Ⅰ 当代物理学的前沿问题是什么
当代物理学的前沿问题:
低维凝聚态物理、光学与技术、非线性物理、流体微流动、核物理等方向介绍一些关于当今物理学前沿发展的概况。低维物理主要涉及薄膜物理、量子霍尔效应、石墨烯与碳纳米管、导电发光塑料等问题。
Ⅱ 近代物理学与现代物理学的本质区别是什么
严格来说,这个问题科学的描述应该是:经典物理学和现代物理学的本质区别是什么。
下面就来进行简要分析。
什么是现代物理学?现代物理学是后牛顿时代的物理概念。“现代”一词描述的是一种需要结合量子力学理论、爱因斯坦相对论理论亦或是两者兼而有之的一种概念。一般来说,现代物理学用于指代在20世纪初期和之后开发的物理学领域的所有分支,同时我们也习惯将受20世纪早期物理学影响较大的物理分支划分在现代物理学的领域范畴。
结论作为物理学的两大支柱,经典物理学和现代物理学都有着极为重要的科研地位和研究价值,事实也证明,两者在科学研究中共同发挥着不可磨灭的作用,并未现代社会的发展做出了突出的贡献。
相信未来量子卫星和量子通讯的全面普及,必将为物理领域带来新的研究热潮。
Ⅲ 现代物理和近代物理有何区别
现代物理主要是以相对论和量子力学为主,研究的是宏观的宇宙与微观的原子核。
近代物理学就是通常我们所学的经典物理学。
Ⅳ 现代物理是以什么为基础
十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达 到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。
然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!
Ⅳ 当今物理学两大难题是什么
1.表达物理世界特征的所有(可测量的)无量纲参数原则上是否都可以推算,或者是否存
在一些仅仅取决于历吏或量子力学偶发事件,因而也是无法推算的参数?
爱因斯坦的表述更为清楚:上帝在创造宇宙时是否有选择?想象上帝坐在控制台前,
准备引发宇宙大爆炸。“我该把光速定在多少?”“我该让这种名 叫电子的小点带多少电
荷?”“我该把普朗克常数——即决定量子大小的参数——的数值定在多大?”他是不是为
了赶时间而胡乱抓来几个数字?抑或这些数值必须如此,因为其中深藏着某种逻辑?
2.量子引力如何帮助解释宇宙起源?
现代物理学的两大理论是标准模型和广义相对论。前者利用量子力学来描述亚原子粒
子以及它们所服从的作用力,而后者是有关引力的理沦。很久以来,物理学家希望合二为
一,得到一种“万物至理”——即量子引力论,以便更深入地了解宇宙,包括宇宙是如何
随着大爆炸自然地诞生的。实现这种融合的首要候选理论是超弦理论,或者叫 M理论——
这是其名称的最新“升级版”,M代表“魔法”( magic)、“神秘”( mystery)或“所有
理论之母”( mother of alltheories)。
3.质子的寿命有多长,如何来理解?
以前人们认为质子与中子不同,它永远不会分裂成更小的颗粒。这曾被当成真理。然
而在70年代,理论物理学家认识到,他们提出的各种可能成为“大一统理论”——该理论
把除引力外的所有作用力汇于一炉——的理论暗示:质子必须是不稳定的。只要有足够长
的时间,在极其偶然的情况下,质子是会分裂的。
办法是捕捉到正在死去的质子。许多年来,实验人员一直在地下实验空中密切注视大
型的水槽,等待着原子内部质子的死去。但迄今未止质子的死亡率是零,这意味着要么质
子十分稳定,要么它们的寿命很长——估计在10亿亿亿亿年以上。
4.自然界是超对称的吗?如果是,超对称性是如何破灭的?
许多物理学家认为,把包括引力在内的所有作用力统一成为单一的理论要求证明两种
差异极大的粒子实际上存在密切的关系,这种关系就是所谓的超对称现象。
第一种粒子是费密子,可以把它们粗略地说成是物质的基本组件,就像质子、电子和
中子一样。它们聚集在一起组成物质。另一种粒子是玻色子,它们是传递作用力的粒子,
类似于传递光的光子。在超对称的条件下,每一个费密子都有一个与之对应的玻色子,反
之亦然。
物理学家有杜撰古怪名字的冲动,他们把所谓的超级对称粒子称为“Sparticle”。
但由于在自然界 中还没有观察到5particle,物理学家还需要解释这种对称性“破灭”的
原因:随着宇宙冷却并凝结成现在的这种不对称状态,在其诞生之际所存在的数学上的完
美被打破了。
5.为什么宇宙表现为一个时间维数和三个空间维数?
