㈠ 高中物理课程中物理学家所作科学贡献总结
新课标高考高中物理学史(新人教版)
必修部分:(必修1、必修2 )
一、力学:
1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);
2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;
3、1687年,英国科学家牛顿在《自然哲学的数学原理》着作中提出了三条运动定律(即牛顿三大运动定律).
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因.
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向.
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)
6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动.
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它
原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向.
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说.
8、17世纪,德国天文学家开普勒提出开普勒三大定律;
9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;
10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星.
9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);
俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念.多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家.
10、1957年10月,苏联发射第一颗人造地球卫星;
1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空.
11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体.
12、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星.
选修部分:(选修3-1、3-2、3-3、3-4、3-5)
二、电磁学:(选修3-1、3-2)
13、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值.
14、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针.
15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场.
16、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖.
17、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律.
18、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象.
19、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律.
20、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应.
21、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向.
22、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点.
23、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流.
24、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素.
25、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子.(最大动能仅取决于磁场和D形盒直径.带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显着增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难.
26、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律.
27、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律.
28、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一.
四、热学(3-3选做):
29、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动.
30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律.
31、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述.次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述.
32、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限.指出绝对零度(-273.15℃)是温度的下限.T=t+273.15K
热力学第三定律:热力学零度不可达到.
五、波动学(3-4选做):
33、17世纪,荷兰物理学家惠更斯确定了单摆周期公式.周期是2s的单摆叫秒摆.
34、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理.
35、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应.【相互接近,f增大;相互远离,f减少】
36、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础.电磁波是一种横波
37、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速.
38、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章.
39、1800年,英国物理学家赫歇耳发现红外线;
1801年,德国物理学家里特发现紫外线;
1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片.
六、光学(3-4选做):
40、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律.
41、1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象.
42、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑.
43、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;
1887年,赫兹证实了电磁波的存在,光是一种电磁波
44、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:
①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;
②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变.
45、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:.
46.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学着作.
47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法.(注意其测量方法)
48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波.这两种学说都不能解释当时观察到的全部光现象.
七、相对论(3-4选做):
49、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界), ②热辐射实验——量子论(微观世界);
50、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现.
51、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:
①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;
②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变.
52、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;
53、激光——被誉为20世纪的“世纪之光”;
八、波粒二象性(3-5选做):
54、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖.
55、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性.(说明动量守恒定律和能量守恒定律同时适用于微观粒子)
56、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础.
57、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;
58、1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案.电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高.
十、原子物理学(3-5选做):
59、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流).
60、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖.
61、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖.
62、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型.
63、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型.由实验结果估计原子核直径数量级为10 -15m.
1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子.预言原子核内还有另一种粒子,被其学生乍得威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成.
64、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系.
65、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;
66、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构.
天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的.衰变快慢与原子所处的物理和化学状态无关.
67、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra).
68、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,
并预言原子核内还有另一种粒子——中子.
69、1932年,卢瑟福学生乍得威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖.
70、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素.
71、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变.63、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成).
72、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应).人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料.
73、1932年发现了正电子,1964年提出夸克模型;
粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;
轻子-不参与强相互作用的粒子,如:电子、中微子;
强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷.
物理学史专题
★伽利略(意大利物理学家)
对物理学的贡献:
①发现摆的等时性
②物体下落过程中的运动情况与物体的质量无关
③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)
经典题目
伽利略根据实验证实了力是使物体运动的原因(错)
伽利略认为力是维持物体运动的原因(错)
伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对)
伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对)
★胡克(英国物理学家)
对物理学的贡献:胡克定律
经典题目
胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)
★牛顿(英国物理学家)
对物理学的贡献
①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学
②经典力学的建立标志着近代自然科学的诞生
经典题目
牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对)
牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)
牛顿提出的万有引力定律奠定了天体力学的基础(对)
★卡文迪许
贡献:测量了万有引力常量
典型题目
牛顿第一次通过实验测出了万有引力常量(错)
卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对)
★亚里士多德(古希腊)
观点:
①重的物理下落得比轻的物体快
②力是维持物体运动的原因
经典题目
亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对)
★开普勒(德国天文学家)
对物理学的贡献 开普勒三定律
经典题目
开普勒发现了万有引力定律和行星运动规律(错)
托勒密(古希腊科学家)
观点:发展和完善了地心说
哥白尼(波兰天文学家) 观点:日心说
第谷(丹麦天文学家) 贡献:测量天体的运动
威廉?赫歇耳(英国天文学家)
贡献:用望远镜发现了太阳系的第七颗行星——天王星
汤苞(美国天文学家)
贡献:用“计算、预测、观察和照相”的方法发现了太阳系第九颗行星——冥王星
泰勒斯(古希腊)
贡献:电磁波谱.
