导航:首页 > 物理学科 > 物理学中的拓扑结构有哪些

物理学中的拓扑结构有哪些

发布时间:2022-02-25 10:11:28

A. 拓扑结构在物理学中的应用

暗物质。

B. 什么是拓扑结构

网络拓扑结构是指用于连接网络设备的物理线缆铺设的几何形状,常用于表示网络形状。其实网络的拓扑结构就是计算机与网络终端的连接结构。是指网络节点和节点间相互连接形成的结构关系,不同的通信网络需要采用不同的网络拓扑结构,而拓扑结构又决定了整个网络的特性。

网络的拓扑结构有很多种,主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。

常用的计算机网络拓扑结构有五种:

1、总线型拓扑结构,总线型网络结构是指所以设备共用一条物理传输线路,都通过相应的硬件接口连接,在一根传输线路是,这根线路被称为总线。传递方式是指总是从发送信息的结点开始,向两端扩散该传输方式又称 “广播式网络”。

2、星行拓扑结构,有一个唯一的中心结点,每个外围结点都通过一条点对点的链路直接与

中心结点连接,各外围结点间不能直接通信,所以数据需要经过中心结点。

3、环形拓扑结构,由网络中若干结点,通过环接口连在一条首尾,相连形成的闭合环的通信链路上,这种结构使用公共传输,电缆组成环形连接。

4、树状拓扑结构,树状拓扑结构可以看作是星形结构的扩展,是一种分层结构,具有根结点和各分支结点,比星状结构更为负责,数据在传输的过程中需要经过多条链路,时延较大,所以根结点和分支结点,都具有转发功能。

5、网状拓扑结构,网状拓扑结构是一种不规则的结构。该结构由分布在不同地点、各自独立的结点链路连接而成,每一个结点至少有一条链路,与其他结点相连,两个结点之间的通信链路不止一条,需进行路由选择。

(2)物理学中的拓扑结构有哪些扩展阅读

常见网络拓扑结构的优缺点:

一、星型拓扑结构

优点:

1、控制简单。任何一站点只和中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。易于网络监控和管理。

2、故障诊断和隔离容易。中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。

3、方便服务。中央节点可以方便地对各个站点提供服务和网络重新配置。

缺点:

1、需要耗费大量的电缆,安装、维护的工作量也骤增。

2、中央节点负担重,形成“瓶颈” ,一旦发生故障,则全网受影响。

3、各站点的分布处理能力较低。

二、环型结构:

优点:

1、这种网络实现也非常简单,投资最小。组成这个网络除了各工作站就是传输介质—同轴电缆,以及一些连接器材,没有价格昂贵的节点集中设备,如集线器和交换机。但也正因为这样,所以这种网络所能实现的功能最为简单,仅能当作一般的文件服务模式;

2、传输速度较快。

缺点:

1、维护困难:从其网络结构可以看到,整个网络各节点间是直接串联,这样任何一个节点出了故障都会造成整个网络的中断、瘫痪,维护起来非常不便。另一方面因为同轴电缆所采用的是插针式的接触方式,所以非常容易造成接触不良,网络中断,而且这样查找起来非常困难,这一点相信维护过这种网络的人都会深有体会。

2、扩展性能差:也是因为它的环型结构,决定了它的扩展性能远不如星型结构的好,如果要新添加或移动节点,就必须中断整个网络,在环的两端作好连接器才能连接。

三、分布式结构:

优点:

1、由于采用分散控制,即使整个网络中的某个局部出现故障,也不会影响全网的操作,因2、而具有很高的可靠性;

3、网中的路径选择最短路径算法,故网上延迟时间少,传输速率高,但控制复杂;

4、各个节点间均可以直接建立数据链路,信息流程最短;便于全网范围内的资源共享。

缺点:

1、连接线路用电缆长,造价高;网络管理软件复杂;

2、报文分组交换、路径选择、流向控制复杂;

3、在一般局域网中不采用这种结构。

四、树型结构

优点:

1、易于扩充。 树形结构可以延伸出很多分支和子分支, 这些新节点和新分支都能容易地加入网内。

2、故障隔离较容易。 如果某一分支的节点或线路发生故障, 很容易将故障分支与整个系统隔离开来。

缺点:

