高。
(7) OFDM技术可使信道利用率很高,这一点在频谱资源有限的无线环境中尤为重要;当子载波个数很大时,系统的频谱利用率趋于2Baud/Hz。
存在不足:虽然OFDM有上述优点,但是同样其信号调制机制也使得OFDM信号在传输过程中存在着一些劣势:
(1)对相位噪声和载波频偏十分敏感
这是OFDM技术一个非常致命的缺点,整个OFDM系统对各个子载波之间的正交性要求格外严格,任何一点小的载波频偏都会破坏子载波之间的正交性,引起ICI,同样,相位噪声也会导致码元星座点的旋转、扩散,从而形成ICI。而单载波系统就没有这个问题,相位噪声和载波频偏仅仅是降低了接收到的信噪比SNR,而不会引起互相之间的干扰。
(2)峰均比过大
OFDM信号由多个子载波信号组成,这些子载波信号由不同的调制符号独立调制。同传统的恒包络的调制方法相比,OFDM调制存在一个很高的峰值因子。因为OFDM信号是很多个小信号的总和,这些小信号的相位是由要传输的数据序列决定的。对某些数据,这些小信号可能同相,而在幅度上叠加在一起从而产生很大的瞬时峰值幅度。而峰均比过大,将会增加A/D和D/A的复杂性,而且会降低射频功率放大器的效率。同时,在发射端,放大器的最大输出功率就限制了信号的峰值,这会在OFDM频段内和相邻频段之间产生干扰。
(3)所需线性范围宽
由于OFDM系统峰值平均功率比(PAPR)大,对非线性放大更为敏感,故OFDM调制系统比单载波系统对放大器的线性范围要求更高。

I. MIMO的MIMO技术的应用

LTER8/R9版本中下行引入了8种MIMO传输模式,其中LTEFDD常用的MIMO传输模式为模式1到模式6(TM1~TM6),而模式7(TM7)和模式8(TM8)主要应用于TDLTE系统中,下面是不同传输模式的简要说明。
–模式1:单天线端口传输(端口0)。
–模式2:开环发射分集。
–模式3:大延迟CDD空间复用与开环发射分集自适应。
–模式4:闭环空间复用与开环发射分集自适应。
–模式5:多用户MIMO与开环发射分集自适应。
–模式6:单层闭环空间复用与开环发射分集自适应。
–模式7:单流波束赋形(端口5)与开环发射分集或单天线端口传输(端口0)自适应。
–模式8:双流波束赋形(端口7和端口8)或单流波束赋形(端口7或端口8)与开环发射分集或单天线端口传输(端口0)自适应。
图6所示是LTE系统中下行物理层处理过程,其中MIMO技术主要涉及到层映射和预编码两部分处理过程。层映射主要是根据传输的码字(单码字或双码字)和传输层数(取决于发射端天线数量),将数据流映射到不同的传输层。预编码的主要目的是使传输的信号更好地匹配信道条件,以获得更好的传输质量。预编码有基于码本和非码本两种方式。LTEFDD主要使用基于码本的预编码方式,主要是因为LTEFDD工作时上下行链路使用不同的频率,当有较大的双工间隔时,不能够直接使用反向信道的测量来估计正向信道的条件,所以主要依靠终端的反馈来辅助预编码。而TDLTE因为可以使用信道互易性,所以更容易实现基于非码本的预编码工作方式。下面对不同的传输技术进行简要的介绍。

1.开环发射分集
当终端处于无线信号质量较差的场景或终端移动速度较快时,及时准确地掌握下行信道的质量状况较为困难,这时使用开环发射分集技术可以有效对抗信道衰落,提高接收端的信噪比。
开环发射分集工作方式采用单码字传输,也就是将一路数据流同时映射到2层或者4层进行传输,在接收端将多个发射天线的信号进行合并处理获得额外分集增益,具体的层映射过程参见下行链路传输技术中的物理信道处理。
在LTE系统中,下行链路使用OFDM技术,因此为了适应频域信号处理的要求而采用了SFTD(,空频发射分集)工作方式。SFTD基于SFBC(SpaceFrequencyBlockCoding,空频块编码)技术。
对于Alamouti编码,一个缺点是当发射天线数目大于2时,理论上证明不存在正交的可用于全速率传输的编码方式,因此对于4天线开环发射分集,采用了结合SFTD和FSTD(,频率交换发射分集)的工作方式(如图8所示),实际上是将4个天线分为两组,分别为第一组天线(天线端口0、2)和第二组天线(天线端口1、3),每组天线内采用SFTD工作方式,天线组间采用FSTD工作方式。采用这种在天线间交织的工作方式,主要原因是天线端口0、1的参考信号密度较大,天线端口2、3的参考信号密度较小,使用天线分组交织的工作方式可以保证两组SFBC码块有较平衡的解码性能。开环发射分集预编码过程具体方案可以参见下行链路传输技术中的物理信道处理。