27、1924年,法国物理学家德布罗意
预言了实物粒子的波动性;
28、1897年,汤姆生
利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型.
29、1909年-1911年,英国物理学家卢瑟福
进行了α粒子散射实验,并提出了原子的核式结构模型.由实验结果估计原子核直径数量级为10 -15 m .
30、1896年,法国物理学家贝克勒尔
发现天然放射现象,说明原子核也有复杂的内部结构.
31、1919年,卢瑟福
用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子.
32、1932年乍得威克
在α粒子轰击铍核时发现中子,由此人们认识到原子核的组成.
33、1932年安德森发现了正电子,1964年盖尔曼提出夸克模型;
粒子分为三大类:
媒介子,传递各种相互作用的粒子如光子;
轻子,不参与强相互作用的粒子如电子、中微子;
强子,参与强相互作用的粒子如质子、中子;强子由更基本的粒子夸克组成,夸克带电量可能为元电荷的 .
34.密立根
测定电子的电量
35.瓦特在1782年研制成功了具有连杆、飞轮和离心调速器的双向蒸汽机.
36.人类对天体的认识从“地心说—托勒密”到“日心说—哥白尼”到“开普勒定律”再到“牛顿的万有引力定律”. 直到1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量万有引力定律显示出强大的威力.
㈡ 高中物理学史总结 按人物成就
一、力学
1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);
2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
3、1687年,英国科学家牛顿在《自然哲学的数学原理》着作中提出了三条运动定律(即牛顿三大运动定律)。
4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
7、17世纪,德国天文学家开普勒提出开普勒三大定律;
8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;
9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;
俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。
11、1957年10月,苏联发射第一颗人造地球卫星;
1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。
二、电磁学
12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。
13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。
18世纪中叶,美国人富兰克林提出了正、负电荷的概念。
1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。
14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。
15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。
16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。
19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。
20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。
21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。
22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。
23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。
(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)
24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。
25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。
26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。
三、热学
27、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
28、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。
29、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。
30、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。
21、1642年,科学家托里拆利提出大气会产生压强,并测定了大气压强的值。
四年后,帕斯卡的研究表明,大气压随高度增加而减小。
1654年,为了证实大气压的存在,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。
四、波动学
22、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。
23、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。
24、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。
五、光学
25、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。
26、1801年,英国物理学家托马斯•杨成功地观察到了光的干涉现象。
27、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。
28、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。
29、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。
30、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。
31、1800年,英国物理学家赫歇耳发现红外线;
1801年,德国物理学家里特发现紫外线;
1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。
32、激光——被誉为20世纪的“世纪之光”。
六、波粒二象性
33、1900年,德国物理学家普朗克为解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的(电磁波的发射和吸收不是连续的),而是一份一份的,每一份就是一个最小的能量单位,即能量子E=hν,把物理学带进了量子世界;
受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。
34、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。
35、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,最先得出氢原子能级表达式,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。