这只是因为还没有想到一个可以接受的答案,只是因为除了上下、左右、前后,人们
无法想象在更多的方向 上运动。这并不意味着宇宙原本就是这样的。实际上,根据超弦
理论,肯定还存存着另外六个维数,每一维都呈卷曲状,十分微小,因而无法察觉。如果
这一理论是正确的,那么为什么只有这三个维数是伸展开来的,留给我们这个相对幽闭恐
怖的空间呢?
6.为什么宇宙常数有它自身的数值?它是否为零,是否真正恒定?
直到最近,宇宙学家仍然认为宇宙是以一个稳定的速度在膨胀。但最近的观察发现,
宇宙可能膨胀得越来越快。人们用一个叫宇宙常数的数字来描述这种轻微的加速。这个常
数是否如人们早期所认为的是零,或者是一个非常小的数值,物理学家现在还无法做出解
释。
根据一些基本计算,这个常数 应该很大——是我们观测结果的大约10到122倍。换句
话说,宇宙应该以跳跃般的速度在膨胀。而实际情况并非如此,肯定有什么机制在压制这
种作用。如果宇宙真是超对称性的,那宇宙常数就该被完全抵消掉。但这种对称性——如
果确实存在的话——看来已经破灭。如果这个常数随时间的变化而变化的话,那情况就更
加复杂了。
7.M理论的基本自由度( M理论的低能极限是 ll维的超引力,它包含5种相容的超弦理论
)是多少?这一理论是否真实地描述了自然?
多年来,超弦理论最大的弱点是它有5个不同的版本。到底哪一个——如果有的话—
—描述了宇宙?反对这一理论的人最近已经接受了被称为 M理论的最主要的 l l维理论框
架。但情况却因此变得更加复杂。
在 M里论前,所有的亚原子粒子都被说成是由微小的超弦组成的。M理论给组成亚原
子的物质增加了一种叫做“膜”(brane)的更为神秘的物质,它就像生理学上的膜一样,
但最多有9个维数度。现在的问题是,什么是更基本的物质组成单位,是膜组成了弦还是
刚好相反?或者另外存在着一些更基本的物质单位,只是人们没有想到罢了?最后,这两种
东西中是否有一种确实存在,或者 M理论仅仅是一种迷人的大脑游戏?
8,黑洞信息悖论的解决方法是什么?
根据量子理论,信息——无沦它描述的是粒子运动的速度还是油墨颗粒组成文件的确
切方式——是不会从宇宙中消失的。但物理学家基普·索恩、约翰·普雷希尔和斯蒂芬·
霍金却提出了一个固定的假设:如果你把一本大不列颠网络全书扔进黑洞中去,将会发生
什么事?宇宙中是否有其他同样的网络全书是无关紧要的。正如物理学中所定义的,信息
并不等同于含义,信息仅指二进制的数字,或是一些其他的代码,它被用来精确地描述一
个物体或一种方式。所以看起来那些特定的书本里的信息将被吞没,并永远地消失。但人
们觉得这是不可能的。
霍金博士和索恩博士相信那些信息确实消失了,而量子力学必须对此作出解释。普雷
希尔博士推测信息其实并没有 消失;它也许以某种形式显示于黑洞的表面,如同在一个
宇宙中的银幕上。
9.何种物理学能够解释基本粒子的重力与其典型质量之间的巨大差距?
换言之,为什么重力比其他的作用力(如电磁力)要弱得多?一块磁铁能够吸起一个回
形针,即使整个地球的引力在把它往下拉。
根据最近的一种说法,重力实际上要大得多。它仅仅是看上去比较弱而已,因为大部
分重力陷入了某一个额外的维数度之中。如果我们可以用高能粒子加速器俘获全部的重力
,也许就有可能制造出微型黑洞。虽然这看上去会引起固体垃圾处理业的兴趣,但这些黑
洞很可能刚一形成就消失了。
10.我们能否定量地理解量子色动力学中的夸克和胶子约束以及质量差距的存在?
