导航:首页 > 物理学科 > 凝聚态物理什么时候建立的

凝聚态物理什么时候建立的

发布时间:2023-02-21 21:04:30

❶ 物理学发展史求教

物理学史研究人类对自然界各种物理现象的认识史,研究物理学发生和发展的基本规律,研究物理学概念和思想发展和变革的过程,研究物理学是怎样成为一门独立学科,怎样不断开拓新领域,怎样产生新的飞跃,它的各个分支怎样互相渗透,怎样综合又怎样分化。 物理学史
物理学是一门基础科学,它向着物质世界的深度和广度进军,探索物质世界及其运动的规律。它像一座知识的宝塔,基础雄厚,力学、热学、电学、光学以至于相对论、量子力学、核物理和粒子物理学、凝聚态物理学和天体物理学,形成了一座宏伟的大厦。它又像一棵大树,根深叶茂,从基根长出树干,从树干长出茂密的枝杈,又结出累累果实。它还像滚滚大江,汹涌澎湃,一浪高过一浪。然而,通过这些比喻,仍不足以说明物理学是怎样的一门不断发展的科学,只有了解了物理学发展的历史,才能更深刻地认识物理学的宏伟壮观。 通过物理学史的学习,不但能增长见识,加深对物理学的理解,更重要的是可以从中得到教益,开阔眼界,从前人的经验中得到启示。 本书的第1版是在我们讲物理学史课程时所写讲义的基础上扩充而成的。课程原名物理学史专题讲座,是为清华大学本科生开设的选修课。之所以叫专题讲座,是因为在理工科大学没有那么多时间,也没有必要按部就班地进行系统地讲授。那样既乏味又费时间。有些课题,我们没有讲到,同学们如果有兴趣,可以自己找书看。我们认为,与其平铺直叙地罗列一大堆史实,不如抓住若干典型,进行个例剖析,讲得深透些。什么是个例剖析?我们指的是就某一个事件、某一项发现或某一位科学家的成就进行充分的揭示,说明其前因后果、来龙去脉,不仅说有什么,还要说为什么。例如,可以问一问:为什么会出现那样的事件?为什么会发生新的突破?为什么会造就伟大的人物?分析其成功的要素,总结其经验教训,提炼出可供大家共享的精神财富。所以我们选了十几个专题,每讲一个专题,分析一个或几个例子,于是就叫专题讲座。讲座开了几届之后,又感到选修课不宜过专,不能让学生花费过多的精力阅读原始文献,但是有必要保留专题讲座的精华,即保留从个例剖析得到的各种有益启示,这些启示并不是生硬灌输给学生,而是通过真实的历史、 物理学史
实际的资料、生动的情景把学生引入历史的氛围,让他们自己去体会,自己去获取应该得到的启示。于是这门选修课就改名为《物理学史的启示》。这门课一开就是十几年。1993年,经过多次试用和修改补充的讲义终于正式出版,取名为《物理学史》。我们的工作得到了校内外许多师生的鼓励和关怀,其中包括老一辈的物理学家的指点和勉励。最让我们感到荣幸的是,我国着名物理学家钱三强教授曾经多次给我们以具体的指导,并亲自为我们作序。详见:郭奕玲,沈慧君.怀念钱三强先生.现代物理知识,1994(1):41~44. 这些年来,《物理学史》一书被许多院校选为物理学史课程教材,也成了广大物理教师的参考书。这本书显示出了不少缺陷和错误,我们深感有加以修改和完善的必要。这次修改主要是针对如下几方面: (1) 加强20世纪物理学各个分支的论述,其中包括相对论、量子理论、粒子物理学、现代光学、凝聚态物理学和天体物理学。 (2) 充分利用图片资料。 (3) 必要的增补和修改。 众多的同行多年来为我们提供物理学史资料,其中特别是Melba Phillips正值本书截稿之际,惊悉97岁的Melba Phillips已于2004年11月18日辞世,不胜怀念。教授。她和美国物理学会曾经给予我们多方面的帮助。Alan Franklin教授也是我们工作的积极支持者。我们对他们表示诚挚的感谢。我们还要感谢图片资料的版权所有者。由于图片是多年来从各种渠道收集到的,难以一一注明出处。
编辑本段目录
第一版序
前言
第1章力学的发展