36、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。
37、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;
1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。
七、相对论
38、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),
②热辐射实验——量子论(微观世界);
39、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。
40、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:
①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;
②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
狭义相对论的其他结论:
①时间和空间的相对性——长度收缩和动钟变慢(或时间膨胀)
②相对论速度叠加:光速不变,与光源速度无关;一切运动物体的速度不能超过光速,即光速是物质运动速度的极限。
③相对论质量:物体运动时的质量大于静止时的质量。
41、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:E=mc2。
八、原子物理学
42、1858年,德国科学家普吕克尔发现了一种奇妙的射线——阴极射线(高速运动的电子流)。
43、1897年,汤姆生利用阴极射线管发现了电子,指出阴极射线是高速运动的电子流。说明原子可分,有复杂内部结构,并提出原子的枣糕模型。1906年,获得诺贝尔物理学奖。
44、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。
45、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。
天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。
46、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,
并预言原子核内还有另一种粒子——中子。
47、1932年,卢瑟福学生乍得威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。
48、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。
49、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。
50、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。
51、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。
52、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。
53、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;
轻子-不参与强相互作用的粒子,如:电子、中微子;
强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子。
54、1964年盖尔曼提出了夸克模型,认为介子是由夸克和反夸克所组成,重子是由三个夸克组成。
网上摘的,不是安人物成就,不过很全。
㈢ 求高中物理科学家的贡献总结。
1、牛顿
艾萨克·牛顿是英格兰物理学家、数学家、天文学家、自然哲学家。主要贡献是他在1687年发表的论文《自然哲学的数学原理》里的万有引力和三大运动定律。
2、爱因斯坦
爱因斯坦是美籍德裔犹太人,举世闻名的物理学家,现代物理学的开创者和奠基人,相对论、“质能关系”、激光的提出者,“决定论量子力学诠释”的捍卫者。
3、麦克斯韦
麦克斯韦(James Clerk Maxwell,1831.06.13-1879.11.5)——19世纪伟大的英国物理学家、数学家。麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究,他预言了电磁波的存在,这种理论预见后来得到了充分的实验验证。
4、玻尔
尼尔斯·亨利克·戴维·玻尔是丹麦物理学家。玻尔是哥本哈根学派的创始人,哥本哈根大学科学硕士和博士,丹麦皇家科学院院士,曾获丹麦皇家科学文学院金质奖章,英国曼彻斯特大学和剑桥大学名誉博士学位,荣获1922年诺贝尔物理学奖。
5、温伯格
史蒂文·温伯格生于纽约,美国物理学家,1979年获诺贝尔物理学奖。他研究过粒子物理中的许多课题,包括量子场论的高能行为,他还发展了导出量子场论的方法,这些方法成为后来他的着作《场的量子理论》的第一章,并且着手写《引力与宇宙学》。这两本书,特别是后者,是在各自领域最有影响力的教材之一。
㈣ 高中物理,重要物理学家及其成就
1、胡克:英国物理学家;发现了胡克定律(F弹=kx)
2、伽利略:意大利的着名物理学家;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论.后由牛顿归纳成惯性定律.伽利略的科学推理方法是人类思想史上最伟大的成就之一.
3、牛顿:英国物理学家; 动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学.
4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础.
5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量.
7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础.研究电流通过导体时的发热,得到了焦耳定律.
9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”.
10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e .
11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系.
12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场.
13、安培:法国科学家;提出了着名的分子电流假说.
14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象.
16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念.
18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论.
20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说.发明了摆钟.21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象.(双孔或双缝干涉)
23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比.其在热力学方面也有巨大贡献.
24、爱因斯坦:他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论.提出了“质能方程”.
