‘壹’ 物理电子学科的内容是什么
物理电子学是电子学、近代物理学、光电子学、量子电子学、超导电子学及相关技术的交叉学科,主要在电子工程和信息科学技术领域内进行基础和应用研究。近年来本学科发展特别迅速,不断涵盖新的学科领域,促进了电磁场与微波技术、微电子学与固体电子学、电路与系统等二级学科以及信息与通信系统、光学工程等相关一级学科的拓展,形成了若干新的科学技术增长点,如光波与光子技术、信息显示技术与器件、高速光纤通信与光纤网等,成为下一世纪信息科学与技术的重要基石之一。
物理电子学研究粒子物理、等离子体物理、激光等物理前沿对电子工程和信息科学的概念和方法所产生的影响,及由此而形成的电子学的新领域和新生长点。本学科重研究在强辐照、低信噪比、高通道密度等极端条件下,处理小时间尺度信号的技术,以及这些技术在广泛领域内的应用前景。以下的研究方向所要解决的问题超越单一学科的研究领域,形成物理电子学的一个独特的部分:
量子通讯理论和实验研究:量子计算机是未来计算机的发展方向,在理论和实验上研究量子通讯技术是实现下一代计算机的基础,对量子计算机的研究有着非常重要的意义。
实时物理信息处理:物理前沿(例如粒子物理)实验的特点之一是信息量大,而有用的信息量同总信息量之比相差10到15个数量级,这已远远超出一般电子技术的极限。如何根据物理的要求实时处理大量数据,从而得到有用的信息,是实验成功的关键。这一方向的研究成果,对大系统的集成、实时操作系统应用都有重要的意义
强噪声背景下的随机信息提取技术:在微观尺度上,来自传感器的信号往往低于噪声,同时又具有随机性。研究在强噪声背景下的随机信号和瞬态物理信息的提取是物理前沿学科提出的要求,也是雷达、声纳等领域的信号处理基础。
非线性电子学:采用电子学实验方法研究非线性现象,用电子学手段产生混沌现象,并研究如何实现混沌同步和混沌通信。
高速信号互连及其物理机制的研究:当数据传输率达到千兆位或更高时,信号在电缆、印刷板等载体上的传输涉及介质损耗、趋肤效应和电场分布等物理机制,只有引入物理学的研究方法,才能解决这些电子工程和信息技术中的问题。
辐照电子学:辐照造成半导体材料的损伤,导致其性能降低甚至失效。研究辐照对器件性能和寿命的影响,选择耐辐照的材料和解决辐射场的测量,对应用于军事和空间的电子工程、核安全技术、和核医学都有重要的意义。
‘贰’ 物理电子学的是些什么
物理电子学是近代物理学,电子学,光学,光电子学,量子电子学及相关技术与学科的交叉与融合,主要在电子工程和信息科学技术领域进行基础和应用研究.激光的发明标志着电子学的工作频段延伸到了光学频段,产生了光电子学,导波光学与集成光学等新兴学科分支,并已成为电子信息科学发展新技术的基础.近年来本学科发展特别迅速,促进了电子科学与技术其它二级学科以及信息与通信系统,光学工程等相关一级学科的拓展,形成了若干新的科学技术增长点,如光波与光子技术,信息显示技术与器件,高速光通信系统与网络等,成为二十一世纪信息科学与技术的重要基石之一.
‘叁’ 物理电子学要学的课程
物理电子学分很多方向:
光电方向的物理电子学要学激光器以及非线性光学的相关课程。
微电方向侧重于电子器件相关课程
‘肆’ 物理电子学主要学什么
物理电子学(下面为研究方向)
3光电信息处理及传感技术
4检测技术及自动化偏硬件与动手能力
电路与系统(下面为研究方向)
2图像技术与智能系统
3嵌入式系统与SOC设计 硬件及端口
5传感器网络与信息处理以太英特网的结构及链路结构
微电子学与固体电子学(下面为研究方向)
1集成电路设计与系统集成电路设计研发
3集成电路工艺及封装技术 电路板的连接及封装
控制理论与控制工程(下面为研究方向)
1网络化控制系统理论与应用 控制综合
2鲁棒控制 控制器件的开发
3嵌入式系统分析与应用 芯片开发与接口驱动
4智能机器人系统
5智能控制理论与应用
6运动控制与电力电子技术
7智能化集成系统
11智能控制理论与应用
系统工程(下面为研究方向)
2信息系统工程
4系统与信息处理
5标准化系统工程
模式识别与智能系统(下面为研究方向)
1图像处理与模式识别
3人工智能
4智能检测与智能控制
6智能信息融合
‘伍’ 物理电子专业该学些什么呢大学学到了什么呢
物理电子学
研究粒子物理、等离子体物理、激光等物理前沿对电子工程和信息科学的概念和方法所产生的影响,及由此而形成的电子学的新领域和新生长点。本学科重研究在强辐照、低信噪比、高通道密度等极端条件下,处理小
时间尺度
信号的技术,以及这些技术在广泛领域内的应用前景。以下的研究方向所要解决的问题超越单一学科的研究领域,形成
物理电子学
的一个突特的部分:
量子通讯
理论和实验研究:
量子计算机
是
未来计算机
的发展方向,在理论和实验上研究
量子通讯
技术是实现下一代计算机的基础,对
量子计算机
的研究有着非常重要的意义。
实时物理信息处理:物理前沿(例如粒子物理)实验的特点之一是信息量大,而有用的信息量同总信息量之比相差10到15个
数量级
,这已远远超出一般电子技术的极限。如何根据物理的要求实时处理大量数据,从而得到有用的信息,是实验成功的关键。这一方向的研究成果,对大系统的集成、
实时操作系统
应用都有重要的意义
强噪声背景下的随机