1.1历史概述1 1.2天文学的新进展揭开了科学革命的序幕3 1.3惯性定律的建立10 1.4伽利略的落体研究13 1.5万有引力定律的发现21 1.6《自然哲学之数学原理》和牛顿的大综合27 1.7碰撞的研究29 1.8牛顿以后力学的发展33 1.9牛顿的绝对时空观和马赫的批判37
第2章热学的发展
2.1历史概述40 2.2热现象的早期研究40 2.3热力学第一定律的建立47 2.4卡诺和热机效率的研究59 2.5绝对温标的提出62 2.6热力学第二定律的建立64 2.7热力学第三定律的建立和低温物理学的发展68 2.8气体动理论的发展72 2.9统计物理学的创立81
第3章电磁学的发展
3.1历史概述90 3.2早期的磁学和电学研究90 3.3库仑定律的发现94 3.4动物电的研究和伏打电堆的发明102 3.5电流的磁效应105 3.6安培奠定电动力学基础110 3.7欧姆定律的发现111 3.8电磁感应的发现113 3.9电磁理论的两大学派118 3.10麦克斯韦电磁场理论的建立119 3.11赫兹发现电磁波实验126 3.12麦克斯韦电磁场理论的发展130
第4章经典光学的发展
4.1历史概述132 4.2反射定律和折射定律的建立133 4.3牛顿研究光的色散136 4.4光的微粒说和波动说140 4.5光速的测定146 4.6光谱的研究150 第5章实验新发现和现代物理学革命157
5.1历史概述
5.219/20世纪之交的三大实验发现158 5.3“以太漂移”的探索170 5.4热辐射的研究180 5.5经典物理学的“危机”186
第6章相对论的建立和发展
6.1历史背景188 6.2爱因斯坦创建狭义相对论的经过191 6.3狭义相对论理论体系的建立198 6.4狭义相对论的遭遇和实验检验203 6.5广义相对论的建立205 6.6广义相对论的实验验证212
第7章早期量子论和量子力学的准备
7.1历史概述221 7.2普朗克的能量子假设221 7.3光电效应的研究224 7.4固体比热229 7.5原子模型的历史演变232 7.6α散射和卢瑟福有核原子模型237 7.7玻尔的定态跃迁原子模型和对应原理240 7.8索末菲和埃伦费斯特的贡献244 7.9爱因斯坦与波粒二象性250 7.10X射线本性之争252 7.11康普顿效应253
第8章量子力学的建立与发展
8.1历史概述258 8.2电子自旋概念和不相容原理的提出259 8.3德布罗意假说261 8.4物质波理论的实验验证262 8.5矩阵力学的创立267 8.6波动力学的创立268 8.7波函数的物理诠释270 8.8不确定原理和互补原理的提出271 8.9关于量子力学完备性的争论272 8.10量子电动力学的发展276
第9章原子核物理学和粒子物理学的发展
9.1历史概述282 9.2放射性的研究282 9.3人工核反应的初次实现287 9.4探测仪器的改善289 9.5宇宙射线和正电子的发现292 9.6中子的发现294 9.7人工放射性的发现298 9.8重核裂变的发现298 9.9链式反应303 9.10原子核模型理论304 9.11加速器的发明与建造305 9.12β衰变的研究和中微子的发现310 9.13介子理论和μ子的发现312 9.14奇异粒子的研究313 9.15弱相互作用中宇称不守恒和CP破坏的发现314 9.16强子结构和夸克理论316 9.17量子色动力学的建立318 9.18弱电统一理论的提出319 9.19夸克模型的发展321
第10章凝聚态物理学简史
10.1历史概述324 10.2固体物理学的早期研究325 10.3固体物理学的理论基础327 10.4固体物理学的实验基础330 10.5晶体管的发明330 10.6半导体物理学和实验技术的蓬勃发展334 10.7超导电性的研究339 10.8超流动性的发现343 10.9量子霍尔效应与量子流体的研究348 10.10非晶态物理的发展354 10.11高压物理学的发展357 10.12软物质物理学的兴起359