㈤ 高中物理科学家都有哪些,及各自贡献是什么
一、力学:
1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体不会比轻物体下落得快;他研究自由落体运动程序如下:
提出假说:自由落体运动是一种对时间均匀变化的最简单的变速运动;
数学推理:由初速度为零、末速度为v的匀变速运动平均速度 和 得出 ;再应用 从上式中消去v,导出 即 。
实验验证:由于自由落体下落的时间太短,直接验证有困难,伽利略用铜球在阻力很小的斜面上滚下,上百次实验表明: ;换用不同质量的小球沿同一斜面运动,位移与时间平方的比值不变,说明不同质量的小球沿同一斜面做匀变速直线运动的情况相同;不断增大斜面倾角,重复上述实验,得出该比值随斜面倾角的增大而增大,说明小球做匀变速运动的加速度随斜面倾角的增大而变大。
合理外推:把结论外推到斜面倾角为90°的情况,小球的运动成为自由落体,伽利略认为这时小球仍保持匀变速运动的性质。(用外推法得出的结论不一定都正确,还需经过实验验证)
注:伽利略对自由落体的研究,开创了研究自然规律的一种科学方法。(回忆理想斜面实验)
2.1683年,英国科学家牛顿在《自然哲学的数学原理》着作中提出了三条运动定律。
3.17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
4.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
5.17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);1846年,科学家应用万有引力定律,计算并观测到海王星。
6.我国宋朝发明的火箭与现代火箭原理相同,但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。
7.17世纪荷兰物理学家惠更斯确定了单摆的周期公式。周期是2s的单摆叫秒摆。
8.奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。(相互接近,f增大;相互远离,f减少)
㈥ 物理之中,着名人物与其发现 (高中部分)
高中教科书出现部份物理学家学术成就简介
一、阿基米德;
1、发现了浮力定律;2、证明了杠杆定律;3、提出了精确地确定物体重心的方法;4、他还认为地球是圆球状的,并围绕着太阳旋转, 5、发明“阿基米德螺旋”的扬水机。
二、牛顿:
1、建立微积分;2、发现了二项式定理。3、色散试验。并计算出不同颜色光的折射率,精确地说明了色散现象,揭开了物质的颜色之谜。4、制成了第一架反射望远镜;5、提出了光的“微粒说”。6、发现着名的万有引力定律和牛顿运动三定律。
三、焦耳:
1、发现焦耳-楞次定律;2、通过实验否定了热质说;3、测出了热功当量近似值;并测得了热功当量的平均值为423.9千克米/千卡。4、 计算出了气体分子的热运动速度值,从理论上奠定了波义耳-马略特和盖-吕萨克定律的基础,并解释了气体对器壁压力的实质。5、发现焦耳-汤姆逊效应。这个效应在低温和气体液化方面有广泛的应用。焦耳对蒸汽机的发展也做出了不少有价值的工作。
四、爱因斯坦:
1、光电效应定律的发现。确立波粒二象性学说。解释的光电效应,推导出光电子的最大能量同入射光的频率之间的关系。
2、分子大小的新测定法,通过观测由分子运动的涨落现象所产生的悬浮粒子的无规则运动,来测定分子的实际大小,证明原子的存在。
3、完整的提出了狭义相对论。狭义相对论最重要的结论是质量守恒原理失去了独立性,他和能量守恒定律融合在一起,质量和能量是可以相互转化的。使力学和电磁学也就在运动学的基础上统一起来。
4、发现质能关系,为核能开发利用奠定基础。
5、建成广义相对论以;6、在辐射量子方面提出引力波理论,7、开创了现代宇宙学。
五、亚里士多德:
1、首次将哲学和其他科学区别开来,开创了逻辑、伦理学、政治学和生物学等学科的独立研究。