信息提取
技术:在微观尺度上,来自传感器的信号往往低于噪声,同时又具有
随机性
。研究在强噪声背景下的随机信号和瞬态物理信息的提取是物理前沿学科提出的要求,也是雷达、声纳等领域的信号处理基础。
非线性电子学:采用电子学实验方法研究
非线性现象
,用电子学手段产生
混沌现象
,并研究如何实现混沌同步和
混沌通信
。
高速信号互连及其物理机制的研究:当
数据传输率
达到千兆位或更高时,信号在电缆、印刷板等载体上的传输涉及
介质损耗
、
趋肤效应
和电场分布等物理机制,只有引入物理学的研究方法,才能解决这些电子工程和信息技术中的问题。
辐照电子学:辐照造成
半导体材料
的损伤,导致其性能降低甚至失效。研究辐照对器件性能和寿命的影响,选择耐辐照的材料和解决辐射场的测量,对应用于军事和空间的电子工程、核安全技术、和核医学都有重要的意义
‘陆’ 电子专业学什么
主要包括:电子信息类、电子信息工程、电子科学与技术、通信工程、微电子科学与工程、光电信息科学与工程、信息工程、广播电视工程、水声工、电子封装技术、集成电路设计与集成系统、医学信息工程、电磁场与无线技术、电波传播与天线、电子信息科学与技术、电信工程及管理、应用电子技术教育。
电子专业通常包括电子科学与技术和信息与通信工程两个一级学科。
1、电子科学与技术一级学科下包括:物理电子学、电路与系统、微电子与固体电子学、电磁场与微波技术,学科设置偏向与电子学的基础应用,通常是系统抽象级和器件级的研究。
2、信息与通信工程一级学科包括:通信与信息系统、信息与信号处理两个二级学科。
电子类专业的常见课程设置:高等数学、工程矩阵、离散数学、复变函数与积分变换、信号与系统、电路分析、模拟电子技术、数字电子技术、通信原理、微机原理、单片机技术、数字信号处理、传感器、C语言、C++语言、数据结构、嵌入式系统等。
‘柒’ 电子科学与技术专业主要学什么
电子科学与技术专业学生主要学习数学、基础物理、物理电子、光电子、微电子学领域的基本理论和基本知识,受到相关的信息电子实验技术、计算机技术等方面的基本训练,掌握各种电子材料、工艺、零件及系统的设计、研究与开发的基本能力。
主干学科:电子科学与技术。
主要课程:电子线路、计算机语言、微型计算机原理、电动力学、量子力学、理论物理、固体物理、半导体物理、物理电子与电子学以及微电子学等方面的专业课程。
主要实践性教学环节:包括电子工艺实习、电子线路实验、计算机语言和算法实践、课程设计、生产实习、毕业设计等。一般安排20周。
(7)物理电子学要学哪些扩展阅读:
电子科学与技术专业核心知识领域:
专业基础核心知识领域:电路原理、电子技术基础、信号与系统、电磁场与电磁波、固态电子学物理基础(包括量子力学、固体物理、半导体物理等内容)。
专业方向核心知识领域:
1.微电子技术基础、半导体器件、集成电路;
2.物理光学、激光原理与技术、光电子器件;
3.电介质物理、电子材料、电子元器件;
4.物理电子学、电子光学、等离子体物理与技术;
5.微波技术、天线与电波、射频/微波电路。
核心课程示例:
示例一:电子学基础课组(96学时)、数字电路基础课组(96学时)、计算机基础课组(96学时),信号与系统(64学时)、量子与统计(64学时)、固体物理基础(48学时)、电动力学(48学时)、激光原理(48学时)、物理光学(48学时)、固态电子与光电子(48学时)。
示例二:核心必修课,包括电路分析基础(68学时)、信号与系统(68学时)、模拟电子技术基础(60学时)、数字电路与逻辑设计(46学时)、电磁场与电磁波(46学时)、量子力学(46学时);专业方向核心限选课,包括固体物理(46学时)、半导体物理(46学时);
物理光学与应用光学(80学时)、电子材料(46学时)、固态电子器件(76学时)、光电子技术(46学时)、激光原理与技术(46学时)、电介质物理(46学时)、电子元器件(54学时)。
示例三:电路分析基础(48学时)、信号与系统(64学时)、模拟电子技术(64学时)、数字电路与逻辑设计(64学时)、量子物理(64学时)、电磁场理论(32学时);
激光原理(48学时)、固体电子导论(64学时)、物理光学(48学时)、光电子学(48学时)、半导体器件物理(48学时)。
‘捌’ 物理电子学学习什么啊
物理电子学(下面为研究方向)
3光电信息处理及传感技术
4检测技术及自动化偏硬件与动手能力
电路与系统(下面为研究方向)
2图像技术与智能系统
3嵌入式系统与SOC设计 硬件及端口
5传感器网络与信息处理以太英特网的结构及链路结构
微电子学与固体电子学(下面为研究方向)
1集成电路设计与系统集成电路设计研发
3集成电路工艺及封装技术 电路板的连接及封装
控制理论与控制工程(下面为研究方向)
1网络化控制系统理论与应用 控制综合
2鲁棒控制 控制器件的开发
3嵌入式系统分析与应用 芯片开发与接口驱动
4智能机器人系统
5智能控制理论与应用
6运动控制与电力电子技术
7智能化集成系统
11智能控制理论与应用
系统工程(下面为研究方向)
2信息系统工程
4系统与信息处理
5标准化系统工程
模式识别与智能系统(下面为研究方向)
1图像处理与模式识别
3人工智能
4智能检测与智能控制
6智能信息融合