第11章现代光学的兴起
11.1激光科学的孕育和准备360 11.2微波激射器的发明365 11.3激光器的设想和实现367 11.4激光技术的发展374 11.5全息术的发明和应用377 11.6激光光谱学380 11.7非线性光学382 11.8量子光学384 11.9量子信息光学386 11.10原子光学389
第12章天体物理学的发展
12.1天体物理学的兴起395 12.2匹克林谱系之谜396 12.3恒星演化理论的建立399 12.4类星体的发现401 12.5宇宙背景辐射的发现402 12.6脉冲星的发现405 12.7星际有机分子的发现408 12.8黑洞的研究409 12.9暗物质和暗能量的探索411
第13章诺贝尔物理学奖
13.1诺贝尔物理学奖的设立416 13.2诺贝尔物理学奖的分布统计418 13.3时代划分420 13.4分类综述422
第14章
实验和实验室在物理学发展中的地位和作用 14.1实验在物理学发展中的作用452 14.2实验室在物理学发展中的地位455 第15章单位、单位制与基本常数简史470 15.1基本单位的历史沿革470 15.2单位制的沿革476 15.3基本物理常数的测定与评定480 15.4物理学的新发现对基本常数的影响486 结束语488 附录物理学大事年表493
编辑本段经典物理学-力学的发展史
物理学是研究物质及其行为和运动的科学。它是最早形成的自然科学之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学着作是古希腊科学家亚里士多德的《物理学》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德以及其后苏格拉底的哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自于这些哲学传统,并在中世纪时由当时的哲学家菲洛彭洛斯、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。
力学的历史背景
力学是最原始的物理学分支之一,而最原始的力学则是静力学。静力学源于人类文明初期生产劳动中所使用的简单机械,如杠杆、滑轮、斜面等。古希腊人从大量的经验中了解到一些与静力学相关的基本概念和原理,如杠杆原理和阿基米德定律。但直至十六世纪后,资本主义的工业进步才真正开始为西方世界的自然科学研究创造物质条件,尤其于地理大发现时代航海业兴起,人类钻研观测天文学所花费的心力前所未有,其中以丹麦天文学家第谷·布拉赫和德国天文学家、数学家约翰内斯·开普勒为代表。对宇宙中天体的观测也成为了人类进一步研究力学运动的绝佳领域。1609和1619年,开普勒先后发现开普勒行星运动三大定律,总结了老师第谷毕生的观测数据。
伽利略的动力学
在十七世纪的欧洲,自然哲学家逐渐展开了一场针对中世纪经院哲学的进攻,他们持有的观点是,从力学和天文学研究抽象出的数学模型将适用于描述整个宇宙中的运动。被誉为“现代自然科学之父”的意大利(或按当时地理为托斯卡纳大公国)物理学家、数学家、天文学家伽利略·伽利莱就是这场转变中的领军人物。伽利略所处的时代正值思想活跃的文艺复兴之后,在此之前列奥纳多·达芬奇所进行的物理实验、尼古拉斯·哥白尼的日心说以及弗朗西斯·培根提出的注重实验经验的科学方法论都是促使伽利略深入研究自然科学的重要因素,哥白尼的日心说更是直接推动了伽利略试图用数学对宇宙中天体的运动进行描述。伽利略意识到这种数学性描述的哲学价值,他注意到哥白尼对太阳、地球、月球和其他行星的运动所作的研究工作,并认为这些在当时看来相当激进的分析将有可能被用来证明经院哲学家们对自然界的描述与实际情形不符。