2、他是形式逻辑学的奠基人,他力图把思维形式和存在联系起来,并按照客观实际来阐明逻辑的范畴。
3、亚里士多德认为运行的天体是物质的实体,地是球形的,是宇宙的中心;
4、在物理学方面,他反对原子论,不承认有真空存在;他还认为物体只有在外力推动下才运动,外力停止,运动也就停止。
六、哥白尼
建立日心说。
七、笛卡儿:
1、创立了解析几何学,为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。
2、对折射定律提出了理论上的推证。不过他的假定条件是错误的,他的推证得出了光由光疏媒质进入光密媒质时速度增大的错误结论。
3、对人眼进行光学分析,解释了视力失常的原因是晶状体变形,设计了矫正视力的透镜。
4、比较完整地第一次表述了惯性定律;
5、第一次明确地提出了运动量守恒定律;
6、善于运用直观“模型”来说明物理现象。运用假设和假说的方法研究物理,提倡理性、提倡科学为现代物理的研究提供范例。
笛卡儿堪称17世纪及其后的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。
八、伏特:
1、制造起电盘。2、设计了一种静电计,3、发现了沼气。并制成了一种称为气体燃化的仪器,可以用电火花点燃一个封闭容器内的气体。4、发明了伏达电堆,这是历史上的神奇发明之一。
九、伽利略:
1、在比萨斜塔上做了“两个铁球同时落地”的着名实验,从此推翻了亚里斯多德“物体下落速度和重量成比例”的学说,纠正了这个持续了1900年之久的错误结论。
2、创制了天文望远镜(后被称为伽利略望远镜),并用来观测天体,他发现了月球表面的凹凸不平,并亲手绘制了第一幅月面图。人们争相传颂:“哥伦布发现了新大陆,伽利略发现了新宇宙”。
十、惠更斯
1、改进望远镜,并于1655年用新望远镜发现了土卫六,从此闻名于世。2、创立了光的波动学,在建立向心力概念和极光研究等方面也有重要贡献。
十一、安培:
1、发现了安培定则: 2、发现电流的相互作用规律: 3、发明了电流计:4、提出分子电流假说
5、总结了电流元之间的作用规律——安培定律:
十二、开普勒:
1.发现了行星运行三定律,为牛顿建立万有引力定律打下坚实基础。因此,人们称颂他是“天空法律创制者”、“天体力学奠基人”。
2.在1627年完成了《鲁道夫星表》的编制,这是当时最完备最准确的一部星表,在以后的一百多年里几乎毫无修改地被天文学家和航海家尊为经典。
3.阐述了光是怎样成像的,研究了大气折射的计算,并且提出了折射望远镜的原理。开普勒望远镜光路图。
十三、库仑:
1、提出了一种可以精确测量微小力的扭秤。2、发现库仑定律。3、提出过带电物体因漏电而损失电量的衰减公式和分子的极化模型等,这种模型是A.M.安培提出分子电流的重要思想基础。
十四、奥斯特
1、发现了电流对磁针的作用,即电流的磁效应。由此开辟了物理学的新领域——电磁学。
2、提出了光与电磁之间联系的思想。
十五、法拉弟:
1、发现通电的导线能绕磁铁旋转以及磁体绕载流导体的运动,第一次实现了电磁运动向机械运动的转换,从而建立了电动机的实验室模型。2、发现了电磁感应定律。使人类掌握了电磁运动相互转变以及机械能和电能相互转变的方法,成为现代发电机、电动机、变压器技术的基础。3、发现电解第一和第二定律,为现代电化学工业奠定了基础,4、发现了磁致光效应,成为人类第一次认识到电磁现象与光现象间的关系。5、最早提出了光的电磁本质的思想。他的思想和观点完全正确,均为后人的实验所验证。6、首先提出了磁力线、电力线的概念,在电磁感应、电化学、静电感应的研究中进一步深化和发展了力线思想,7、第一次提出场的思想,建立了电场、磁场的概念,8、否定了超距作用观点。
十六、麦克斯韦:
1、集成并发展了法拉第关于电磁相互作用的思想,将所有电磁现象概括为一组偏微分方程组,预言了电磁波的存在,2、确认光也是一种电磁波,从而创立了经典电动力学。3、气体运动理论、光学、热力学、弹性理论等方面有重要贡献。
