① 物理三大支柱,八种运动模型,八大思维方式,五大守恒定律各是什么,急用!
牛顿三大定律能量守恒定律 机械能守恒定律 质量守恒定律 动量守恒定律 动能守恒定律
等效思维法
物理模型法
对称思维法
临界思维法
极限思维法
图像法
模型思维法
抽象法
天体运动,弹簧振子,子弹射击木块 单摆 杠杆、点光源、刚体、点电荷、薄透镜、连通器、单摆、理想气体等都是理想模型
三、中学物理中常见的物理模型
物理模型是物理思想的产物,是科学地进行物理思维并从事物理研究的一种方法,中学物理中常见的物理模型,可以归纳如下:
1、物理对象模型化。物理中的某些客观实体,如质点,舍去物体的形状、大小、转动等性能,突出它所处的位置和质量的特性,用一有质量的点来描绘,这是对实际物体的简化。还如杠杆、点光源、刚体、点电荷、薄透镜、连通器、单摆、理想气体等都是理想模型,这些理想模型都是以客观存在为原型,但在抽象思维的过程中运用了“忽略次要因素,抓住主要因素”这个基本方法,从而使物理问题简化。再如,为了形象直观描述一个抽象的概念,还运用了一些如电场线、磁感线等理想模型,通过这些模型将电场、磁场的物理性质描述得形象直观,便于人们理解认识。
2、物体所处的条件模型化。当研究带电粒子在电场中运动时,因粒子所受的重力远小于电场力,可以舍去重力的作用,使问题得到简化。力学中的光滑水平面;热学中的绝热容器、电学中的匀强电场、匀强磁场等等,都是把物体所处的条件理想化了。
3、物理状态和物理过程的模型化。例如,电学中的稳恒电流、等幅振荡;热学中的等温变化、等容变化、等压变化;力学中的自由落体运动、匀速直线运动、简谐运动、弹性碰撞等等都是物理过程和物理状态的模型化。
4、理想化实验。在实验的基础上,抓住主要矛盾,忽略次要矛盾,根据逻辑推理法则,对过程进一步分析、推理,找出其规律。例如,物理教材中介绍了伽俐略斜面实验,这是一个理想实验,这个理想实验为牛顿第一定律的产生奠定了基础,可见,理想化实验并不是脱离实际的主观臆想,它是以实践为基础,运用逻辑法则进一步揭示出客观现象和过程之间内在逻辑联系,并由此得出结论。因此,理想化实验是一个思想模型,这个模型隐藏的方法启发人们认识了惯性定律,甚至相对论、量子理论的建立都离不开理想化实验。
5、物理中的数学模型。客观世界的一切规律原则上都可以在数学中找到它们的表现形式。在建造物理模型的同时,也在不断地建造表现物理状态及物理过程规律的数学模型。数学是学习物理的基础和工具,物理中有许多问题可以用数学模型去研究处理,这样,可以开阔视野,培养学生思维能力,同时,也可以解决一些单靠常规物理方法难以解决的问题。例如,构造方程组,解决密度问题;构造一次函数,解决温度计刻度问题;构造比例,解决与电功率有关的问题;构造不等式,解决凸透镜焦距问题。
力学,电磁学,光学
我说的不知道是不是的,找了半天,就这么几个,不知道怎么样,祝你学习进步!!!
② 大学物理学术论文
21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!
