导航:首页 > 物理学科 > 物理中都有哪些学

物理中都有哪些学

发布时间:2023-01-27 10:20:09

㈠ 物理学分为哪些类我要全面的

理学门类是十二大学科门类之一,理学门类下共有 数学类、物理学类、化学类、天文学类、地理科学类、大气科学类、海洋科学类、地球物理学类、地质学类、生物科学类、心理学类、统计学类十二个专业类,
其中物理学类下设六个专业,分别是:物理学、应用物理学、核物理、声学、系统科学与工程、量子信息科学。
一、物理学
专业代码:070201 | 男女比例:56:44
1、什么是物理学专业?
物理学专业培养掌握物理学的基本理论与方法,具有良好的数学基础和实验技能,能在物理学或相关的科学技术领域中从事科研、教学、技术和相关的管理工作的高级专门人才。
2、发展前景
考研方向
物理学毕业生主要的考研方向有理论物理、粒子物理与原子核物理、原子与分子物理、等离子体物理、凝聚态物理、声学、光学、无线电物理,以及与物理学相关的例如天体物理、化学物理、生物物理、大气物理海洋物理、地球物理等 。
就业方向
物理学就业与大多基础性专业相同,主要在高校、国防部门、科研机构等从事教学研究及相关科研管理工作。中国有很多与物理相关的研究所,如中国科学院高能物理研究所、理论物理研究所、近代物理研究所、等离子体物理研究所、国家空间科学中心等。
二、应用物理学
专业代码:070202 | 男女比例:77:23
1、什么是应用物理学专业?
该专业以物理学为主要内容,了解物理的理论前沿、应用前景和最新发展动态以及相关高新技术的发展状况,掌握物理理论以及相关的工程技术知识,进行基础研究和应用技术方面的科学思维和科学实验训练。
2、发展前景
人才需求
应用物理学旨在培养能在大中型高新技术产业、公司、科研单位、高等院校从事科研、开发、教学和管理工作的高级应用型人才;具有向不同领域发展的潜力和素质,特别是在交叉学科的进一步深造方面具有优势的人才。
考研方向
应用物理学本科专业的学生,可报考物理学、理论物理、凝聚态物理、光学等硕士专业。
就业方向
应用物理学本科专业毕业人员从业方向包括事业单位人员、高中教师、公务员、软件工程师、初中教师、科研人员、硬件工程师、大学教师、通信技术工程师等岗位。
三、核物理
专业代码:070203 | 男女比例:88:12
1、专业定义
核物理主要研究原子核的结构和变化规律以及同核能、核技术应用有关的物理问题,包含原子核、同位素、离子束、核射线等。常见的核电站、核武器、核辐射,医疗中的核磁共振都是基于核物理的知识。其中,同位素的应用是核技术应用中最广泛的领域,包括同位素示踪、同位素药剂、同位素仪表等。
2、发展前景
就业方向
技术类企业:核器件研发、核能源开发、放射治疗、同位素应用、工程技术; 政府、事业单位:核磁、核电、核能源。
考研方向
粒子物理与原子核物理、理论物理、物理学、凝聚态物理。
四、声学
专业代码:070204T | 男女比例:77:23
1、什么是声学专业?
声学(Acoustics)是一门跨层次的基础性学科,研究从微观到宏观、从次声(长波)到超声(短波)的一切形式的线性与非线性机械波现象。同时,现代声学具有极强的交叉性与延伸性,它与现代科学技术的大部分学科发生了交叉,形成了一系列诸如次声学、医学声学、生物声学、海洋声学、环境声学等新型独特的交叉学科方向,在现代科学技术中起着举足轻重的作用。现代声学更是一门具有广泛应用性的学科,对当代科学技术的发展、社会经济的进步、国防事业的现代化、以及人民物质与精神生活的改善与提高中发挥着极其重要、甚至不可替代的作用。
2、发展前景
在当前大学生就业形势严峻的背景下,毕业生的深造比例达50%以上。超过60%的毕业生继续深造,毕业生一次性就业率长期保持在100%以上。
就业趋势是:硕士49%去外企,23%去高科技企业,9%去国企,其他去企业、攻博、出国等。
从就业走向来看基本上在北京等大城市就业。
就业方向
声学的就业方向是:高等院校、科研院所和高科技公司。主要从事音箱工程,建筑声学,次声/可听声/超声电子器件,医疗仪器,以及IT行业等领域相关的各类工作。
五、系统科学与工程
专业代码:070205T | 男女比例:--
1、专业定义
系统科学与工程主要研究系统科学、决策管理、控制系统、计算系统等方面的理论和知识,培养具有系统分析与设计、研究与开发、管理与决策基本能力,能够与国际接轨、有知识创新能力的高级工程技术人才和管理人才。例如:在自动化系统、网络与通信、生产系统、金融经济、社会管理等宽广领域从事系统建模、分析、控制、设计、研究、开发、运行等。
2、发展前景
就业方向
企事业单位:系统分析、设计、科学研究开发、管理决策、设计规划 高校:教学、科研。
六、量子信息科学
专业代码:070206T | 男女比例:--
2021年,量子信息科学列入普通高等学校本科专业目录的新专业名单。
什么样的人适合学习物理学类专业?
1、思维谨慎;
2、逻辑能力强;
(内容源于网络)

