❶ 切线斜率公式
切线斜率公式是k=(y1-y2)/(x1-x2),斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。如果直线与x轴互相垂直,直角的正切值为tan90°,故此直线不存在斜率(也可以说直线的斜率为无穷大)。当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像的斜率。
❷ 切线斜率怎么求
答:切线斜率等于切点所在的函数在切点处的导数(切线斜率必须存在)
比如:点P(Xo,yo)在曲线y=f(x)上,f`(x)为函数y=f(x)导函数,k为过点P的切线的斜率,
则k=f`(Xo)
❸ 切线的斜率是怎么求的
设切线方程y=kx+b,和y=x²联立,消去x或y,得一个一元二次方程(要保证二次项系数不等于零,否则就不是了),再令Δ=0,解得k=6,代入点(3,9),得切线方程y=6x-9。
---
其实求导就可以了:
y'=(x²)'=2x,代入x=3,得k=6。代入点(3,9),得切线方程y=6x-9。
但这种方法需要微积分初步知识。没学过的话,老老实实解方程组吧。
❹ 切线的斜率怎么求
法线斜率与切线斜率乘积为-1,即若法线斜率和切线斜率分别用α、β表示,则必有α*β=-1。法线可以用一元一次方程来表示,即法线方程。与导数有直接的转换关系。
用导数表示曲线y=f(x)在点M(x0,y0)处的切线方程为:y-f(x0)=f'(x0)(x-x0) 法线方程为:y-f(x0)=(-1/f'(x0))*(x-x0)。
通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。
方程一定是等式,但是等式可以有其他的,比如上面举的1+1=2,100×100=10000,都是等式,显然等式的范围大一点。