量子色动力学( QCD)是描述强核子力的理论。这种力由胶子携带,它把夸克结合成质
子和中子这样的粒子。根据量子色动力学理论,这些微小的亚粒子永远受到约束。你无法
把一个夸克或脑子从质子中分离出来,因为距离越远,这种强作用力就越大,从而迅速地
把它们拉回原位。
但物理学家还没有最终证明夸克和胶子永远 不能逃脱约束。他们也不能解释为什么
所有能感受强作用力的粒子必须至少有一丁点儿的质量,为什么它们的质量不能为零。一
些人希望 M理论能提供答案,这一理论也许还能进一步阐明重力的本质。
Ⅵ 现代物理有哪些呢
前期量子论
经典物理学并不能恰当地解释比热、黑体辐射、光电效应、原子稳定性等问题。普朗克、爱因斯坦和玻尔用量子化的思想解决了这些问题。
新量子论
就事论事的量子化奏效了,但是没有一个人知道为什么——那时基本理论还不存1925~1930年间,出现了三种形式的量子理论——海森伯的矩阵力学,薛定谔的波动力学,狄拉克的算符力学。所有这三种形式的量子力学
都没有考虑相对论效应。狄拉克方程解决了这个问题。
量子谜团
量子理论很管用,但是没有一个人知道如何来解释这些方程。玻尔在不确定性原理和互补原理的基础上提出了哥本哈根诠释。但是,爱因斯坦并不能接受它。争论在继续,然而,实验结果支持的是量子理论。
量子力学
人们试图解释光和物质是如何相互作用的努力却导致了无穷大的难题。1948年费恩曼和朝永振一郎创立了一种新的量子场论——量子电动力学(缩写为QED)。l962年欧洲原子核研究组织(CERN)举办了第ll届国际高能物理学术会议
解释物质
原子和核
对阴极射线的研究表明,原予不是不可分割的一一所有原子都包含有电子。a粒子散射实验向世人揭示了核。瑟福提出原子核的“行星模型”。乍得威克发现中子。卢瑟福解释了核嬗变和放射性。汤川提出了束缚核子的强核力模型。提出核的液滴模型和作轨道运动的核子模型。
标准模型
对宇宙线、放射性和粒子碰撞的研究发现了许多归人不同家族的新粒子:轻子——类电子粒子和中微子;强子——重子和介子,受强核力的作用而运动;强子图式促使人们想到了更深的层次——夸克。规范玻色子起粒子相互作用媒介的作用。
粒子加速器
高能物理学的研究使用两种最基本的工具:加速器——从范德格拉夫的高压静电发生器到大型强子对撞机(LHC).探测器——从验电器到大型正负电子对撞机物理探测器(ALEPH).
万物论
统一是物理学的远大目标。电磁学是第一个重要的物理学的统一理论。电弱相互作用统一理论。从对称到超对称。从量子电动力学到量子色动力学以及量子引力问题。弦理论。
空间与时间
光速
麦克新韦证明了,光的速度可以从电磁定律推导出来。迈克耳孙毕其一生精益求精地进行光速的测量,并力图寻找支持所谓以太的媒质。迈克耳孙一莫雷实验并没有检测到这种“光以太”。光的速度是一切速度的极限。
狭义相对论
牛顿力学和麦克斯韦的电磁理论在处理空间一时间和运动问题上并不一致。爱因斯坦提出物理学的定律对所有观测者都应该是一样的,而与他们的运动状态无关。相对论的原理导致了许多与人们的直觉不一致的结果:时间延缓、长度收缩、质能等效等。闵可夫斯基则把相对论解释为一个四维空间一时间几何学的理论。
广义相对论
怎样才能把引力和加速度包容进相对论?爱因斯坦认识到,自由下落的观察者是感觉不到引力的。等效原理则把引力和加速度联结了起来,并预言了一些新的物理现象:光在引力场中的偏折、引力的时间延缓以及近日点的进动。引力又可解释为闵可夫斯基的四维空间一时间的畸变:“物质告诉空间该怎样弯曲,而空间告诉物质该怎样运动。理论预言了引力波和黑洞。
天体物理
编辑
天文观测
人类在地球表面观测天体的范围以及成像的清晰度受到地球大气层以及望远镜孔径衍
射效应的制约。克服这种限制的方法之一就是将望远镜送人太空。天文学始于可见光波段的观测,现已扩展到电磁波谱的全部波段。
恒星
为测量到恒星乃至星系的距离,我们需要一系列技术手段,涉及恒星发光、生长和死亡