㈡ 物理学分支有哪些

物理学大可以分为六个大类:力学、光学、声学、电磁学、量子物理学、固体物理学。

1.力学(力学作为物理学发展的最重要模块,其分支也是最为庞大的)

静力学 动力学 流体力学 分析力学 运动学 固体力学 材料力学 复合材料力学 流变学 结构力学 弹性力学 塑性力学 爆炸力学 磁流体力学 空气动力学 理性力学 物理力学 天体力学 生物力学 计算力学 热学 热力学
2.光学

几何光学 波动光学 大气光学 海洋光学 量子光学 光谱学 生理光学 电子光学 集成光学 空间光学
3.声学

次声学 超声学 电声学 大气声学 音乐声学 语言声学 建筑声学 生理声学 生物声学 水声学
4.电磁学

磁学 电学 电动力学
5.量子物理学

量子力学 核物理学 高能物理学 原子物理学 分子物理学
6.固体物理学

高压物理学 金属物理学 表面物理学

此外,物质的各种存在形式和运动形式之间普遍存在着联系。随着学科的发展,这种联系逐步显示出来。物理学也和其他学科相互渗透,产生一系列交叉学科,如:化学物理、生物物理、大气物理、海洋物理、地球物理、天体物理等等。

数学对物理学的发展起了重要的作用,反过来物理学也促进数学的发展。在物理学的基础性研究过程中,形成和发展出来的基本概念、基本理论、基本实施手段和精密的测试方法,已成为其他许多学科的重要组成部分,并产生了良好的效果。这对于天文学、化学、生物学、地学、医学、农业科学都是如此。

物理学研究的重大突破导致生产技术的飞跃已经是历史事实。反过来,发展技术和生产力的要求,也有力地推动物理学研究的发展,固体物理、原子核物理、等离子体物理、激光研究、现代宇宙学等之所以迅速发展,是和技术及生产力发展的要求分不开的。

㈢ 物理学专业课程有哪些

物理学专业课程有高等数学、力学、热学、光学、电磁学、原子物理学、数学物理方法、理论力学、热力学与统计物理、电动力学、量子力学、固体物理学、结构和物性、计算物理学入门等。

物理学专业就业前景

我国每年培养本科应用物理专业人才约12000人。和该专业存在交叉的专业包括物理专业,工程物理专业,半导体和材料专业等。人才需求方面,我国对应用物理专业的人才需求仍旧是供不应求。目前,很多物理研究的课题仍旧是基础性的,往往需要大量 的政府的政策性投入,难以实现产业化,这对于打算毕业后从事应用物理研究的人员来说,是应该做好思想准备的。

但是近年来,随着科学发展速度的增快,很多物理行业研究出的前沿技术很快便得到了应用,例如中微子通信,就是目前热门课题之一。随着现在学科交叉与学科细分现象的日益明显,知识的更新程度非常快。像应用物理这样基础性专业的人才,由于其可塑性强,基础知识扎实,反而越来越能得到各个行业的重视。