中学物理中的物理模型
摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。
关键词:中学物理;教学;物理模型
一、物理模型的概念及功能
物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。
物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。
人们建立和研究物理模型的功能主要在于:
一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;
二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;
三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。
二、中学物理教材中经常碰到的几种物理模型
物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:
1.物理对象模型 即把物理问题的研究对象模型化。
例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。
另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。
2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。
如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。
教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。
3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。
4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。
5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。
如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。
再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。
6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。
三、物理模型在中学物理教学中的地位和作用
1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一
物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。
如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。
2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托
人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。
爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。
诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。
3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化
例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。
四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法
物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:
1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。
2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。
3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。
4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。
总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。
物理猜想与中学物理教学
【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。
【关键词】中学 物理猜想 物理教学
【中图分类号】 G 【文献标识码】 A
【文章编号】0450-9889(2014)11B-0076-02
随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。
一、物理猜想对中学物理教学有着重要的意义
新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。
1.提高学生学习兴趣和增进学生学习主动性
学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。
2.提高学生的思维能力
在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。
3.有利于学生巩固所学的物理知识
物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。
4.培养学生创新能力
在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。
二、教师在物理课堂教学中引导学生进行物理猜想的方法
教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。
1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想
科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。
2.激励学生讨论,诱发物理猜想
在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。
3.鼓励学生大胆猜想
在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。
4.创造良好的猜想条件
在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。
物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。
【参考文献】
[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)
[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012
[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)
[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)
③ 平行板电容器为什么是一种物理模型
平行板电容器是在两个相距很近的平行金属板中间夹上一层绝缘体——电介质(空气也是一种电介质)组成的一个最简单的电容器。平行电容器是由两块彼此平行放置的金属板所构成的。
平行板电容器是最简单的,也是最基本的电容器,几乎所有电容器都是平行板电容器的变形。
图为1个平行板电容器及其外形尺寸,每个极板的面积为A(实际上A为每个单极板的面积)。如果矩形极板的宽度为W,长度为L,则其面积为A=W×L。该电容器的极板是平行的,其间距为d。
电容器外形
如果两极板的间距d远小于它们的宽度和长度,则该电容器的电容近似为 C=εA/d
其中,ε为两极板间材料的介电常数。对于真空介质,其介电常数为ε=ε0=≈8.85×10-12F/m
那么对于其他物质,介电常数为ε=ε0εr
其中,εr为相对介电常数。
1.电压U一定的情况
如图12—1所示,平行板电容器C与一电源连接,两板间
公式
若平行板电容器的两极板间是真空时,则公式中没有相对介电常数ε(relative dielectric constant ),由公式可知,电容C与ε、S成正比(即ε、S越大,C越大);与d成反比d越大,C越小)。
若两极板间为匀强电场,电场强度记作E,则有:
1. U =Ed
2. Q= UC (其中Q为电容器所带电荷量,U为两极板间电压)
希望我能帮助你解疑释惑。
④ 什么叫物理模型
在管理信息系统中,物理模型:描述的是对象系统“如何做”、"如何实现"系统的物理过程。 即概念模型、逻辑模型、物理模型。物理模型一般可分三类:物质模型、状态模型、过程模型。
⑤ 物理模型应该怎么建模建模应包括什么内容
❶方法:
(1)通过审题,摄取题目信息.如:物理现象、物理事实、物理情景、物理状态、物理过程等.
(2)弄清题给信息的诸因素中什么是主要因素.
(3)寻找与已有信息(熟悉的知识、方法、模型)的相似、相近或联系,通过类比联想或抽象概括、或逻辑推理、或原型启发,建立起新的物理模型,将新情景问题转化为常规问题.
(4)选择相关的物理规律求解.
❷ 物理模型可以分为直接模型和间接模型两大类。
⑴直接模型:如果物理情景的描述能够直接在大脑形成时空图象,称之为直接模型.如经典练习的传统研究对象,象质点、木块、小球等;
⑵间接模型:如果物理情景的描述在阅读后不能够直接在大脑形成时空图象,而是再通过思维加工才形成的时空图象,就称之为间接模型.