伽利略进行了一系列力学实验阐述了他关于运动的一系列观点,包括借助斜面实验和自由落体实验批驳了亚里士多德认为落体速度和重量成正比的观点,还总结出了自由落体的距离与时间平方成正比的关系,以及着名的斜面理想实验来思考运动的问题。他在1632年出版的着作《关于托勒密和哥白尼两大世界体系的对话》中提到:“只要斜面延伸下去,球将无限地继续运动,而且不断加速,因为此乃运动着的重物的本质。”,这种思想被认为是惯性定律的前身。但真正的惯性概念则是由笛卡尔于1644年所完成,他明确地指出了“除非物体受到外因作用,否则将永远保持静止或运动状态”,而“所有的运动本质都是直线的”。 伽利略在天文学上最着名的贡献是于1609年改良了折射式望远镜,并借此发现了木星的四颗卫星、太阳黑子以及金星类似于月球的相。伽利略对自然科学的杰出贡献体现在他对力学实验的兴趣以及他用数学语言描述物体运动的方法,这为后世建立了一个基于实验研究的自然哲学传统。这个传统与培根的实验归纳的方法论一起,深刻影响了一批后世的自然科学家,包括意大利的埃万杰利斯塔·托里拆利、法国的马林·梅森和布莱兹·帕斯卡、荷兰的克里斯蒂安·惠更斯、英格兰的罗伯特·胡克和罗伯特·波义耳。
牛顿三大定律和万有引力定律?
艾萨克·牛顿 1687年,英格兰物理学家、数学家、天文学家、自然哲学家艾萨克·牛顿出版了《自然哲学的数学原理》一书,这部里程碑式的着作标志着经典力学体系的正式建立。牛顿在人类历史上首次用一组普适性的基础数学原理——牛顿三大运动定律和万有引力定律——来描述宇宙间所有物体的运动。牛顿放弃了物体的运动轨迹是自然本性的观点(例如开普勒认为行星运动轨道本性就是椭圆的),相反,他指出,任何现在可观测到的运动、以及任何未来将发生的运动,都能够通过它们已知的运动状态、物体质量和外加作用力并使用相应原理进行数学推导计算得出。 伽利略、笛卡尔的动力学研究(“地上的”力学),以及开普勒和法国天文学家布里阿德在天文学领域的研究(“天上的”力学)都影响着牛顿对自然科学的研究。(布里阿德曾特别指出从太阳发出到行星的作用力应当与距离成平方反比关系,虽然他本人并不认为这种力真的存在)。1673年惠更斯独立提出了圆周运动的离心力公式(牛顿在1665年曾用数学手段得到类似公式),这使得在当时科学家能够普遍从开普勒第三定律推导出平方反比律。罗伯特·胡克、爱德蒙·哈雷等人由此考虑了在平方反比力场中物体运动轨道的形状,1684年哈雷向牛顿请教了这个问题,牛顿随后在一篇9页的论文(后世普遍称作《论运动》)中做了解答。在这篇论文中牛顿讨论了在有心平方反比力场中物体的运动,并推导出了开普勒行星运动三定律。其后牛顿发表了他的第二篇论文《论物体的运动》,在这篇论文中他阐述了惯性定律,并详细讨论了引力与质量成正比、与距离平方成反比的性质以及引力在全宇宙中的普遍性。这些理论最终都汇总到牛顿在1687年出版的《原理》一书中,牛顿在书中列出了公理形式的三大运动定律和导出的六个推论(推论1、2描述了力的合成和分解、运动叠加原理;推论3、4描述了动量守恒定律;推论5、6描述了伽利略相对性原理)。由此,牛顿统一了“天上的”和“地上的”力学,建立了基于三大运动定律的力学体系。 牛顿的原理(不包括他的数学处理方法)引起了欧洲大陆哲学家们的争议,他们认为牛顿的理论对物体运动和引力缺乏一个形而上学的解释从而是不可接受的。从1700年左右开始,大陆哲学和英国传统哲学之间产生的矛盾开始升级,裂痕开始增大,这主要是根源于牛顿与莱布尼兹各自的追随者就谁最先发展了微积分所展开的唇枪舌战。起初莱布尼兹的学说在欧洲大陆更占上风(在当时的欧洲,除了英国以外,其他地方都主要使用莱布尼兹的微积分符号),而牛顿个人则一直为引力缺乏一个哲学意义的解释而困扰,但他在笔记中坚持认为不再需要附加任何东西就可以推论出引力的实在性。十八世纪之后,大陆的自然哲学家逐渐接受了牛顿的这种观点,对于用数学描述的运动,开始放弃作出本体论的形而上学解释。