㈣ 物理九大基本学科

力学
声学
热学
分子物理学
电磁学
光学
原子物理学
原子核物理学
固体物理学
物理学是研究物质的结构、相互作用和运动规律以及它们的各种实际应用的科学.它是自然科学的基础,是近代科学技术的主要源泉.
物理学是一门基础学科.在物理学研究过程中形成和发展起来的基本概念、基本理论、基本实验手段和精密测量方法,不但成为其它学科诸如天文学、化学、生物学、地学、医学、农业科学和计量学等学科的组成部分,还推动了这些学科的发展.物理学还与其它学科相互渗透,产生了一系列交叉学科,如化学物理、生物物理、大气物理、海洋物理、地球物理、天体物理等.
物理学也是各种技术学科和工程学科的共同基础.在近代物理发展的基础上,产生了许多新的技术学科,如核能与其它能源技术,半导体电子技术,材料科学等,从而有力的促进了生产技术的发展和变革.19世纪以来,人类历史上的四次产业革命和工业革命都是以对物理某些领域的基本规律认识的突破为前提的.当代,物理学科研究的突破不断导致各种高新技术的产生和发展,从而在近代物理学与许多高科技学科之间形成一片相互交叠的基础性研究与应用性研究相结合的宽广领域.物理学科与技术学科各自根据自身的特点,从不同的角度对这些领域的研究,既促进了物理学的发展和应用,又促进了高科技的发展和提高.
通常根据研究的物质运动形态和具体对象不同,物理学可主要分为如下几个二级学科:理论物理、粒子物理与原子核物理、原子与分子物理、凝聚态物理、等离子体物理、声学、光学以及无线电物理,本专业的主要涉及光学、凝聚态物理和理论物理三个二级学科十学科方向.
主要研究方向及其内容:
1.光信息存储与显示(光学)
X射线影像存储材料和电子俘获光存储材料的制备、性能、存储机理及其应用的研究;有机、无机电致发光材料的制备、传输机制、激发态过程的机理及其显示器件的研究.
2.光电子材料与器件物理(光学)
研究稀土发光、半导体发光、阴极射线发光、高能射线发光、上转换发光、长余辉发光、白光LED照明、无汞荧光灯、光学薄膜基本设计、超声、光存储、有机发光、载流子传输材料、有机光致发光和电致发光材料等的制备;研究光致发光和电致发光机理、载流子传输机制等;研究发光二极管、无机有机薄膜电致发光器件、厚膜交/直流驱动软屏、电子油墨(或电子纸)、光电探测器等光电子器件;研究这些材料和器件的新技术和新工艺以及它们的应用.
3.激光与光电检测技术(光学)
主要研究各种激光与光电检测方法、技术及其应用,包括激光干涉测量技术、光电传感技术、激光超声技术、激光多普勒振动检测技术、红外检测技术、激光扫描测量技术及微纳米测量技术等.此外常规的无损检测手段中光电技术的使用也是本领域的研究内容之一.
4.光信息传输与光信号处理(光学)
研究光在各种光纤和各种光波导中的传输特性,以及由它们构成的光纤通信系统与光纤传感系统.包括导波光学、非线性光纤光学、光纤通信系统;以及利用光纤构成的传感系统,比如电压、电流、气体等传感器和智能蒙皮、分布传感系统、生物光纤传感器等.并涉及到全光网络、全光信号处理等方面的研究课题.
5.光物理(光学)
本研究方向在激光与原子、分子、团簇及凝聚态物质的相互作用、光学超快现象、光与生物体相互作用和THZ光的理论和应用等前沿课题上开展深入系统的研究.研究领域涉及激光与物质的相互作用及其用于激光探测等基础研究和应用基础研究,希望在非线性光学、激光与原子分子相互作用、OCT、超快光物理、有机聚合物的光子学和THz物理等研究方面取得突破性的进展,开拓和发展若干新的研究方向,为国家经济建设服务.
6.稀土物理(凝聚态物理)
本方向研究凝聚态物质中稀土离子的能级和激发态过程.当前研究的主要方向是稀土离子高能激发态的结构,辐射跃迁,无辐射跃迁,电子--声子偶合,组合混杂,真空紫外激发的稀土发光材料中的物理问题.
7.纳米结构与低维物理(凝聚态物理)
低维体系是研究小空间尺度的新的物理效应,已成为凝聚态物理最活跃和最富有生命力的重要前言领域之一,它与物理、化学、生物、医药学、材料、电子学、光电子学、磁学、能源和环境等多学科交叉,该体系的能带可人工剪裁性、表面界面效应、量子尺寸效应、隧穿效应等赋予它许多原来三维固体不具备的、内涵丰富而深刻的新现象、新效应、新规律,并广泛地被用来开发具有新原理、新结构的固态电子、光电子器件.
8.固体发光(凝聚态物理)
固体发光是固体光学的一个重要组成部分,它是物体将吸收的能量转化为光辐射的过程.它主要包括:光致发光、阴极射线发光、高能射线发光、电致发光和生物发光等.固体发光有很多重要的应用,例如:照明光源、阴极射线等各种发光显示器、高密度光存储材料、核辐射探测等.近年来固体光学又有很多新的发展,诸如有机电致发光、多孔硅、低维体系、量子剪裁等.本研究方向瞄准学科前沿,主要开展了无机及有机电致发光材料及机理、发光存储材料及机理、上转换材料及机理等诸多有特色的研究工作.
9.数学物理与计算物理(理论物理)
数学物理学是以研究物理问题为目标的数学理论和数学方法.它探讨物理现象的数学模型,即寻求物理现象的数学描述和诠释和.从二十世纪开始,由于物理学内容的更新,数学物理也有了新的面貌.伴随着对电磁理论,量子理论和引力场的深入研究,人们的时空观念发生了根本的变化,数学物理成为研究物理现象的有力工具.随着电子计算机的发展,数学物理中的许多问题可以通过数值计算来解决,由此发展起来的计算物理都发挥着越来越大的作用.计算机直接模拟物理模型也成为重要的方法.本研究方向主要研究广义相对论和宇宙学,数学物理的几何结构,大型物理体系的数值计算和并行算法等.
10.凝聚态理论(理论物理)
理论物理的一个重要分支是凝聚态物理中的量子多体理论,它是应用现代多体理论和量子场论研究凝聚态物理中的新现象、揭示新现象中的物理本质.当前研究的主要方向:计算凝聚态物理,强关联电子系统和介观体系中的物理问题,低维量子系统中的电声相互作用,凝聚物质中的量子输运理论,以及非费米液体、自旋输运和Mott相变等.