十七:卡诺:
1、运用了理想模型的研究方法,构思了理想化的热机——后称卡诺可逆热机(卡诺热机),提出了作为热力学重要理论基础的卡诺循环和卡诺定理,从理论上解决了提高热机效率的根本途径。
2、指出了热机工作过程中最本质的东西:热机必须工作于两个热源之间,才能将高温热源的热量不断地转化为有用的机械功;“热的动力与用来实现动力的介质无关,动力的量仅由最终影响热素传递的物体之间的温度来确定”。
十八、开尔文:
1、创立了热力学温标。他指出:“这个温标的特点是它完全不依赖于任何特殊物质的物理性质。”这是现代科学上的标准温标。
2、与克劳修斯共同创立热力学第二定律:“不可能从单一热源吸热使之完全变为有用功而不产生其他影响。”他从热力学第二定律断言,能量耗散是普遍的趋势。
3、与焦耳合作进一步研究气体的内能,对焦耳气体自由膨胀实验作了改进,进行气体膨胀的多孔塞实验,发现了焦耳-汤姆孙效应,即气体经多孔塞绝热膨胀后所引起的温度的变化现象。这一发现成为获得低温的主要方法之一,广泛地应用到低温技术中。
4、从理论研究上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。这一现象后叫汤姆孙效应。
5、发明了电像法,这是计算一定形状导体电荷分布所产生的静电场问题的有效方法。
6、推算了振荡的频率,为电磁振荡理论研究作出了开拓性的贡献。
7、成功地完成了电力、磁力和电流的“力的活动影像法”,这已经是电磁场理论的雏形了(如果再前进一步,就会深人到电磁波问题)。
8、 预言了城市将采用电力照明,并提出了远距离输电的可能性。他的这些设想以后都得以实现
9、 对电动机进行了改造,大大提高了电动机的实用价值。
10、建立电磁量的精确单位标准和设计各种精密的测量仪器。他发明了镜式电流计(大大提高了测量灵敏度)、双臂电桥、虹吸记录器(可自动记录电报信号)等等,大大促进了电测量仪器的发展。
11、研究了电缆中信号传播情况,解决了长距离海底电缆通讯的一系列理论和技术问题。装设了第一条大西洋海底电缆,这是开尔文相当出名的一项工作。
十九、克劳修斯:
1、发现了热力学基本现象,得出了热力学第二定律的克劳修斯陈述。
2、提出了热力学第二定律的定义:“热量不能自动地从低温物体传向高温物体。”
3、推导了克劳修斯方程——关于气体的压强、体积、温度和气体普适常数之间的关系,修正了原来的范德瓦尔斯方程。
4、提出了熵的概念,进一步发展了热力学理论。使热力学第二定律公式化,使它的应用更为广泛了。
5、提出了气体分子绕本身转动的假说。确定了实际气体与理想气体的区别。
6、研究了电解质和电介质。他重新解释了盐的电解质溶液中分子的运动;他建立了固体的电介质理论。
7、提出描述分子极性同电介质常数之间关系的方程。同时他还提出了电解液分解的假说。这一假说,后来经过阿仑尼乌斯的进一步发展成为电解液理论。
8、推导出了气体分子平均自由程公式,找出了分子平均自由程与分子大小和扩散系数之间的关系。同时,他还提出分子运动自由程分布定律。他的研究也为气体分子运动论的建立做出了杰出的贡献。
9、计算出了气体分子运动速度。后来,他确定了气体对于器壁的压力值相当于分子撞击器壁的平均值。运用与概率论相结合的平均值方法,创建了统计物理学的学科。并推导出能表示受压力影响的物体熔点(凝固点)的方程式,后来被称为克拉珀龙-克劳修斯方程。
10、在晚年,他不恰当地把热力学第二定律引用到整个宇宙,认为整个宇宙的温度必将达到均衡而不再有热量的传递,从而成为所谓的热寂状态,这就是克劳修斯首先提出来的“热寂说”。热寂说否定了物质不灭性在质上的意义,而且把热力学第二定律的应用范围无限的扩大了。
二十、玻尔兹曼:
1、应用热力学理论,导出了热辐射的斯特藩定律,取得了应用理论知识验证实验定律的一个重大成果。
2、与克劳修斯、麦克斯韦在充分研究气体分子运动论的基础上,开辟的一门新的理论物理学科。