的详尽的理论。恒星光谱提供了包含恒星的本质、宇宙的历史以及元素起源的信息寸赫一罗图汇总了恒星的种类和特点。图中主序带以外包括了红巨星、白矮星、中子星和黑洞。超新星爆发冶炼出的各种重元素推动了整个星系化学成分的演化,同时超新星可以作为标准烛光用于测量宇宙大尺度的距离。
宇宙学
宇宙中有数量极多的星系,彼此相距遥远。银河系只是其中的一个星系。哈勃定律指出,星系的红移量正比于其距离。宇宙正在膨胀中心宇宙的膨胀意味着它的大爆炸起源。微波背景辐射和高丰度轻核的证据都支持这一学说。宇宙的年龄大约为150亿年(译注:更准确的数据为137亿年)。早期的宇宙可能是处于一种按指数规律暴胀的状态々这是由不稳定的真空态坍缩引起的。宇宙的未来取决于它的密度。当前我们只能检测到它的部分质量,可以解释恒星和星系的运动。
时间温度
热力学第二定律表明物理过程固有的不可逆性。熵永不减少。玻尔兹曼对熵和不可逆性作了有效的微观解释,但也引起了争议。诸如麦克斯韦妖这样的思想实验表明,熵与信息是相互关联的。霍金开创了黑洞热力学。
向绝对零度进军
尽管人们对温度很熟悉,但它是一个微妙的、与熵和能量有关的概念。绝对零度是不可能达到的。按照热力学定律,利用从有序到无序的转变可以获得很低的温度。昂内斯将氦液化从而开创了低温物理学,揭示出物质的一些奇特的新性质——超导性和超流性。接近绝对零度时,这种奇异行为涉及量子统计以及费米子和玻色子之间的区别。最近的研究已经创造了一种新的宏观物质态——玻色一爱因斯坦凝聚。
18、正反共轭(C)、空间反射(P)和时间反演(T)
守恒定律与对称性原理有关。在某些粒子相互作用中,单独的正反共轭、空间反射和时间反演对称性都遭到破坏,但是它们的联合效应(CPT)应当守恒。在某些衰变反应中,时间反演对称性的破坏表明有一个基本的微观时间箭头,它与热力学箭头并没有明显的联系。
Ⅶ 当代物理学的前沿
天体物理,宇宙学,广义相对论,量子场论(量子电动力学、量子引力理论等),大统一、超大统一理论,量子信息,非平衡态物理学(如非平衡态热力学),非线性物理学(如非线性力学、非线性电磁场理论等),分形物理学,现代光学,粒子物理学(高能物理学)等。
Ⅷ 物理学是如何分类的 如:分为古代物理学、近代物理学、经典物理学、当代物理学,这是按什么规律分的
基础:力学,热学,电磁学,光学
四大力学:理论力学,热力学,电动力学,量子力学
Ⅸ 现代物理学的发展前沿
高能物理学又称粒子物理学或基本粒子物理学,它是物理学的一个分支学科,研究比原子核更深层次的微观世界中物质的结构性质,和在很高的能量下,这些物质相互转化的现象,以及产生这些现象的原因和规律。它是一门基础学科,是当代物理学发展的前沿之一。粒子物理学是以实验为基础,而又基于实验和理论密切结合发展的。
高能物理学的发展历史
两千多年来人们关于物质是由原子构成的思想,由哲学的推理,变成了科学的现实,而且在这个阶段终了时,形成了现代的基本粒子的思想。
原子的概念,是由2400年前的希腊哲学家德谟克利特,和中国战国时代的哲学家惠施提出来的。惠施说“至小无内,谓之小一”,意思是最小的物质是不可分的。这个最小的单元,也就是德谟克利特称为原子的东西。但是他们都没能说明原子或“最小的单元”具体是什么。之后的两千多年间,原子这个概念,只停留在哲学思想的范畴。
1897年,汤姆逊在实验中发现了电子,1911年卢瑟福由α粒子大角度弹性散射实验,又证实了带正电的原子核的存在。这样,就从实验上证明了原子的存在,以及原子是由电子和原子核构成的理论。
1932年,乍得威克在用α粒子轰击核的实验中发现了中子。随即人们认识到原子核是由质子和中子构成的,从而得到了一个所有的物质都是由基本的结构单元——质子、中子和电子构成的统一的世界图像。
就在这个时候开始形成了现代的基本粒子概念。1905年,爱因斯坦提出电磁场的基本结构单元是光子,1922年被康普顿等人的实验所证实,因而光子被认为是一种“基本粒子”。1931年,泡利又从理论上假设存在一种没有静止质量的粒子——中微子(严格地讲是反中微子,中微子的存在是1956年由莱因斯和科恩在实验上证实的)。