牛顿的绝对时空观?
牛顿的理论体系是建立在他的绝对时间和绝对空间的假设之上的,牛顿对时间和空间有着如下的理解: “ 绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而在均匀地、与任何外界事物无关地流逝着。 ”
“ 绝对空间,就其本性而言,是与外界任何事物无关而永远是相同的和不动的。 ”
—牛顿, 《自然哲学的数学原理》
牛顿从绝对时空的假设进一步定义了“绝对运动”和“绝对静止”的概念,为了证明绝对运动的存在性,牛顿还在1689年构思了一个理想实验,即着名的水桶实验。在水桶实验中,一个注水的水桶起初保持静止。当它开始发生转动时,水桶中的水最初仍保持静止,但随后也会随着水桶一起转动,于是可以看到水渐渐地脱离其中心而沿桶壁上升形成凹状,直到最后和水桶的转速一致,水面相对静止。牛顿认为水面的升高显示了水脱离转轴的倾向,这种倾向不依赖于水相对周围物体的任何移动。牛顿的绝对时空观作为他理论体系的基础假设,却在其后的两百年间倍受质疑。特别是到了十九世纪末,奥地利物理学家恩斯特·马赫在他的《力学史评》中对牛顿的绝对时空观做出了尖锐的批判。
编辑本段卡约里着《物理学史》
中译本版权信息
卡约里着《物理学史》
[1]书名:物理学史(A History of Physics) 作者:(美)弗·卡约里 译者:戴念祖译,范岱年校 出版社:广西师范大学出版社 版次:2002年10月第1版 印次:2002年10月第1次印刷,2002年12月第2次印刷 印数:1~10 000,10 001~15000 开本:787mm*1 092mm 1/16 印张:22.5 字数:325千字 定价:35.00元 ISBN:7-5633-3688-5
作者简介
弗·卡约里,美国着名数学家和科学史家,1859年生于瑞士,1875年回到美国,1930年卒于美国。他是美国数学学会、科学发展协会、科学史学会会员,还是国际科学史学会会员,着有《美国数学教学与数学史》《数学史》《北美洲和南美洲早期数学教学》《数学符号史》等着作。
译者简介
戴念祖,1942年生。现为中国科学院科学史研究所研究员。着有《中国力学史》《中国声学史》等,发表论文近百篇,数次荣获中国科学院自然科学奖。
内容简介
《物理学史》是一部早已为物理学界、科学史界所熟悉、重视和推崇的物理学通史,它叙述了从古代巴比伦时期至1925年物理学发展的重要历史事实。作者对于历史事实的取材及重大历史事件的描叙,态度是极为客观和严谨的,许多叙述甚至成为了哲学史、思想史的研究素材。此外,《物理学史》还描写了实验室的发展历程及现在出版的科学史着作中不再提及的历史事件或尚未引起人们注意的发展事实,这在科学史着作中是极少见并难能可贵的。 本书译者还为《物理学史》加上了中国物理学的发展简史,从而大大地丰富了该书的内容。《物理学史》在文后还附有参考文献和索引,便于读者深入研究和查索事实。 《物理学史》初版于1899年,1962年出了第6版,期间多次加印、修订。而相比之下,中国学者所着的多种版本的“物理学史”显得教条死板。
本书目录
再版序 第一版序 巴比伦人和埃及人 希腊人(力学、光学、电和磁、气象学、声学、原子论、希腊物理学研究的“失败”) 罗马人 阿拉伯人 中世纪时期的欧洲(火药和航海罗盘、流体静力学、光学) 文艺复兴(哥白尼体系、 力学、光学、电和磁、气象学、科学研究的归纳法) 17世纪(力学、光学、电和磁、气象学、声学) 18世纪(力学、光学、电和磁、气象学、声学) 19世纪(物质结构、光学、热学、电和磁、声学) 20世纪(放射现象、热学、光学、力学、物质结构、电和磁、声学、回顾、物理实验室的进化) 译后记 事项索引 人名索引