2.空间复用
当终端处于无线信号质量较好且存在丰富的多径资源的场景时,则可以在MIMO系统的不同信道间共享高信噪比,为用户提供并行传输多路数据的服务,有效提高单用户的数据吞吐率和系统的吞吐量。假设MIMO系统中发射机有NT个发射天线,接收机有NR个接收天线,根据多天线理论可以知道,接收端的信噪比与单天线传输相比最大可以提高NT×NR倍,因此在功率和带宽不受限的条件下用户的数据传输速率可以得到显着提高。式(4)为单天线系统中的信道容量理论计算方法,当信噪比提高NT×NR倍时,利用原有的传输带宽,可以近似认为信道容量提高log2(NT×NR)倍。在实际应用时,MIMO信道数量可能会少于发射端或接收端最少天线数目,假设为M,M≤min{NT,NR},则实际MIMO系统的信道容量可以参考式5的计算方法。3GPPR8/R9版本标准中制定了3种空间复用工作方式,分别是大延迟CCD空间复用、闭环空间复用和单层闭环空间复用。下面分别进行简单的介绍。
公式4
公式5
3.大延迟CDD空间复用
大延迟CDD空间复用技术是将CDD(CyclicDelayDiversity,循环延迟分集)技术和空间复用技术进行组合应用。CDD技术可以认为是分集技术的一种,通过在不同的天线端口人为增加不同的时延,相当于进行了信道无关的频率选择性预编码。这样的预编码可以使传输信号和实际信道匹配得较好,从而有效提高接收端信噪比,但也有可能使传输信号与信道矩阵失配而降低接收端信噪比,所以CDD技术的性能和时延的选择有直接关系。LTE系统中采用支持较大延迟的CDD技术,保证在一定的传输带宽内能够实现较大的信噪比变化,使得各层的信号能够有相近的信道质量,如果终端侧使用MMSE接收机就能够获得一定增益。CDD技术的工作原理如图9所示。

大延迟CDD空间复用技术采用双码字传输,也就是两路不同的数据流同时映射到2~4层进行传输,高信噪比保证了使用多码字时的传输质量,有效提高了数据传输速率。具体层映射过程参见下行链路传输技术中的物理信道处理。
大延迟CDD空间复用技术的预编码过程见式(6)。其中W是基于码本的预编码矩阵。因为大延迟CDD空间复用是一种开环空间复用,也就是终端反馈时可以反馈CQI(ChannelQualityIndicator,信道质量指示)和RI(RankIndicator,秩指示)信息,但不反馈PMI(PrecodingMatrixIndicator,预编码矩阵指示)信息,因此预编码矩阵W是由网络侧进行选择的。D是延时矩阵,U是单位矩阵,通过D和U矩阵可以实现不同层信号间的均衡。W、D和U矩阵的具体取值参考下行链路传输技术中的物理信道处理。
4.闭环空间复用
闭环空间复用可以采用单码字或双码字传输。单码字传输对应模式6,也就是单层闭环空间复用技术。双码字传输对应模式4,也就是常说的闭环空间复用技术。对于单层闭环空间复用技术,一路数据流映射到一层传输,对应于RI=1的情况,这时工作原理类似于基于小区公共参考信号的波束赋形,可以有效提高小区的覆盖能力。对于双层闭环空间复用技术,两路不同的数据流同时可以映射到2~4层,用于信噪比条件较好且终端移动速度较低的场景,可以有效提高数据传输速率。具体层映射过程参见下行链路传输技术中的物理信道处理。
闭环空间复用和开环空间复用的主要区别是闭环空间复用需要终端反馈PMI信息,PMI信息的内容是终端从给定的预编码矩阵中选择的一个合适的W矩阵。网络侧根据终端反馈的PMI信息选择合适的预编码矩阵W(可以与终端反馈的不同),这样可以提高预编码的准确程度,带来一定的增益。但是在终端移动速度较快时,反馈的延时可能造成反馈的信息相对滞后,反而会影响网络的性能。闭环空间复用的预编码过程见式7,具体的W矩阵取值参见下行链路传输技术中的物理信道处理。