相对论量子力学预言,电子、质子、中子、中微子都有质量和它们相同的反粒子。第一个反粒子——正电子是1932年,安德森利用放在强磁场中的云室记录宇宙线粒子时发现的,50年代中期以后陆续发现了其他粒子的反粒子。
随着原子核物理学的发展,发现除了已知的引力相互作用和电磁相互作用之外,还存在两种新的相互作用——强相互作用和弱相互作用。
1934年,汤川秀树为解释核子之间的强作用短程力,基于同电磁作用的对比,提出这种力是由质子和(或)中子之间交换一种具有质量的基本粒子——介子引起的。1936年,安德森和尼德迈耶在实验上确认了一种新粒子,其质量是电子质量的207倍,这就是后来被称为μ子的粒子。μ子是不稳定的粒子,它衰变成电子、一个中微子和一个反中微子,平均寿命为百万分之二秒。
汤川最初提出的介子的电荷是正的或负的。1938年,凯默基于实验上发现的核力的电荷无关性的事实,发展了稍早些时候出现的同位旋的概念,建立了核力的对称性理论。
1947年,孔韦尔西等人用计数器统计方法发现μ子并没有强作用。1947年鲍威尔等人在宇宙线中利用核乳胶的方法发现了真正具有强相互作用的介子,其后,在加速器上也证实了这种介子的存在。
从此以后人类认识到的基本粒子的数目越来越多。就在1947年,罗彻斯特和巴特勒在宇宙线实验中发现v粒子(即K介子),这就是后来被称为奇异粒子的一系列新粒子发现的开始。由于它们独特的性质,一种新的量子数——奇异数的概念被引进到粒子物理中。在这些奇异粒子中,有质量比质子轻的奇异介子,有质量比质子重的各种超子。在地球上的通常条件下,它们并不存在,在当时的情况下,只有借助从太空飞来的高能量宇宙线才能产生。
这些发现了的基本粒子,加上理论上预言其存在,但尚未得到实验证实的引力场量子——引力子,按相互作用的性质,可分成引力子、光子、轻子和强子四类。为了克服宇宙线流太弱这个限制,从50年代初开始建造能量越来越高、流强越来越大的粒子加速器。实验上也相继出现了新的强有力的探测手段,如大型气泡室、火花室、多丝正比室等,开始了新粒子的大发现时期。
到了60年代头几年,实验上观察到的基本粒子的数目已经增加到比当年元素周期表出现时发现的化学元素的数目还要多,而且发现的势头也越来越强。1961年,由盖耳-曼及奈曼类比化学元素周期表提出了,用强相互作用的对称性来对强子进行分类的“八重法”。
八重法分类不但给出了当时已经发现的强子在其中的位置,还准确地预言了一些新的粒子,如1964年用气泡室实验发现的Ω粒子。八重法很好地说明粒子的自旋、宇称、电荷、奇异数以及质量等静态性质的规律性。
在此阶段中,证实了不单电子,所有的粒子,都有它的反粒子(有的粒子的反粒子就是它自身)。其中第一个带电的反超子是由中国的王淦昌等在1959年发现的。此外,还发现了为数众多的寿命极短经强作用衰变的粒子——共振态。
基本粒子大量发现,使人们怀疑这些基本粒子的基本性。基本粒子的概念,面临一个突变。
20世纪40年代到60年代,对微观世界理性认识的最大进展是量子力学的建立。经过一代物理学家的努力,量子力学能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收及辐射等等现象,特别是当它同狭义相对论结合而建立相对论性量子力学以后,它已经成为微观世界在原子、分子层次上的一个基本理论。
但是,量子力学还有几个方面的不足:它不能反映场的粒子性;不能描述粒子的产生和湮没的过程;它有负能量的解,这导致物理概念上的困难。量子场论是由狄喇克、约旦、维格纳、海森伯和泡利等人在相对论量子力学的基础上,通过场的量子化的途径发展出来的,它很好地解决了这三个问题。
库什和福里1947年发现的电子反常磁矩,和由兰姆等发现的氢原子能级的分裂,只有通过量子电动力学的重正化理论才能得到正确的解释。今天,量子电动力学已经经受了许多实验上的验证,成为电磁相互作用的基本理论。
并非所有的基本粒子都是“基本”的想法,最早是在1949年由费密和杨振宁提出的。他们认为,介子不是基本的,基本的是核子,而介子只是由核子和反核子构成的结合态。1955年,坂田昌一扩充了费密和杨振宁的模型提出了强子是由核子、超子和它们的反粒子构成的模型。