❷ 北京凝聚态物理国家实验室的介绍

北京凝聚态物理国家实验室是五个国家实验室之一(国科发基字[2003]389号)。12003年11月25日,正式开始筹建。2凝聚态物理国家实验室( 筹建中 )是科技部 2003 年批准筹建的五个国家实验室之一,依托中国科学院物理研究所, 实验室设超导物理、磁学与磁性材料、表面物理等 11 个研究部。 实验室现有固定人员 265 人。 王恩哥、 陈东敏为北京凝聚态物理国家实验室( 筹 ) 主任,探索国家 实验室管理运行模式。成立了“北京凝聚态物理国家实验室 ( 筹 ) 理事会”, 赵忠贤院士任理事长,于渌院士、王恩哥研究员( 物理所所长 )任副理事长 。

❸ 凝聚态物理学的介绍

凝聚态物理学(condensed matter physics)是研究凝聚态物质的物理性质与微观结构以及它们之间的关系,即通过研究构成凝聚态物质的电子、离子、原子及分子的运动形态和规律,从而认识其物理性质的学科。一方面,它是固体物理学的向外延拓,使研究对象除固体物质以外,还包括许多液态物质,诸如液氦、熔盐、液态金属,以及液晶、乳胶与聚合物 等,甚至某些特殊的气态物质,如经玻色-爱因斯坦凝聚的玻色气体和量子简并的费米气体。另一方面,它也引入了新的概念体系,既有利于处理传统固体物理遗留的许多疑难问题,也便于推广应用到一些比常规固体更加复杂的物质。从历史来看,固体物理学创建于20世纪的30—40年代,而凝聚态物理学这一名称最早出现于70年代,到了80—90年代,它逐渐取代了固体物理学作为学科名称,或者将固体物理学理解为凝聚态物理学的同义词。

❹ 凝聚态物理学的起源发展

凝聚态物理学起源于19世纪固体物理学和低温物理学的发展。19世纪,人们对晶体的认识逐渐深入。1840年法国物理学家A·布拉维导出了三维晶体的所有14种排列方式,即布拉维点阵。1912年,德国物理学家冯·劳厄发现了X射线在晶体上的衍射,开创了固体物理学的新时代,从此,人们可以通过X射线的衍射条纹研究晶体的微观结构。
19世纪,英国着名物理学家法拉第在低温下液化了大部分当时已知的气体。1908年,荷兰物理学家H·昂内斯将最后一种难以液化的气体氦气液化,创造了人造低温的新纪录-269 °C(4K),并且发现了金属在低温下的超导现象。超导具有广阔的应用前景,超导的理论和实验研究在20世纪获得了长足进展,临界转变温度最高纪录不断刷新,超导研究已经成为凝聚态物理学中最热门的领域之一。
现今凝聚态物理学面临的主要问题高温超导体的理论模型。

❺ 凝聚态物理学的研究热点


凝聚态物理学的研究热点:①1984年发现准晶态;②1986年发现高温超导体YBaCuO2(钇钡铜氧化物);③1984年建立纳米科学;④1992年发现材料LaSrMnO3的巨磁阻效应;⑤2001年发现新的高温超导材料MgB2。

❻ 量子场论是如何被引入凝聚态物理的

其实没有什么“引入”不“引入”的问题。量子场论只是研究多粒子系统的一种方法,这种方法是在解决包括高能物理和凝聚态物理中各类问题的过程中发展起来的。

量子场论并没有被刻意“引入”凝聚态物理学,因为它就是处理多粒子系统最自然、最方便的工具。

当你要解析地研究一个多粒子系统时,你会自然地选择二次量子化表象而不是构造多粒子波函数(当然这一点并不绝对,很多计算方法都是基于波函数),于是自然要做量子化、要做微扰展开、要处理准经典近似、自发对称破缺、重整化……于是你自然而然就用到量子场论。

当然从历史角度,凝聚态和高能团体对场论的贡献有所不同,但这也是由两个领域所研究问题的区别而决定的。对凝聚态物理学来说,相变是再常见不过的现象,因此“自发对称破缺”概念最自然地出现在了凝聚态领域;对高能物理学家来说,无限高的能标是最简单、最“naive”的假设,因此最早的重整化思想孕育于Bethe, Feynman, 朝永和Schwinger的计算;而后对优化微扰展开的仔细考察,使得Gell-Mann等高能学者最先建立了“跑动耦合常数”的概念,但对不同能标下物理的理解、和对“普适性”观念的沉思,又促使Wilson最先在凝聚态领域提出了重整化群的系统思想。在物理、乃至数学物理的发展史上,这类例子可谓俯拾即是。

由此可见,学科间的交叉,思想方法的共享其实是再正常不过的现象,当两类问题有着相似之处时,同样的理论方法总是自然而然地被两类问题的求解者共同发展着。量子场论就是这样一个强大的方法。