☞高中阶段 有斜面、叠加体模型、带电粒子的加速与偏转、天体问题、圆周运动、轻绳、轻杆、连接体模型、传送带问题、含弹簧的连接体模型等等。
⑥ 系统的物理模型包括哪些主要内容
系统设计是新系统的物理设计阶段。根据系统分析阶段所确定的新系统的逻辑模型、功能要求,在用户提供的环境条件下,设计出一个能在计算机网络环境上实施的方案,即建立新系统的物理模型。这个阶段的任务是设计软件系统的模块层次结构,设计数据库的结构以及设计模块的控制流程,其目的是明确软件系统如何做。这个阶段又分两个步骤:概要设计和详细设计。概要设计解决软件系统的模块划分和模块的层次机构以及数据库设计;详细设计解决每个模块的控制流程,内部算法和数据结构的设计。这个阶段结束,要交付概要设计说明书和设计说明,也可以合并在一起,称为设计说明书。
⑦ 模型的内容及建立模型的方法要点
一、模型的内容
一个能供实际应用的模型,应包含下述一些内容:
1.被模拟的对象
包括矿区、矿带、矿田、矿床、矿段和矿体,但一个模型中只能有一个对象。
2.调查阶段
包括1∶50000或1∶25000的地质调查、深部地质填图、普查找矿、详细找矿及找矿评价工作。一个具体的模型,一般只能应用于一个特定的调查阶段。
3.要解决的具体问题
包括综合方法及个别方法有效性的评价和调查结果的解释。有的模型只能解决第一个问题,有的模型则能同时解决上述两个问题。
上述三方面的内容是互相联系的。例如,在普查找矿时,模拟的对象一般不是矿体,而是矿区、矿带和矿田。详细找矿时,模拟的对象则只能是矿床和矿体。在普查找矿阶段,各种类型矿产都要找,因而待解决的问题是多方面的,主要应用的是综合方法,这时的模型要适用于对综合方法的评价。详细找矿时,待找的矿体和矿床类型大体上已经确定,这时主要的找矿方法比普查时可能要简单一些,对模型的要求也可以简单一些;在工作初期,主要问题是设计综合调查方法,这时的模型只要能满足设计综合调查方法的要求就可以了。到工作后期,随着资料的积累、认识的加深,有可能对工作初期建立的模型加以修改,使其更加完善,更加符合工作地区的具体情况。这种模型不仅能用于对调查方法有效性的评价,而且还可用于调查结果的解释。
根据上述模型的内容,一个综合模型由下述三部分组成:
第一部分:地质模型,这个模型用来模拟待找的地质体(包括矿床或矿体)及其围岩(包括上覆地层)的空间分布关系,并尽可能地显示它们之间的成因上的关系。
第二部分:组成地质模型的各种岩石物理性质的空间分布图,这种图就是待找地质体的物理模型。
第三部分:组成地质模型的各种岩石中与成矿有关的元素的含量分布图,所谓与成矿有关是空间位置及成因两方面的关系,最好是与成因有关系的元素。这种图就是待找地质体的地球化学模型。
包含上述三部分内容的模型一般称作地质-地球物理-地球化学模型,或简称综合模型。包括上述第一及第二部分内容的模型一般称作地质-地球物理模型,或简称地质-物理模型或物理-地质模型,包括上述第一及第三部分内容的模型一般称作地质-地球化学模型。
二、建立模型的方法要点
根据模型的内容,建立模型的方法是:
第一步:建立待找地质体的地质模型,这是建立综合模型的基础。
第二步:在地表、坑道及钻孔中取样,对岩石的物理性质进行测定。取样最好是选择有钻孔而地质上又有代表性的剖面上。进行岩石样品测定物理性质的同时,对选定的元素作定量分析。
第三步:建立矿体的模型,根据矿体的模型组建矿床的模型,根据矿床模型组建同类矿床的模型及矿区的模型等。
