⑴ 近代高分子凝聚态物理的主要研究内容有哪些
《高分子凝聚态物理学》根据近二十年来高分子科学尤其高分子物理学的最新进展,探索并建立了高分子凝聚态物理学的理论范式和基本框架。详细介绍了高分子从单链化合物凝聚成多链聚集体过程中大分子构象、运动、相互作用和相态的变化及机理,系统介绍了在研究高分子极稀溶液、稀溶液、亚浓溶液、浓溶液和极浓体系中最新提出的大量新概念、新模型、新理论和新方法。包括大分子链的自相似结构、分形性及由此发展的标度律概念和方法论;软物质、复杂流体理论及高分子材料的软物质特征;单链凝聚态、单链单晶及单链与多链聚集体的关系;聚合物相变中的亚稳态现象和临界现象;分子间作用力及超分子组装和自组装;单分子链和缠结分子链运动学等。与此同时书中单独设章介绍了高分子材料的几种特殊凝聚态,如液晶态高分子(包括生物膜和微泡);有机高分子的激发态-导电高分子、发光高分子、磁性高分子;高分子非均质态及逾渗模型在高分子科学的应用。最后介绍研究凝聚态结构的实验方法--高分子凝聚态微结构的光谱解析。
⑵ 凝聚态物理包括哪些研究方向有哪些分类
研究凝聚态物质的原子之间的结构、电子态结构以及相关的各种物理性质。研究领域包括固体物理、晶体物理、金属物理、半导体物理、电介质物理、磁学、固体光学性质、低温物理与超导电性、高压物理、稀土物理、液晶物理、非晶物理、低维物理(包括薄膜物理、表面与界面物理和高分子物理)、液体物理、微结构物理(包括介观物理与原子簇)、缺陷与相变物理、纳米材料和准晶等。汉语中“凝聚”一词是由“凝”字双音演化而来的。“凝”在东汉许慎的“说文解字”一书中同“冰”,指的是水结成冰的过程。可见我们的祖先最初对凝聚现象的注意可能始于对水的观察,特别是水从液态到固态的现象。英语的condense来源于法语,后者又来源于拉丁文,指的是密度变大,从气或蒸汽变液体。看来西方人对凝聚现象的注意可能始于对气体的观察,特别是水汽从气态到液态的现象。这是很有意思的差别,大概与各自的古代自然生活环境和生活习惯有关。不过东西方二者原始意义的结合,恰恰就是今天凝聚态物理主要研究的对象—液态和固态。当然从科学的含义上来说,二者不是截然分开的。所以凝聚态物理还研究介于这二者之间的态。例如液晶等。液态和固态物质一般都是由量级为1023的极大数量微观粒子组成的非常复杂的系统。凝聚态物理正是从微观角度出发,研究这些相互作用多粒子系统组成的物质的结构、动力学过程及其与宏观物理性质之间关系的一门学科。
众所周知,复杂多样的物质形态基本上分成三类:气态、液态和固态,在这三种物态中,凝聚态物理研究的对象就占了二个,这就决定了这门学科的每一步进展都与我们人类的生活休戚相关。从传统的各种金属、合金到新型的各种半导体、超导材料,从玻璃、陶瓷到各种聚合物和复合材料,从各种光学晶体到各种液晶材料等等;所有这些材料所涉及到的声、光、电、磁、热等特性都是建立在凝聚态物理研究的基础上的。凝聚态物理研究还直接为许多高科学技术本身提供了基础。当今正蓬勃发展着的微电子技术、激光技术、光电子技术和光纤通讯技术等等都密切联系着凝聚态物理的研究和发展。
凝聚态物理以万物皆成于原子为宗旨,以量子力学为基础研究各种凝聚态,这是一个非常雄心勃勃的举措。凝聚态物理这个学科名称的诞生仅仅是最近几十年的事。如果追寻一下它的渊源。应该说出自于对固态中晶态固体的研究和对液态中量子液体的研究。在对这二种特殊态的长期研究中,人们积累了一些经验,也建立起了一些信心,并逐步把一些已有的方法推广用于非晶态和液晶乃至液态的研究,从而大大拓宽了视野,逐步形成了凝聚态物理。
今天,凝聚态物理的视野还在继续开拓。然而作为渊源的二种凝聚态即晶态固体和量子液体,时至今日仍然是它主要的研究对象,内容当然越来越丰富了,考虑的问题也越来越深入了。毕竟我们面临的是同一个自然界,许多现象和规律是普适的。人们正是通过对一系列特殊态的深入研究来逐步认识和掌握那些普适的规律。
⑶ 凝聚态物理有哪些研究热点和难题
从事凝聚态实验方面的研究,主要是铁电和多铁材料方面的研究,但是这已经不是热点了,我来简单列下我认为实验方面现在的研究热点吧。
1. 最近及其火热的trihalide perovskite. 不管是理论方面还是实验方面研究的论文发表数目都是指数级别的增长。最新一期的science上面,居然有两篇是实验方面的Halide perovskite, 即将发表的一期science上面也有一篇(从science express可以看到)。
Perovsikite来源于最原始的氧化物 ABO3 结构,而在新的trihalide perovskite中,人们用Cl, I, F, 代替了氧位。A位和B位也可以做很多替换,甚至A位可以加入具有极化性质的化学分子. 这一系列的材料最新的特征是可以作为solar cell的新体系的材料,很多科研都是着重于他们的光伏性质。但是他也是perovskite的一种,所以很多perovskite具有的性质都还没有研究清楚(相信很快会有成果出来)。