❼ 凝聚态物理学的研究内容

凝聚态物理学的基本任务在于阐明微观结构与物性的关系,因而判断构成凝聚态物质的某些类型微观粒子的集体是否呈现量子特征(波粒二象性)是至关紧要的。电子质量小,常温下明显地呈现量子特征;离子或原子则由于质量较重,只有低温下(约4K)的液氦或极低温下(μK至nK)的碱金属稀薄气体,原子的量子特征才突出地表现出来。这也说明为何低温条件对凝聚态物理学的研究十分重要。微观粒子分为两类:一类是费米子,具有半整数的自旋,服从泡利不相容原理;另一类是玻色子,具有整数的自旋,同一能态容许任意数的粒子占据。这两类粒子的物理行为判然有别。 软物质又称为复杂液体,是介于固体与液体之间的物相,液晶、乳胶、聚合物等均属此类。软物质大都是有机物质,虽然在原子尺度上是无序的,但在介观尺度上则可能出现某种规则而有序的结构。如液晶分子是杆状的,尽管其质心不具有位置序,但杆的取向却可能是有序的。又如聚合物是由柔软的长链分子所构成,由于长程无序的关联性,因而遵循了类似于临界现象的标度律。20世纪70—80年代液晶物理学和聚合物物理学的建立,使凝聚态物理学从传统的硬物质成功地延拓到软物质。软物质在微小的外界刺激(温度、外场或外力)下有显着的响应是其物性的特征,从而产生明显的实用效果。一颗纽扣电池可驱动液晶手表数年之久,就是证明。软物质变化过程中内能变化甚微,熵的变化十分显着,因而其组织结构的变化主要由熵来驱动,和内能驱动的硬物质迥然有别。熵致有序和熵致形变乃是软物质自组装的物理基础。 有机物质(小分子和聚合物)的电子结构与电子性质也受到广泛的重视。有机发光器件和电子器件正在研制开发之中。

❽ 凝聚态物理研究方向的详细介绍

凝聚态物理是物理学之下的一个二级学科。研究领域包括固体物理、晶体物理、金属物理、半导体物理、电介质物理、磁学、固体光学性质、低温物理与超导电性、高压物理、稀土物理、液晶物理、非晶物理、低维物理(包括薄膜物理、表面与界面物理和高分子物理)、液体物理、微结构物理(包括介观物理与原子簇)、缺陷与相变物理、纳米材料和准晶等。汉语中“凝聚”一词是由“凝”字双音演化而来的。“凝”在东汉许慎的“说文解字”一书中同“冰”,指的是水结成冰的过程。可见我们的祖先最初对凝聚现象的注意可能始于对水的观察,特别是水从液态到固态的现象。英语的condense来源于法语,后者又来源于拉丁文,指的是密度变大,从气或蒸汽变液体。看来西方人对凝聚现象的注意可能始于对气体的观察,特别是水汽从气态到液态的现象。这是很有意思的差别,大概与各自的古代自然生活环境和生活习惯有关。不过东西方二者原始意义的结合,恰恰就是今天凝聚态物理主要研究的对象—液态和固态。当然从科学的含义上来说,二者不是截然分开的。所以凝聚态物理还研究介于这二者之间的态。例如液晶等。液态和固态物质一般都是由量级为1023的极大数量微观粒子组成的非常复杂的系统。凝聚态物理正是从微观角度出发,研究这些相互作用多粒子系统组成的物质的结构、动力学过程及其与宏观物理性质之间关系的一门学科。
众所周知,复杂多样的物质形态基本上分成三类:气态、液态和固态,在这三种物态中,凝聚态物理研究的对象就占了二个,这就决定了这门学科的每一步进展都与我们人类的生活休戚相关。从传统的各种金属、合金到新型的各种半导体、超导材料,从玻璃、陶瓷到各种聚合物和复合材料,从各种光学晶体到各种液晶材料等等;所有这些材料所涉及到的声、光、电、磁、热等特性都是建立在凝聚态物理研究的基础上的。凝聚态物理研究还直接为许多高科学技术本身提供了基础。当今正蓬勃发展着的微电子技术、激光技术、光电子技术和光纤通讯技术等等都密切联系着凝聚态物理的研究和发展。
凝聚态物理以万物皆成于原子为宗旨,以量子力学为基础研究各种凝聚态,这是一个非常雄心勃勃的举措。凝聚态物理这个学科名称的诞生仅仅是最近几十年的事。如果追寻一下它的渊源。应该说出自于对固态中晶态固体的研究和对液态中量子液体的研究。在对这二种特殊态的长期研究中,人们积累了一些经验,也建立起了一些信心,并逐步把一些已有的方法推广用于非晶态和液晶乃至液态的研究,从而大大拓宽了视野,逐步形成了凝聚态物理。
今天,凝聚态物理的视野还在继续开拓。然而作为渊源的二种凝聚态即晶态固体和量子液体,时至今日仍然是它主要的研究对象,内容当然越来越丰富了,考虑的问题也越来越深入了。毕竟我们面临的是同一个自然界,许多现象和规律是普适的。人们正是通过对一系列特殊态的深入研究来逐步认识和掌握那些普适的规律。