在建立及组建各个级别的模型过程中,要处理好简化及典型化模型两方面的问题。
模型的简化分为物理性质的简化和形状的简化。
对于某一个特殊的地质问题而言,描述一个矿床或一个地段的地质和地球物理特点的变量中,有一些是重要的,有一些是不重要的。因此,就解决一个特定的地质任务来说,可以不考虑那些不重要的变量,得到一个比原来的模型更为简单一点的所谓简化模型。
模型的简化,也可以通过把几个状态归并成一个状态来实现。例如对物性不均匀的物体,可以将其划分为许多小区,对每个小区,用其平均物性值来代替变化值。当物性不均匀程度高时,小区的范围应划小些。当物体埋深大时,物性不均匀对场的特征影响相对小一些,小区范围可以划大些。这就是说,即使是同一个物体,上部小区要划小一些,而下部小区可以划大一些。
形状的简化是用规则体的组合去近似复杂的不规则体,在电测深及地震法中假定物性分界面在工作点(电深点、爆破点等)附近是水平等。
引用简化的模型,可以使研究的问题简化,并使模型的应用范围扩大。但是,应该指出,过分的简化同过分的复杂化一样,都是有害的。这是因为,给定一个模型,在约定的条件下,可以做出一个简化的模型与其相对应。但是,反过来,给定一个简化模型,却可以有许多初始模型与其相对应。
简化模型是为了使所建立的模型变得容易一些,应用模型变得方便一些。但是,简化模型不可避免地会降低模型的作用。因此,要不要简化模型,简化到什么程度,要根据具体问题和具体情况进行论证,既要考虑技术因素,又要考虑经济因素。举一个简单的例子,对一个物性均匀的高密度和强磁性的物体,建立一个完全的地质-物理模型时,应该考虑它的密度和磁性两个参数,而物体的密度模型和磁性模型,则是完全模型中的部分模型或特殊模型。当人们只用磁性模型时,实际上是用部分模型代替完全模型,因此,磁性模型可看做是完全模型的一个简化模型。实践表明,根据重、磁异常同时做反演,比用单一的磁异常或重力异常反演所得的结果更准确。但是,考虑到重力法成本较高,若单一的磁法能够较圆满地解决问题,那么,这时用简化的磁法模型就是合理的。也就是说,做重力法虽然存在增大解决问题的可能性,但经济上付出的代价太大。
有一点要着重指出,在地质-物理模型中,人们常假定地质体的物性是各向同性的。而当地质体确实呈各向异性时,假定各向同性会导致错误的结论,这点对磁法、各类电法及地震法都是如此。
模型的典型化是指将模拟的对象分类,然后在每类中选取一个作为其代表。例如地质体的产状对选择物探方法及物探异常的特点均有影响,但建立模型时,不可能各种产状都考虑到。为此,可将物体按产状分为三类:一类是陡倾角的,例如说倾角大于70°;二类是中等倾角的,例如说倾角在45。左右;三类是缓倾角的,倾角在20。以下。建立模型时,在上述三类中,每类选一个,例如说倾角为80°,50°及15°三种作为典型,而非典型的可根据典型的推出。
模型的典型化还可以通过取无量纲参量来达到。例如在电测深的地电剖面模型中,电阻率用第一层的电阻率作单位,距离用第一层的厚度作单位。
三、一个例子[8]
下面以个旧锡矿为例,叙述在一个具体地区建立综合模型的具体方法。选择个旧锡矿作例子的原因是为了和在后面将要例举的原苏联远东地区同类锡矿床的模型对比。通过对比,可以发现它们之间是大同小异的,但前者不如后者典型。
个旧矿区位于中国云南省东南部,是一个以锡为主的多金属矿区。这个地区的锡矿从汉朝开采以来,已有近2000年的历史,而系统的地质找矿工作则是从本世纪50年代开始的。开初是找砂锡矿,50年代中期转入找浅部原生锡矿,60年代中期转入找深部(地表以下400m及更深处)原生锡矿。目前,个旧矿区已探明大型锡矿多处。