5.多用户MIMO
空间复用技术的另一种应用方式就是在小区内的多个用户间实现高信噪比的共享,也就是所谓的MU-MIMO(Multi-UserMIMO,多用户MIMO)技术。MU-MIMO的工作原理是网络侧使用相同的时频资源同时向不同的用户发送数据,通过空间来分隔这些用户,也就是类似于SDMA(SpatialDivisionMultipleAccess,空分多址)接入技术。如图8所示,左侧是单用户MIMO工作方式,两路数据同时发送给某一个用户,显着提高该用户的峰值吞吐量;右侧是MU-MIMO工作方式,两路数据分别发送给不同的用户,有助于提高小区平均吞吐量。处于MU-MIMO工作方式的用户间信道有较大的相关性,因此需要保证配对用户间有较好的空间隔离度,需要通过较窄的传输波束对准不同的终端来降低对其他用户的干扰。因为这时信道间的相关性很强,也可以认为是RI=1波束赋形。对于MU-MIMO技术,最关键的是如何找到合适的配对终端,这些终端间需要有非常好的空间隔离性,以及同时发送数据的请求,这不仅对基站侧的调度器提出了很高的要求,同时也需要小区内有较多的用户时才可能满足MU-MIMO工作方式的场景。
3GPPR8/R9版本标准中定义的模式5工作方式是一种基于小区参考信号的MU-MIMO工作方式,同时基于码本传输,具体的预编码过程、码本选择和闭环空间复用过程一致,每个配对用户占用一层进行数据传输,总共可以同时传输两层数据,也就是有两个配对用户。

6.波束赋形
波束赋形是TD-LTE系统中常用的多天线传输方式,需要基站配置天线阵元间距较小的阵列天线。波束赋形的操作和线性预编码过程非常相似,但工作原理有一定区别,波束赋形主要依靠信道间的强相关性以及电磁波的干涉原理,在天线阵列发射端的不同天线阵子处合理控制发射信号的幅度和相位来实现具有特定辐射方向的发射波形,这样有助于提高覆盖范围和特定用户的信噪比,同时也可以减小对其他用户的干扰。
3GPPR8/R9版本标准中定义的模式7和模式8分别对应单层波束赋形和双层波束赋形操作。波束赋形操作不需要终端进行特别的反馈,系统可以通过对终端的上行链路进行测量来确定下行链路发射信号的波束赋形参数,但是需要发射特定的基于终端信息的专用导频信号,使用专用导频信号可以减少公共导频信号的占用,保证在更多天线数目(如大于4个)情况下能够使用波束赋形技术。 对于R8/R9的LTE终端,主要配置为双天线,但是采用单发双收的工作模式。上行链路MIMO的工作方式主要包括以下几种:
–单天线传输:采用上行单天线传输方式,使用固定天线发送(端口0)。
–开环发送天线选择分集:采用上行单天线传输方式,终端选择天线进行上行传输。
–闭环发送天线选择分集:网络侧通过下行物理控制信道上承载的下行控制信息通知终端采用特定天线进行上行传输。
–上行MU-MIMO:网络侧能够根据信道条件变化自适应地选择多个终端共享相同的时频资源进行上行传输。
在3GPPR8/R9版本中,上行未使用空间复用技术,主要是考虑到射频实现复杂度高、MIMO信道非相关性实现较难、天线数量越多终端耗电越大、与其他无线通信系统(如GPS,蓝牙等)的干扰问题严重等因素。以射频实现为例,若要保证终端上行可以实现空间复用技术,一般情况下要求天线间至少要保证半个波长的空间隔离。假如此时上行传输使用2.6GHz的载波,空间隔离约为5cm,同市面的手持终端尺寸可比拟,相对容易实现;但是当载波低到1GHz以下,如700MHz时,半波长超过10cm,大于目前市面销售的一般手持终端的尺寸,所以对于1GHz以下的频率,实现手持终端的上行MIMO工作方式难度相对较大。
1.天线选择传输
采用单天线传输时,只能使用固定天线,但在实际情况下两个天线上传输的信号质量不完全相同,如果能够选择传输信号质量较好的天线,则可能获得一定的天线分集增益。目前天线选择有开环和闭环两种方式,具体使用哪种方式由网络侧配置。
–当终端不具备天线选择功能或网络侧未配置使用天线选择功能时,则终端使用单天线传输方式。
–当网络侧配置终端使用开环天线选择工作方式时,具体使用哪个天线传输由终端来决定。LTEFDD系统中一种可行的实现方式是终端交替使用不同的天线进行传输,以获得一定的天线分集增益;而TDLTE系统可以利用信道互易性获得上行信道质量的信息进而选择合适的天线进行传输。
–当网络侧配置终端使用闭环天线选择工作方式时,由网络侧控制终端使用哪个天线进行传输,终端按照网络侧最近下发的DCIFormat0信息获知具体的发射天线端口,具体过程见表1,通过特定的天线选择掩码对DCIFormat0信息后面增加的CRC校验比特进行加扰。
表1 终端发射天线选择掩码 终端发射天线选择 天线选择掩码(xAS,0,xAS,1,…,xAS,15) 终端天线端口0 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> 终端天线端口1 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1> 2.多用户MIMO
R8/R9LTE终端在上行只支持单发双收工作方式,不可能实现上行单用户MIMO,因此在上行链路传输中,一种特殊的被称为虚拟MIMO的技术得到应用。当终端1与eNodeB间的空间信道和终端2与eNodeB间的空间信道不相关时,基站调度器可以为两个终端分配相同的时频资源,同时进行上行传输,也就是上行MU-MIMO。当小区有较多用户(例如有较多的VoIP用户)且基站有较多的接收天线时,上行MU-MIMO更容易实现,同时可以提高小区的平均吞吐量。工作于上行MU-MIMO工作模式下的终端采用相互正交的参考信号图案,以简化基站的处理难度。从终端的角度看,上行MU-MIMO与单天线传输的不同之处,仅仅在于参考信号图案的使用必须与其他终端配对。但从基站的角度看,确实是一个2×2的MIMO系统,接收机可以对这两个终端发送的信号进行联合检测。由于MU-MIMO的终端间使用相同的时间和频率资源,且空间信道之间很难完全不相关,所以可能会带来一定程度的用户间干扰,基站使用MMSE接收机可以有效减小这种干扰的影响。