❾ 凝聚态物理学的学科介绍

凝聚态物理学是当今物理学最大也是最重要的分支学科之一。其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用,等等,形成了比固体物理学更深刻更普遍的理论体系。经过半个世纪多的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现是凝聚态物理学的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。

❿ 什么是凝聚态物理

自20世纪20年代量子理论出现以来,固体晶态的物理研究得到高度发展,进而演变为现在的凝聚态物理。接下来我为你推荐什么是凝聚态物理,一起看看吧!

什么是凝聚态物理

凝聚态物理学(condensed matter physics)是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其与宏观物理性质之间的联系的一门学科。凝聚态物理是以固体物理为基础的外向延拓。

凝聚态物理的研究对象

凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。经过半个世纪的发展,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等。从而使凝聚态物理学成为当前物理学中最重要的分支学科之一,从事凝聚态研究的人数在物理学家中首屈一指,每年发表的论文数在物理学的各个分支中居领先位置。有力地促进了诸如化学、物理、生物物理学和地球物理等交叉学科的发展。

众所周知,复杂多样的物质形态基本上分成三类:气态、液态和固态,在这三种物态中,凝聚态物理研究的对象就占了二个,这就决定了这门学科的每一步进展都与我们人类的生活休戚相关。从传统的各种金属、合金到新型的各种半导体、超导材料,从玻璃、陶瓷到各种聚合物和复合材料,从各种光学晶体到各种液晶材料等等;所有这些材料所涉及到的声、光、电、磁、热等特性都是建立在凝聚态物理研究的基础上的。凝聚态物理研究还直接为许多高科学技术本身提供了基础。当今正蓬勃发展着的微电子技术、激光技术、光电子技术和光纤通讯技术等等都密切联系着凝聚态物理的研究和发展。

凝聚态物理以万物皆成于原子为宗旨,以量子力学为基础研究各种凝聚态,这是一个非常雄心勃勃的举措。应该说出自于对固态中晶态固体的研究和对液态中量子液体的研究。在对这二种特殊态的长期研究中,人们积累了一些经验,也建立起了一些信心,并逐步把一些已有的方法推广用于非晶态和液晶乃至液态的研究,从而大大拓宽了视野,逐步形成了凝聚态物理。

今天,凝聚态物理的视野还在继续开拓。然而作为渊源的二种凝聚态即晶态固体和量子液体,时至今日仍然是它主要的研究对象,内容当然越来越丰富了,考虑的问题也越来越深入了。毕竟我们面临的是同一个自然界,许多现象和规律是普适的。人们正是通过对一系列特殊态的深入研究来逐步认识和掌握那些普适的规律。

材料物理学与凝聚态物理有什么区别?

材料物理是从物理学原理出发提供材料结构、特性与性能的一门新兴交叉学科,主要面向新能源与新信息等新功能材料探索。

凝聚态物理学是研究凝聚态物质的物理性质与微观结构以及它们之间的关系,即通过研究构成凝聚态物质的电子、离子、原子及分子的运动形态和规律,从而认识其物理性质的学科。故与凝聚态物理学相比,材料物理更偏向于生活实用。

阅读全文

与凝聚态物理什么时候建立的相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1399
沈阳初中的数学是什么版本的 浏览:1345
华为手机家人共享如何查看地理位置 浏览:1037
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1403
中考初中地理如何补 浏览:1293
360浏览器历史在哪里下载迅雷下载 浏览:696
数学奥数卡怎么办 浏览:1383
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1479
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1332
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053