个旧地区大规模的系统物探工作是50年代下半期到60年代上半期进行的。由于个旧矿床的特点是大矿区、小矿体,氧化深度为200~700m(平均约400m),隐伏岩体顶部以上硫化矿石均已被氧化为氧化矿石,矿石中的黄铁矿、磁黄铁矿均已消失,物探工作面临巨大的困难。但找隐伏矿体又急需物探工作配合,为此,杨尔煦及李志华等人根据工作地区的地质及地球物理特点,采用物探方法解决找矿中的地质问题,圈出找矿远景地段,获得了很好的地质效果。本文以建立地质-物理模型的概念观点,叙述这个时期的物探工作、80年代的综合研究工作及其地质效果。
1.矿区地质概况及控矿规律[9,10]
个旧矿区南部为哀牢山隆起,东部为越北古陆,西部为川滇古陆。前寒武纪以来的多次构造运动中,外围古陆不断上升,个旧及其邻区长期处于沉降状态,以三叠纪沉降幅度最大,沉积了厚达数千米的碳酸盐类岩石及碎屑岩。三叠纪后期,由于印支运动的影响,使沉降转为隆起,同时伴随有基性岩浆活动。中生代末期,燕山运动在区内活动更为强烈,有基性、酸性、碱性岩浆侵入,同时伴有锡、钨、铜、铅、锌多金属矿化作用发生。矿区锡多金属矿床的形成与燕山期花岗岩侵入有直接关系。
个旧东区为一北北东向五子山复式背斜,其上叠有北西西向次级褶皱;西区为一北北东的贾沙复式向斜。矿区地层仅在矿区东南角有二叠系龙潭煤组产出,其余均为三叠系,该层总厚度约6000m,顶、底部以碎屑岩为主,中部主要是厚大的碳酸盐岩类。矿体主要赋存于中三叠统个旧组下部卡房段和马拉格段中。
个旧矿区的原生矿床以锡石-硫化物多金属矿床为主。矿区受五子山复式背斜及相应的燕山期隐伏花岗岩体控制;矿田受矿区二级褶皱、断裂构造及小花岗岩株控制。矿床产出的规律是:
岩株突起矿体总是以小的花岗岩株突起为中心,成群、成带围绕岩体的顶部和四周产出。上有背斜,下有岩株突起,是区内最为有利成矿的构造岩浆组合型式,也是区内主要矿田的重要控制因素。
岩株凹陷小花岗岩株状突起的表面起伏和剖面上因选择融熔作用,致使岩体呈岩枝、岩舌状并形成似塔松状的多层次的凹陷。这是接触带矿体赋存的有利部位。
互层加断裂白云岩与灰岩互层带中的矿化率高出单一岩性层的数十倍,层间似层状、条状矿体70%产出互层带中,互层加断裂,更有利于矿化的富集。
交切花岗岩的成矿前断裂这种断裂既是导岩又是导矿、容矿构造,在断裂与花岗岩交切部位,常有规模较大的接触带矿体赋存,而在断裂中常有脉状矿体赋存。
金属分带区内金属矿有明显的上铅、下铜、中间锡的分布规律,平面上由内向外依次是钨、铜、锡、铅、锌。
原生锡矿体中的硫化物主要有磁黄铁矿及黄铁矿;矿石构造为浸染状和块状。由于个旧矿区潜水面在水下1000m左右,局部潜水面(不透水的隐伏花岗岩的顶面)也在地下400m或更深,因而潜水面以上矿石中的硫化物均已消失。绝大部分锡石硫化物矿石均已变成锡石氧化物矿石。
综上所述,可以得出在不同的找矿阶段要解决的地质问题是:
(1)在寻找类似个旧的锡矿区时,首先是在沉积岩厚度较大的地区寻找隐伏的燕山期花岗岩,然后根据隐伏岩体上方岩石中化学元素的分带性及地质构造的特点,评价隐伏矿化的可能性。
(2)在有找矿远景的矿区中寻找矿田时,最重要的工作是寻找隐伏的小花岗岩株状突起,研究矿区内的次级构造和断裂。
(3)寻找浅部矿床时,要在矿田范围内作断裂带填图,并对已知和新发现的断裂带作含矿性评价,然后在推测有矿化的断裂带上打钻找矿。