1、各个节点对根节点的依赖性太大。如果根发生故障,则全网不能正常工作。

C. 什么的网络拓扑结构常见的有哪几种

网络拓扑结构是指用传输媒体互连各种设备的物理布局。将参与LAN工作的各种设备用媒 体互连在一起有多种方法,实际上只有几种方式能适合LAN的工作。

第一种结构、星型拓扑结构 。这种结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。对此中心系统通常采用双机热备份,以提高系统的可靠性。

第二种结构、环型网络拓扑结构 。环行结构的特点是,每个端用户都与两个相临的端用户相连,因而存在着点到点链路,但总是以单向方式操作。于是,便有上游端用户和下游端用户之称。

第三种结构、总线拓扑结构 。这种结构具有费用低、数据端用户入网灵活、站点或某个端用户失效不影响其它站点或端用户通信的优点。缺点是一次仅能一个端用户发送数据,其它端用户必须等待到获得发送权。媒体访问获取机制较复杂。

D. 拓扑学在物理研究中有哪些具体应用

拓扑学在物理研究中具体应用凝聚态物理、量子场论和宇宙学。

拓扑学思想是在20世纪50年代被引入物理学的,大约在现代拓扑学形成30年后。拓扑学最初是一个纯粹的数学抽象领域,后来在整个物理学中得到了应用,如凝聚态物理、量子场论和宇宙学。

20世纪50年代,拓扑学被应用于物理学的第一个例子是,拓扑学帮助解释了光谱中出乎意料的特征,这些特征源于态密度中的奇点。

随着100年前量子力学的引入,物理测量的概率与振幅的平方成正比。波函数的相位通常没有物理影响。这种理解随着阿哈罗诺夫-玻姆实验的进行而改变。实验发现,尽管总体相位无关紧要,但相位差可以产生可测量的结果。实验表明,带电粒子的波函数与其所处空间的拓扑结构有关。

实验设置的关键部分包括引入穿透太空的磁场,本质上创造了一个奇点。这样的空间不是简单相连的,本质上看起来就像一个甜甜圈。

E. 什么是拓扑结构

计算机网络拓扑结构是指网络中各个站点相互连接的形式,在局域网中明确一点讲就是文件服务器、工作站和电缆等的连接形式。现在最主要的拓扑结构有总线型拓扑、星形拓扑、环形拓扑、树形拓扑(由总线型演变而来)以及它们的混合型。顾名思义,总线型其实就是将文件服务器和工作站都连在称为总线的一条公共电缆上,且总线两端必须有终结器;星形拓扑则是以一台设备作为中央连接点,各工作站都与它直接相连形成星型;而环形拓扑就是将所有站点彼此串行连接,像链子一样构成一个环形回路;把这三种最基本的拓扑结构混合起来运用自然就是混合型了!
计算机网络的拓扑结构是引用拓扑学中研究与大小、形状无关的点、线关系的方法,把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。
网络的拓扑结构反映出网中各实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。
计算机网络拓扑结构特点。
(1)总线型拓扑结构是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。 优
拓扑结构示意图
点:结构简单、布线容易、可靠性较高,易于扩充,是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。最着名的总线拓扑结构是以太网(Ethernet)。
(2)星形拓扑结构的每个节点都由一条单独的通信线路与中心节点连结。 优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心节点是全网络的可靠瓶颈,中心节点出现故障会导致网络的瘫痪。
(3)环形拓扑结构各结点通过通信线路组成闭合回路,环中数据只能单向传输。 优点:结构简单,适合使用光纤,传输距离远,传输延迟确定。缺点:环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最着名的环形拓扑结构网络是令牌环网(Token Ring)。
(4)树形拓扑结构是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。优点:连结简单,维护方便,适用于汇集信息的应用要求。
(5)网状拓扑结构又称作无规则结构,节点之间的联结是任意的,没有规律。
(6)混合型拓扑结构就是两种或两种以上的拓扑结构同时使用。优点:可以对网络的基本拓扑取长补短。缺点:网络配置挂包那里难度大。
(7)蜂窝拓扑结构蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、卫星、红外线、无线发射台等)点到点和点到多点传输为特征,是一种无线网,适用于城市网、校园网、企业网,更适合于移动通信。在计算机网络中还有其他类型的拓扑结构,如总线型与星形混合、总线型与环形混合连接的网络。在局域网中,使用最多的是星形结构。