㈤ 物理学里都有什么学科

通常物理学分为力学、声学、光学、电磁学、分子原理、原子原理、原子核物理等。
力学研究的是物体的机械运动规律;
声学研究声波的产生、传播、接收和作用等问题。
热学研究分子、原子、电子、光子等质点做不规则运动所引起的热现象极其热运动的的规律;
电磁学研究电和磁现象及其电流、电磁辐射、电磁场等;
光学研究光的本性,光的发射、传播和接收的规律,光和其他物质的互相作用(如光的吸收、散射,光的机械作用和光的热、电、化学效应等)及其应用。
分子物理学则是依据分子的结构.分子间互作用力和分子运动的性质,研究物质的性质和状态;
原子物理是研究原子结构及其原子中发生的运动;
原子核物理是研究原子核的结构.性质和变化的规律。
物理学的分类不是固定不变的,随着科学的发展,人们对物理现象的认识不断深入,它上午分类不断变化,分得越来越细。

㈥ 物理学中有哪些学科

牛顿力学
与理论力学
电磁学
与电动力学
热力学
与统计力学
相对论
量子力学
粒子物理学

原子核物理学
、原子与分子物理学、
固体物理学

凝聚态物理学

激光物理学

等离子体物理学

地球物理学

生物物理学

天体物理学
等等。

㈦ 物理系分为哪些专业

考生在填报志愿时经常会出现选定了大致方向,却不知道这一类都有哪些专业。那么物理学类都有哪些专业?

物理学是研究物质运动最一般规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。

相关专业

应用物理学、物理学、理论物理、微电子、凝聚态、纯理论研究、核物理、生物物理、粒子物理、微电子学、固体电子学、物理电子学、应用物理、光学等专业。

研究领域

物理学研究的领域可分为下列四大方面:

1、凝聚态物理——研究物质宏观性质,这些物相内包含极大数目的组元,且组员间相互作用极强。最熟悉的凝聚态相是固体和液体,它们由原子间的键和电磁力所形成。

2、原子,分子和光学物理——研究原子尺寸或几个原子结构范围内,物质-物质和光-物质的相互作用。这三个领域是密切相关的。因为它们使用类似的方法和有关的能量标度。它们都包括经典和量子的处理方法;从微观的角度处理问题。

3、高能/粒子物理——粒子物理研究物质和能量的基本组元及它们间的相互作用;也可称为高能物理。因为许多基本粒子在自然界不存在,只在粒子加速器中与其它粒子高能碰撞下才出现。

据基本粒子的相互作用标准模型描述,有12种已知物质的基本粒子模型(夸克和轻粒子)。它们通过强,弱和电磁基本力相互作用。标准模型还预言一种希格斯-波色粒子存在。现正寻找中。

4、天体物理——天体物理和天文学是物理的理论和方法用到研究星体的结构和演变,太阳系的起源,以及宇宙的相关问题。因为天体物理的范围宽。它用了物理的许多原理。包括力学,电磁学,统计力学,热力学和量子力学。

阅读全文

与物理中都有哪些学相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:832
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017