J. TD-LTE中上行物理信道的基带信号处理流程是怎样的

流程是这样的,加扰-调制-层映射-预编码-RE映射-OFDM信号的产生。

这个过程和以前TD也是完全不同的。在物理层传输的信号都是OFDM符号,从传输信道映射到物理信道的数据,经过一系列的底层的处理,最后把数据送到天线端口上,进行空口的传输。
1、加扰:这个加扰放在调制的前面,是对BIT进行加扰,每个小区使用不同的扰码,是小区的干扰随机化。减小小区间的干扰。
2、调制:是吧BIT变为复值符号,(应该是为QPSK这类做准备)
3、层映射:每一个码字中的复值调制符号被映射到一个或者多个层上;根据选择的天线技术不同,而采用不同的层映射lŒ单天线端口层映射:选择单天线接受或者采用波束赋性技术。只对应一个天线端口的传输l空间复用的层映射:天线端口有4个可用,那么就是把2个码字的复制符号映射到4个天线端口上lŽ传输分集映射:是把一个码字上的复制符号映射到多个层上,一般选择两层或四层
4、预编码:就是把层映射后的矩阵映射到对应的天线端口上,理所当然预编码对应也有3中类型lŒ单天线端口的预编码:物理信道只能在天线端口序号为0、4、5的天线上进行传输l空间复用的预编码:两端口,使用天线序列号为0、1.4端口的为0-3lŽ传输分集预编码:同上
5、资源粒子映射:就是把预编码后的复制符号映射到虚拟资源块上没有其他用途的的资源例子上。大家可以发现采用层映射和预编码的技术就是我们所谓的MIMO技术的核心。

阅读全文

与LTE的物理层处理过程有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1401
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1039
一氧化碳还原氧化铝化学方程式怎么配平 浏览:881
数学c什么意思是什么意思是什么 浏览:1405
中考初中地理如何补 浏览:1296
360浏览器历史在哪里下载迅雷下载 浏览:698
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1020
win7如何删除电脑文件浏览历史 浏览:1052
大学物理实验干什么用的到 浏览:1481
二年级上册数学框框怎么填 浏览:1696
西安瑞禧生物科技有限公司怎么样 浏览:962
武大的分析化学怎么样 浏览:1244
ige电化学发光偏高怎么办 浏览:1334
学而思初中英语和语文怎么样 浏览:1647
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1483
数学中的棱的意思是什么 浏览:1054