1961年,在实验上发现了不少共振态。1964年,已发现的基本粒子(包括共振态)的种类增加到上百种,因而使得盖耳-曼和兹韦克提出,产生对称性的基础就是构成所有强子的构造单元,它们一共有三种,并命名为夸克。
20世纪60年代以来,在宇宙线中、加速器上以及在岩石中,都进行了对夸克的实验找寻,但迄今还没有被确证为成功的报道。在60年代和70年代,有更多的能量更高、性能更好的加速器建成。虽然在这些加速器上没有找到夸克。但却得到了间接的,但是更有力地说明夸克存在的证据。
与强子的数目急剧增加的情况相反,自从1962年利用大型火花室,在实验上证实了两类中微子之后,长时间内已知的轻子就只有四种,但是到了1975年情况有了改变,这一年佩尔等在正负电子对撞实验中发现了一个新的轻子,它带正电或带负电,达质子的两倍,所以又叫重轻子。与它相应,普遍相信应有另一种中微子存在,但是尚未得到实验上的证实。
夸克理论提出不久,就有人认识到强子的强相互作用和弱相互作用的研究应建立在夸克的基础上,同时还要充分考虑强子的结构特性和各种过程中的运动学特点,才能正确地解释强子的寿命、宽度、形状因子、截面等动态性质。1965年,中国发展的强子结构的层子模型,就是这个方向的首批研究之一。层子的命名,是为了强调物质结构的无限层次而作出的。在比强子更深一层次上的层子,就是夸克。近20年来,粒子物理实验和理论发展的主流,一直沿着这个方向,在弱作用方面,已有了突破性的进展,在强作用方面,也有重大的进展。
最早的弱相互作用理论,是费密为了解释中子衰变现象在1934年提出来的。弱作用宇称不守恒的发现,给弱作用理论的研究带来很大的动力。随后不久便确立了描述弱作用的流在洛伦兹变换下应当具有的形式,而且适用于所有的弱作用过程,被称为普适费密型弱相互作用理论。
1961年,格拉肖提出电磁相互作用和弱相互作用的统一理论。这个理论的基础,是杨振宁和密耳斯在1954年提出的非阿贝耳规范场论。但是在这个理论里,这些粒子是否具有静止质量、理论上如何重正化等问题,没有得到解答。
1967~1968年,温伯格、萨拉姆阐明了作为规范场粒子是可以有静止质量的,还算出这些静止质量同弱作用耦合常数以及电磁作用耦合常数的关系。这个理论中很重要的一点是预言弱中性流的存在,而当时实验上并没有观察到弱中性流的现象。由于没有实验的支持,所以当时这个模型并末引起人们的重视。
1973年,美国费密实验室和欧洲核子中心在实验上相继发现了弱中性流,之后,人们才开始对此模型重视起来。在1983年,鲁比亚实验组等在高能质子—反质子对撞的实验中发现的特性同理论上期待的完全相符规范粒子,这给予电弱统一理论以极大的支持,从而使它有可能成为弱相互作用的基本理论。
目前,粒子物理已经深入到比强子更深一层次的物质的性质的研究。更高能量加速器的建造,无疑将为粒子物理实验研究提供更有力的手段,有利于产生更多的新粒子,以弄清夸克的种类和轻子的种类,它们的性质,以及它们的可能的内部结构。
弱电相互作用统一理论日前取得的成功,特别是弱规范粒子的发现,加强了人们对定域规范场理论作为相互作用的基本理论的信念,也为今后以高能轻子作为探针探讨强子的内部结构、夸克及胶子的性质以及强作用的性质提供了可靠的分析手段。在今后一个时期,强相互作用将是粒子物理研究的一个重点。
把电磁作用、弱作用和强作用统一起来的大统一理论,近年来引起相当大的注意。但即使在最简单的模型中,也包含近20个无量纲的参数。这表明这种理论还包含着大量的现象性的成分,只是一个十分初步的尝试。它还要走相当长的一段路,才能成为一个有效的理论。
另外从发展趋势来看,粒子物理学的进展肯定会在宇宙演化的研究中起推进作用,这个方面的研究也将会是一个十分话跃的领域。
很重要的是,物理学是一门以实验为基础的科学,粒子物理学也不例外。因此,新的粒子加速原理和新的探测手段的出观,将是意义深远的。
Ⅹ 当代物理学主要研究什么
当代物理学主要研究声,光,电 ,力,热。