3、在重力场中引进了速度分布率,并用H定理证明了速度分布率,给予熵以统计的意义;完成了输运过程的数学理论。他用能的自发运动的观点,解释了热力学第二定律。
4、建立了一系列的统计物理理论。在平衡态的统计理论中,他提出了各态历经假说;在求宏观平衡性质的方法研究中,他又提出了几率法,并与麦克斯韦共同总结出了近独立子系最可几分布的麦克斯韦一玻尔兹曼分布律。
5、创立了系统的非平衡态的统计理论。他在研究了如何通过分子的相互碰撞而使速度分布趋于平衡态分布时,建立了H定理、它相当于热力学中的熵增加原理,是热力学第二定律的统计诠释的基础。
6、确立了非平衡态的分布函数 。 玻尔兹曼在哲学观点上,反对马赫的唯象论,1899年,他对马赫的哲学理论进行过公开的批评,从而捍卫了原子论学说。
二十一、约翰.汤姆逊:
1、研究了阴极射线在磁场和电场中的偏转,作了比值e/m(电子的电荷与质量之比)的测定,结果他从实验上发现了电子的存在。
2、原子模型,把原子看成是一个带正电的球,电子在球内运动。
3、与阿斯顿共同进行阳极射线的质量分析,发现了氖的同位素。
二十二、威廉•汤姆逊亦译为汤姆生。
1、创立绝对温标(亦称开氏温标);把热力学第一定律和热力学第二定律具体应用到热学、电学和弹性现象等方面,对热力学的发展起了一定作用。
2、制成静电计、镜式电流计、双臂电桥等很多电学仪器。
3、证明了电容放电是一种振荡。19世纪末论述了原子的构造。坚持用力学模型来解释一切物理现象。
二十三、卢瑟福
1、发现了铀放射性辐射的不同成份的α辐射和β辐射。同时预言并证实,穿透能力更强的γ射线, 1900年提出了重元素自发衰变理论。 同时发现α射线的能量比β和γ射线大99倍左右。
2、1904年总结出放射性产物链式衰变理论,奠定了重元素放射系元素移位的基本原理。他的发现打破了元素不会改变的传统观念,使人们对物质结构的研究进人了原子内部的深层次,为开辟一个新的学科领域枣原子核物理做了开创性工作。
3、对α散谢实验的研究,提出了原子的有核结构模型。把原子结构的研究引向正确的轨道。被誉为“原子物理学之父”。
4、1919年实现人工核反应。证明这是α粒子轰击N之后使之衰变放出了氢原子核即质子:第一次实现了改变化学元素的人工核反应。
5、他还预言了重氢和中子的存在,这在后来都得到了证实。
二十四、伦琴
在进行阴极射线的实验时第一次注意到放在射线管附近的氰亚铂酸钡小屏上发出微光。经过研究,他确定了荧光屏的发光是由于射线管中发出的某种射线所致。因为当时对于这种射线的本质和属性还了解得很少,所以他称它为X射线,后来,人们将这种射线命名为伦琴射线。
二十五、玻尔
1、引入了“定态”和“跃迁”这两个全新的概念。“定态”概念把经典物理学在一定边界条件和初始条件下所允许的各种连续状态进行筛选,只允许某些分立状态存在,从而排除了定态之间的其他状态,形成若干鸿沟。“跃迁”(最初叫“过渡”)则把一个定态到另一定态的变化看作一种突然的、整体的、不需时间的行为,不允许经典物理那种逐渐的、连续的、分阶段动作。两个状态之间的能量差形成了原子发射和吸收光的机制。
2、提出了对应原理:在同一问题的经典理论与量子理论之间,总可以从形式上找到相对应的类比关系。合理地解释了众多的现象,如各元素的光谱与X射线谱、原子中电子的组态和元素周期表等。
二十六、玻意耳
1、证实了“空气的弹性有能力作出远远超过我们需要归之于它的事实”,并发现了气体的体积与压强的反比关系,建立玻意耳-马略特定律。
2、发现了水在结冰时会膨胀。他主张热是分子的运动。他拥护原子论假说,认为一切物体都是由较小的、完全相同的粒子组成的。
3、首先提出色光是白光的变种,表述了白光的复杂性的思想,指出物体的颜色并不是物体本身的内在属性,而是由光线在被照射面上发生的变异引起的。第一次记载了在肥皂泡和玻璃球中产生的彩色薄膜条纹。他观察到静电感应现象,指出化学发光现象是冷光等。在实验过程中研制成气压计。