优缺点
编辑
1. 总线型拓扑结构
优点:
(1)总线结构所需要的电缆数量少。
(2)总线结构简单,又是无源工作,有较高的可靠性。
(3)易于扩充,增加或减少用户比较方便。
(4)布线容易。
缺点:
(1)总线的传输距离有限,通信范围受到限制。
(2)故障诊断和隔离较困难。
(3)分布式协议不能保证信息的及时传送,不具有实时功能。
(4)所有的数据都需经过总线传送,总线成为整个网络的瓶颈。
(5)由于信道共享,连接的节点不宜过多,总线自身的故障可以导致系统的崩溃。
(6)所有的PC不得不共享线缆,如果某一个节点出错,将影响整个网络。
2. 环形拓扑结构
优点:
(1)结构简单。
(2)增加或减少工作站时,仅需简单的连接操作。
(3)可使用光纤,传输距离远。
(4)电缆长度短。
(5)传输延迟确定。
(6)信息在网络中沿固定方向流动,两个结点间仅有唯一的通路,大大简化了路径选择的控制。
(7)某个结点发生故障时,可以自动旁路,可靠性较高。
缺点:
(1)环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪。
(2)故障检测困难。
(3)环形拓扑结构的媒体访问控制协议都采用令牌传达室递的方式,在负载很轻时,信道利用率相对来说就比较低。
(4)由于信息是串行穿过多个结点环路接口,当结点过多时,影响传输效率,使网络响应时间变长; (5)由于环路封闭故扩充不方便。
3. 树形拓扑结构
拓扑结构
优点:
(1)连结简单,维护方便,适用于汇集信息的应用要求。
(2) 易于扩展。
(3)故障隔离较容易。
缺点:
资源共享能力较低,可靠性不高,任何一个工作站或链路的故障都会影响整个网络的运行。并且各个节点对根的依赖性太大。
4. 星形拓扑结构
优点:
结构简单、容易实现、便于管理,通常以集线器作为中央节点,便于维护和管理。
(1)集中控制,控制简单。
(2)故障诊断和隔离容易。
(3)方便服务。
(4)网络延迟时间短,误码率低。
缺点:
(1)电缆长度和安装工作量可观。
(2)中央节点的负担较重,形成瓶颈。 中心结点出现故障会导致网络的瘫痪。
(3)各站点的分布处理能力较低。
(4) 网络共享能力较差,通信线路利用率不高。
5.网状拓扑结构
优点:
系统可靠性高,比较容易扩展,但是结构复杂,每一结点都与多点进行连结,因此必须采用路由算法和流量控制方法。目前广域网基本上采用网状拓扑结构。
6.混合型拓扑结构
优点:
可以对网络的基本拓扑取长补短。
缺点:
网络配置挂包那里难度大。
7. 蜂窝拓扑结构
优点:
无需架设物理连接介质。
缺点:
适用范围较小。

F. 求物理学中关于拓扑的论文,主要写拓扑结构和图像的!!!

电路拓扑结构是指电路的组成架构。是指网络中各个站点相互连接的形式,在局域网中明确一点讲就是文件服务器、工作站和电缆等的连接形式。现在最主要的拓扑结构有总线型拓扑、星形拓扑、环形拓扑、树形拓扑(由总线型演变而来)以及它们的混合型。顾名思义,总线型其实就是将文件服务器和工作站都连在称为总线的一条公共电缆上,且总线两端必须有终结器;星形拓扑则是以一台设备作为中央连接点,各工作站都与它直接相连形成星型;而环形拓扑就是将所有站点彼此串行连接,像链子一样构成一个环形回路;把这三种最基本的拓扑结构混合起来运用自然就是混合型了。
包括buck开关型调整器拓扑 、boost开关调整器拓扑 、反极性开关调整器拓扑 、推挽拓扑 、正激变换器拓扑 、双端正激变换器拓扑 、交错正激变换器拓扑 、半桥变换器拓扑 、全桥变换器拓扑 、反激变换器 、电流模式拓扑和电流馈电拓扑 、SCR振谐拓扑 、CUK变换器拓扑。

G. 常见的网络拓扑结构主要有哪几种,各有什么特点

1、常见的网络拓扑结构主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。

2、特点

①星型结构。星型结构是最古老的一种连接方式,大家每天都使用的电话属于这种结构。一般网络环境都被设计成星型拓扑结构。星型网是广泛而又首选使用的网络拓扑设计之一。

星型结构是指各工作站以星型方式连接成网。网络有中央节点,其他节点(工作站、服务器)都与中央节点直接相连,这种结构以中央节点为中心,因此又称为集中式网络。

星型拓扑结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影响其它端用户间的通信。同时星型拓扑结构的网络延迟时间较小,系统的可靠性较高。