(4)由于矿石中的硫化矿物已被氧化,用磁法及电法直接找矿的效果均不好。矿体小,埋深大及矿区地形切割剧烈,重力法也不能应用。
2.个旧地区岩石的物理性质
上述个旧地区不同找矿阶段的地质问题能不能用物探方法配合山地工程加以解决,决定于工作地区岩石的物理性质。下面叙述有关这方面的材料。
岩(矿)石的密度
在工作地区采集了365块标本作密度测定。测定结果见表4—1。在这个表中还列了邻区一些岩石密度值,供作对比。
表4—1个旧及马关地区岩石密度统计表
由表4—1看出:
(1)本区三叠系的密度平均值与二叠系、泥盆系及寒武系的密度平均值相当。
(2)本区及邻区的花岗岩的密度均比其围岩低约0.15~0.24g/cm3。
(3)基性岩的密度在3.00g/cm3左右,而超基性岩的密度则在3.10g/cm3左右。
(4)锡矿石的密度最大,而表土及第三纪岩石的密度最低。
根据上述岩石密度特点,在区域重力异常图上,第四纪盆地及隐伏花岗岩体上均将有明显的重力异常低,这就为用重力法圈定隐伏的花岗岩提供了可能性。
岩(矿)石的磁性
根据测定及收集到的资料,区内岩石的磁性参数值如表4—2所示。从表4—2可以看出:
表4—2个旧地区岩石磁性统计表
(1)沉积岩如砂岩、页岩、砾岩、灰岩、大理岩、石英岩等都是非磁性的;各种片岩、板岩及千枚岩具有极弱磁性,这类岩石不可能引起磁异常。
(2)基性喷出岩如正长岩类岩石磁性变化大,磁化率为0.0132~0.0396SI,因此它可以引起不同强度的磁异常。
(3)基性及超基性岩的磁性一般较强,但不稳定,它们可以引起局部异常。
(4)花岗岩实际上是无磁性,因此,大的花岗岩体上将出现平静或相对为负的磁异常。
岩矿石的电阻率
多年来对个旧矿区地表和坑道中各种岩石的电阻率作了测定,结果如表4—3。从表4—3可看出:
(1)含矿断裂与围岩的电阻率相差4~7倍,用联合剖面法寻找含矿断裂有良好的物性前提。
(2)花岗岩与围岩的电阻率有3倍以上的差异,为用电测深法圈定地下花岗岩体表面起伏形态提供了物性前提。
(3)硫化矿和花岗岩电阻率相差10倍以上,因此,电法有可能用于探测浅部硫化(矿)矿体。
表4—3个旧地区岩石电阻率统计表
(4)个旧组灰岩在不同矿田内其电阻率不同,上段(T2g3)变化较大,中段(T2g2)相对稳定,下段(T2g1)在松树脚矿田较高,在卡房矿田因富含泥质灰岩及出现变辉绿岩,其电阻率值下降,与花岗岩的电阻率值相当,造成用电测深法确定花岗岩顶面埋深不准。
根据目前对个旧地区地质控矿规律的认识及岩石物理性质的测定结果,制作了如图4—1所示的个旧东部矿区岩石密度(σ)、电阻率(ρ)-地质模型示意图。
图4—1个旧东矿区岩石密度(σ)、电阻率(ρ)-地质模型示意图
Ls—灰岩;
图4—2则是根据钻孔及坑道中的样品测定的花岗岩体上部岩石中几种元素含量而编制的元素垂直分带示意图[11]。从图看出,由花岗岩体向外可划分为7个带,其特征如下:
第一带W·Be·Nb带,主要伴生组分是Sn、Cu、Bi。位于花岗岩内。
第二带Cu·W·Bi带,主要伴生组分为Sn、Be、As、Zn。异常峰值或均值有Pb/Zn<1,Pb/Cu<1。位于花岗岩面以外100m左右。
第三带Cu带,仅个别地段存在,主要伴生组分为Bi、As。位于第二带上方100~300m。
第四带Sn·Cu带,主要伴生组分为Bi、W、As、Zn、Be。Pb/Zn<1,Pb/Cu<1。位于第二带或第三带以外100~300m。