2. Graphene 就不用多说了吧超级大热点基本每一个有凝聚态实验的物理系都会有专门的组在做这个。当然具体的问题是什么我也不是很了解啦,可以参考wiki
Graphene
3. Topological insulator (拓扑绝缘体),这也是超级大热点,由这个引出的各种新现象比如说上了新闻联播的量子反常霍尔效应,由清华大学薛其坤教授领导的小组做出来的science级别的文章。当然这个拓扑绝缘体养活的不光是拓扑绝缘体本身,还有很多基于拓扑绝缘体的heterostructure,比如说Bi2Se3/NbSe2,以及各种interface的新现象。同样,有凝聚态实验的物理系,都会有专门负责用MBE生长topological insulator的组。
⑷ 什么是凝聚态物质凝聚态物理研究方向
凝聚态指的就是大量的粒子组合在一起,而粒子相互之间也有很强的联系,最终构成了一个完整的系统,最早是由雅科夫·弗伦克尔在1947年提出,凝聚态物理学就是专门研究这个方面的,这个领域的研究人员想用物理的定律来更好解释凝聚态物质的很多特点和联系,下面就和本站一起看看吧。
所谓的凝聚态指的就是大量的粒子组合在一起,而粒子相互之间也有很强的联系,最终构成了一个完整的系统。在自然界中凝聚态物质是比较常见的,而固态和液态都算是凝聚态,甚至于在低温条件下的超流态、超导态等也都是凝聚态。
凝聚态物理研究方向
凝聚态物理学就是专门研究这个方面的,这个领域的研究人员想用物理的定律来更好解释凝聚态物质的很多特点和联系。而量子力学、电磁学以及统计力学的一些定律都算是比较重要的。
不管是固态还是液态都是大家比较常见的凝聚态,在前文也提到过低温下的超导相、晶体等等也算是凝聚态的一种。
凝聚态物质算是比较常见的,所以这方面的研究也是相当活跃的。在美国就有很多该领域的研究者,他们占据了物理学中的很大一部分。而这个领域和化学、材料科学等等很多领域都有一定的交叉,和原子物理学等等联系也比较大。其中很多研究在粒子物理学中也是可以用到的。
凝聚态这个术语实际上在很早就出现了,当时在1947年雅科夫·弗伦克尔写的专业的书籍中就讲到了这个领域,所以这并不是什么新兴领域。
晶体学、冶金学等等最开始都是由于比较独立的学科中兴起的,后来在二十世纪四十年代被物理学家统一称之为固体物理学。后来在二十世纪六十年代后,人们开始研究起液体物理学,凝聚态物理学也开始被提出。
凝聚态在物理中并不是多么新鲜的词汇,实际上早在很早前就有研究,当然研究并不是十全十美的,还有很多知识等待发现。
⑸ 凝聚态物理学的研究内容
凝聚态物理学的基本任务在于阐明微观结构与物性的关系,因而判断构成凝聚态物质的某些类型微观粒子的集体是否呈现量子特征(波粒二象性)是至关紧要的。电子质量小,常温下明显地呈现量子特征;离子或原子则由于质量较重,只有低温下(约4K)的液氦或极低温下(μK至nK)的碱金属稀薄气体,原子的量子特征才突出地表现出来。这也说明为何低温条件对凝聚态物理学的研究十分重要。微观粒子分为两类:一类是费米子,具有半整数的自旋,服从泡利不相容原理;另一类是玻色子,具有整数的自旋,同一能态容许任意数的粒子占据。这两类粒子的物理行为判然有别。 软物质又称为复杂液体,是介于固体与液体之间的物相,液晶、乳胶、聚合物等均属此类。软物质大都是有机物质,虽然在原子尺度上是无序的,但在介观尺度上则可能出现某种规则而有序的结构。如液晶分子是杆状的,尽管其质心不具有位置序,但杆的取向却可能是有序的。又如聚合物是由柔软的长链分子所构成,由于长程无序的关联性,因而遵循了类似于临界现象的标度律。20世纪70—80年代液晶物理学和聚合物物理学的建立,使凝聚态物理学从传统的硬物质成功地延拓到软物质。软物质在微小的外界刺激(温度、外场或外力)下有显着的响应是其物性的特征,从而产生明显的实用效果。一颗纽扣电池可驱动液晶手表数年之久,就是证明。软物质变化过程中内能变化甚微,熵的变化十分显着,因而其组织结构的变化主要由熵来驱动,和内能驱动的硬物质迥然有别。熵致有序和熵致形变乃是软物质自组装的物理基础。 有机物质(小分子和聚合物)的电子结构与电子性质也受到广泛的重视。有机发光器件和电子器件正在研制开发之中。
⑹ 凝聚态物理学的研究热点
凝聚态物理学的研究热点:①1984年发现准晶态;②1986年发现高温超导体YBaCuO2(钇钡铜氧化物);③1984年建立纳米科学;④1992年发现材料LaSrMnO3的巨磁阻效应;⑤2001年发现新的高温超导材料MgB2。