二十七、居里夫人
1、发现钍(Th)亦具有放射性,并且沥青铀矿的放射性比任何含量的铀和钍能够解释的要强。
2、发现了放射性元素镭。他们最终从8吨废沥青铀矿中制得1克纯净的氯化镭,还提出了β射线(现在已知它是由电子组成的)是带负电荷的微粒的观点。并于1899年从沥青铀矿中发现放射性元素锕Ac)一起分离出纯净的金属镭。
二十八、乍得威克,
1、发现β射线能谱是连续的。并测出了原子核的电荷,从而完全证实了卢瑟福的原子理论和关于元素的核结构以及核电荷数与元素的原子序数相等的结论。
2、他根据约里奥-居里夫妇的实验,他敏锐地觉察到铍福射决不是γ辐射,很可能就是卢瑟福在1920年所预言的、也是他多年寻找的——中子辐射。通过一系列实验研究,最后终于证实了中子的存在,铍福射即是由铍中射出的中子组成的。从而发现了中子。
二十九、恩利克•费米
1、发展了量子统计学,用它来描述某类粒子大量聚集的行为,这类粒子人称费米子。由于电子、质子和中子——构成普通物质的三种“建筑材料”都是费米子,所以费米学说具有重要的科学意义。
2、1934年用中子轰击原子核产生人工放射现象。开始中子物理学研究。被誉为“中子物理学之父”。
3、1941年底,费米在哥伦比亚大学主持建造了世界上第一座原子反应堆,实现了自持式链式反应,为制造原子弹迈出了决定性的一步。1942年12月2日,在芝加哥,费米指导下设计和制造出来的核反应堆首次运转成功。这是原子时代的真正开端,因为这是人类第一次成功地进行了一次核链式反应。
三十、哈恩
1、发现铁核受快中子轰击也会发生裂变,核裂变的发现使世界开始进人原子能时代。
三十一、普朗克
1、找到了一个适用于电磁波谱所有波段的黑体辐射的经验公式。在公式推导中,他提出一个革命性的假定,认为能量只能取某一基本量hv(即能量量子)的整数倍 ,h为作用量子 ,即普朗克常量。对20世纪20年代量子理论的进一步发展起了主要作用。
三十二、康普顿
1、提出了电子有限线度(半径1.85×10-10”cm)的假设,说明密度与散射角的观察关系。形成的电子以及其它基本粒子的“康普顿波长”概念。这个概念后来在他自己的X射线散射的量子理论以及量子电动力学中都充分地得到了发展。
2、研究关于决定磁化效应对磁晶体X射线反射的密度问题。这项研究表明,电子轨道运动对磁化效应不起作用。他认为铁磁性是由于电子本身的固有特性所引起的,这是一个基本磁荷。这一看法的正确性后来由他在芝加哥大学指导的学生斯特思斯(J•C•Stearns)用实验得出的结果作了更有力的证明。
3、提出光量子不仅具有能量,而且具有某些类似力学意义的动量,在碰撞过程中,光子把一部分能量传递给电子,减少了它的能量,因而也就降低了它的频率。另外,根据碰撞粒子的能量和动量守恒,可以导出频率改变和散射角的依赖关系,这也就能很好地说明了康普顿所观测到的事实。让人们承认:光除了具有早巳熟知的波动性以外,还具有粒子的性质。这就说明了一束光是由互相分离的若干粒子所组成的,这种粒子在许多方面表现出和通常物质的粒子具有同样的性质。
4、发现“康普顿效应”
另:α、β、γ射线与X射线
实质上x射线就是一种光子流,一种电磁波,具有光线的特性,是光谱家族中的成员,只是其振荡频率高,波长短罢了,其波长在1~0.01埃(1埃=10-10米)。X射线在光谱中能量最高、范围最宽,可从紫外线直到几十甚至几百兆电子伏特(MeV)。因为其能量高,所以能穿透一定厚度的物质。能量越高,穿透得越厚,所以在医学上能用来透视、照片和进行放射治疗。
科学家们在放射线研究的过程中,还发现放射性同位素在衰变时能放射三种射线:α、β、γ射线。α射线实质上就是氦原子核流,它的电离能力强,但穿透力弱,一张薄纸就可挡住;β射线实质上就是电子流,电离能力较α射线弱,而穿透力较强,故常用于放射治疗;γ射线本质上同X射线一样,是一种波长极短,能量甚高的电磁波,是一种光子流,不带电,以光速运动,具有很强的穿透力。因此常常用于放射治疗。