⑦蜂窝拓扑结构是无线局域网中常用的结构,它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。

拓展资料:

拓扑这个名词是从几何学中借用来的。网络拓扑是网络形状,或者是网络在物理上的连通性。网络拓扑结构是指用传输媒体互连各种设备的物理布局,即用什么方式把网络中的计算机等设备连接起来。拓扑图给出网络服务器、工作站的网络配置和相互间的连接。网络的拓扑结构有很多种,主要有星型结构、环型结构、总线结构、分布式结构、树型结构、网状结构、蜂窝状结构等。

H. 物理中的拓扑结构是一个什么概念

是根据网络设备的实际物理地址进行扫描而得出,所以它更加适合的是网络设备层管理,通过物理拓扑图,一旦网络中出现故障或者即将出现故障,物理拓扑图可以及时详细地告诉网络管理者是哪一台网络设备出了问题,举个简单的例子,当网络中某台交换机出现了故障,通过物理拓扑图,网管系统可以告诉管理者在网络里众多的交换设备中是哪一台交换机的那一个端口出现了问题,通过这个端口连接了那些的网络设备,便于网管人员进行维护

I. 物理研究中拓扑学有什么

有做化学和软物质物理的朋友做了很好的回答。我只是作为外行曝露一下我对这个话题的误解。拓扑学是数学,所以肯定是具有数学之于物理的一般意义:提供描述语言和逻辑工具。拓扑学在很多“高大上”的物理中的应用非常深广(或者说结合很紧密),这里好几个回答都提到了。至于在软物质研究领域,主要分为两大趣味:一是无序性,这个主要建立在统计和动力学(dynamics)的语言上,因此拓扑学可以用于相空间的研究,例如刘维尔方程的辛几何;另一个是特殊的、暂时的有序性,在此拓扑学可以用于形貌的描述,例如在

另外,还有人从化学的角度进行了回答。化学的旨趣之一是合成,创造自然界没有的、新奇的结构。化学为我们提供了拓扑学分类意义上的新体系,已经完成任务.

但是任何数学对物理学都可以有这种意义,所以上述拓扑学的意义就流于一般化。在物理学上可以进一步去探索:这些新体系在拓扑学上的不同,对应着什么性质的不同,或者问是否存在这样的对应性?换句话说,存不存仅依赖拓扑学差异,而不依赖具体化学和几何结构的物理体系及其性质?这个问题就不同于“拓扑学在物理学研究中有什么用”了,而是问:物理学已经发现的哪些规律使人觉得“上帝懂拓扑学”、“上帝特意利用拓扑学设计了世界的这一部分”?

“手性”不算拓扑学的研究对象(它应该属于对称群的研究对象),但可以用来解释什么叫“在物理学上的意义”。例如化学中的对映结构选择性、手性放大,就是直接对应。还有,物理中很多集群行为的有序性也取决于手性。这也是功能与结构存在具体对应性的例子。还有一个例子就是,“聚合物可结晶性”中的构型(conformation)因素,如全同聚丙烯能结晶成为塑料,而无规聚丙烯不结晶无法作为结构材料。这是手性的有序性与性质(功能)的直接对应关系。

于是,在软物质当中,拓扑学差异有没有类似手性这样,直接决定物理性质的例子?这才是我关心的问题。我们也能实现拓扑学层面上的制备,但它们能导致什么结果有待研究。而更广阔的视点应该是去在各类体系的新行为研究中留意哪些是直接由拓扑学差异所对应的结果。

可是,在化学和软物质领域的论文中,“拓扑”一词被严重滥用。很多“拓扑结构依赖性”其实没什么拓扑学意义上的差异。

J. 拓扑结构在物理学上的作用,急求!

基本上都是用来研究空间的比较多吧 多维空间什么的

阅读全文

与物理学中的拓扑结构有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:735
乙酸乙酯化学式怎么算 浏览:1399
沈阳初中的数学是什么版本的 浏览:1345
华为手机家人共享如何查看地理位置 浏览:1037
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1403
中考初中地理如何补 浏览:1293
360浏览器历史在哪里下载迅雷下载 浏览:695
数学奥数卡怎么办 浏览:1382
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1479
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1332
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053