第五带Sn·Pb带,主要伴生组分为Zn、Cu、Ag、Cd、In。Pb/Zn>1,Pb/Cu>1。距第四带100~300m。
第六带Pb·Zn带,主要伴生组分为Cd、Ag、Mo。Pb/Zn>1。距第五带100~300m。
第七带Mn带,主要伴生组分为Pb、Ag。距第六带100~300m。
图4—2花岗岩与元素垂直分带关系图
1—花岗岩;2—硫化矿带;3—变辉绿岩;4—氧化矿;5—含矿断裂破碎带;6—元素分带界线
⑧ 属于理想的物理模型有哪些
1、实物模型(用来代替研究对象的理想模型),如:质点,刚体,点电荷,理想变压器,黑体,理想气体。
2、条件模型(将研究对象所处条件理想化的物理模型),如:轻杆,轻绳,轻弹簧,光滑,匀强电场。
3、过程模型(忽略次要因素作用,只考虑主要因素作用过程),如:将物体从高度较低的位置下落的过程,忽略空气阻力,看作自由落体运动。
(8)容器内容物理模型的观点是什么扩展阅读:
在不同情境下,理想物理模型也有所不同,因为理想物理模型是随着研究对象和研究问题的改变而改变。理想物理物理模型是一个抽象的概念,是人为主观设定的一个模型,所以研究对象是否可以看作理想物理模型与其本身的性质并无直接联系,而取决于研究对象的性质对研究问题的影响程度。
实际的物理现象和物理规律一般都是十分复杂的,涉及到许多因素。舍弃次要因素,抓住主要因素,从而突出客观事物的本质特征。
⑨ 物理模型、概念模型、概念模型分别是什么
1、物理模型:构建数据仓库的物理分布模型,主要包含数据仓库的软硬件配置,资源情况以及数据仓库模式。
1.1物理模型的用途以实物或画图形式直观的表达认识对象的特征。
2、概念模型,也称信息模型,是按用户的观点来对数据和信息建模,主要用于数据库设计。概念模型实际上是现实世界到机器世界的一个中间层次。
2.1概念模型用于信息世界的建模,是现实世界到信息世界的一层抽象,是数据库设计人员进行数据库设计的有力工具,也是数据库设计人员和用户进行交流的语言。
拓展资料:
物理模型设计所做的工作是根据信息系统的容量,复杂度,项目资源以及数据仓库项目自身(当然,也可以是非数据仓库项目)的软件生命周期确定数据仓库系统的软硬件配置,数据仓库分层设计模式,数据的存储结构,确定索引策略,确定数据存放位置,确定存储分配等等。
这部分应该是由项目经理和数据仓库架构师共同实施的。
参考资料:网络——物理模型
⑩ 什么是物理模型和概念模型
物理模型:以实物或图片形式直观表达认识对象的特征。如:DNA双螺旋结构模型,细胞膜的流动镶嵌模型。
概念模型:指以文字表述来抽象概括出事物本质特征的模型。如:对真核细胞结构共同特征的文字描述、光合作用过程中物质和能量的变化的解释、达尔文的自然选择学说的解释模型等。
数学模型:用来描述一个系统或它的性质的数学形式。如:酶活性受温度(PH值)影响示意图,不同细胞的细胞周期持续时间等。
(10)容器内容物理模型的观点是什么扩展阅读:
概念模型建模过程
1,运用概念目录列表或名词性短语找出问题领域中的后选概念。
2,绘制概念到概念模型图中。
3,为概念添加关联关系。
4,为概念添加属性。
概念模型模型设计
1,概念模型不依赖于具体的生物系统,他是纯粹反映信息需求的概念结构。
2,建模是在需求分析结果的基础上展开,常常要对数据进行抽象处理。常用的数据抽象方法是‘聚集’和‘概括’。
3,E-R方法是设计概念模型时常用的方法。用设计好的ER图再附以相应的说明书可作为阶段成果。