导航:首页 > 物理学科 > 处在定态的粒子具有哪些物理性质

处在定态的粒子具有哪些物理性质

发布时间:2022-02-27 11:10:30

1. 量子力学中的定态迭加后为什么不再是定态

因为定态(stationary state)是一种量子态,定态的概率密度与时间无关。定态是微观粒子所处状态中的一种类型的状态。处于定态的微观粒子在空间各处出现的几率不随时间变化,而且具有确定的能量。

处于定态下的微观粒子具有如下特征:

1、能量E具有确定的值。

2、粒子的几率流密度不随时间改变。

3、所有力学量取各种可能值的几率分布及其力学量的平均值都不随时间而变。

在定态中,能量最低的状态称为基态(ground state),高于基态的状态依次称为第一、第二激发态(excited state)等。当粒子在两个定态(能量分别为E1和E2)之间跃迁时,将吸收或放出频率为v的光子,并满足:El-E2=hv,式中h为普朗克常数。

量子力学理论的产生及其发展

量子力学是描述物质微观世界结构、运动与变化规律的物理科学。它是20世纪人类文明发展的一个重大飞跃,量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。

19世纪末正当经典物理取得重大成就的时候,一系列经典理论无法解释的现象一个接一个地发现了。德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。

德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以hf为最小单位,一份一份交换的。

这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且跟"辐射能量与频率无关,由振幅确定"的基本概念直接相矛盾,无法纳入任何一个经典范畴。当时只有少数科学家认真研究这个问题。

爱因斯坦于1905年提出了光量子说。1914年,美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。

2. 粒子有哪些(种类及举例及其性质)

1楼的回答有些……呃,有点哽咽哈。

分子流?一般不这么说哈,分子不算粒子。粒子物理一般研究的是接近原子-原子核这一范围尺度的东西。

至于离子,当然,氦原子核也算是离子,但是说离子流的也比较罕见。

从电子开始,放射性β衰变发射β粒子,也就是高能电子流;另外,如果是加速器里出来的高能电子流一般也称作δ粒子。β粒子的贯穿本领不是很强,也不是很弱,一般需要几厘米厚的铝板就能屏蔽(为什么不用原子序数大的铅板?主要是为了避免韧致辐射产生γ射线,使得屏蔽提升等级。)除此之外,还有正电子流,主要是β+衰变而来。

氦原子核就是α粒子,电离本领很强,但是穿透力很差,一般用一张纸就可以挡住。

质子流p,和α粒子性质差不多,是氢原子核。

中子流n,贯穿本领很强,一般要用十几厘米或几十厘米厚的铅板来屏蔽,主要靠碰撞与物质产生作用,生成次级带电粒子,之后如同p和α一样又与物质发生电离作用……

x、γ射线,一般不称其为粒子,不过由于微观世界的波粒二象性,光量子有时候也可以作为粒子来看待。屏蔽方式和中子流相似。

中微子ν,高能粒子流,一般来自宇宙射线或核反应,不能屏蔽!不过由于其与物质作用几率可以忽略不计,所以对中微子我们一般不采取任何防护或屏蔽措施。凭它能绕地球十好几圈而撞不到一个物质微粒的“衰神”样儿,……我们对它不提也罢!

另外1楼说的夸克,事实上夸克是不能独自离开强子而存在的,它受到色力的束缚!所以根本就没有夸克流一说!

除了这些常见粒子外,比如碳核,氧核,也是有一定几率出现于核反应的。

还有就是2楼所说的介子、超子等传递力的作用的粒子流,这些细说就比较复杂了。。想了解的话可以去买专业的书籍来看,这些东西也不常见。

3. 物理性质的粒子和化学性质的粒子

分子是保持物质化学性质的一种粒子,对由分子构成的物质来说,分子是保持物质化学性质的最小微粒.对于由原子直接构成的物质,其化学性质由原子来保持.如金属单质,能保持其化学性质的最小粒子是原子.在化学变化中,分子可分成原子,原子重新组合成新的分子,但原子不可分.
故选C.

4. 物质处于不同状态时具有不同的物理性质吗为什么

固态物质具有一定的体积和形状;
液态物质没有确定形状,具有流动性;
气态物质容易被压缩,具有流动性.
固态时分子只在平衡位置上振动,分子间距很小,分子间的作用力很大,固态时保持一定的形状和体积,不易被压缩;液态时分子在平衡位置上振动一段时间,还能移动到其他的位置上振动,分子间距比固态大,分子间的作用力比固态小,液态时保持一定的体积,但没有确定的形状,具有流动性,但不易被压缩;气态分子除碰撞外,都做匀速直线运动,分子间距很大,分子间的作用力很小,几乎没有.没有一定的体积和形状,具有流动性易被压缩.

5. 定态薛定谔方程是什么

定态薛定谔方程一般指薛定谔方程(Schrödinger equation),又称薛定谔波动方程(Schrodinger wave equation),是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定。

它是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。

薛定谔方程表明量子力学中,粒子以概率的方式出现,具有不确定性,宏观尺度下失效可忽略不计。

薛定谔方程(Schrodinger equation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。

力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当,超弦理论试图统一两种理论。

薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,其正确性只能靠实验来确定。

量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。

薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当涉及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。

薛定谔提出的量子力学基本方程 。建立于 1926年。它是一个非相对论的波动方程。它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。

设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程。在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。

当势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,它是定态能量,Ψ(r)又称为属于本征值E的本征函数。

薛定谔方程是量子力学的基本方程,它揭示了微观物理世界物质运动的基本规律,如牛顿定律在经典力学中所起的作用一样,它是原子物理学中处理一切非相对论问题的有力工具,在原子、分子、固体物理、核物理、化学等领域中被广泛应用。

6. 量子力学中什么是定态

量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。量子力学的发展简史量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。1913年,玻尔在卢瑟福有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出微观粒子具有波粒二象性的假说。德布罗意认为:正如光具有波粒二象性一样,实体的微粒(如电子、原子等)也具有这种性质,即既具有粒子性也具有波动性。这一假说不久就为实验所证实。由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯和泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。量子力学是在旧量子论建立之后发展建立起来的。旧量子论对经典物理理论加以某种人为的修正或附加条件以便解释微观领域中的一些现象。由于旧量子论不能令人满意,人们在寻找微观领域的规律时,从两条不同的道路建立了量子力学。1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔丹一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。量子力学的基本内容量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。在量子力学中,一个物理体系的状态由波函数表示,波函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其波函数的作用;测量的可能取值由该算符的本征方程决定,测量的期待值由一个包含该算符的积分方程计算。波函数的平方代表作为其变数的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。关于量子力学的解释涉及许多哲学问题,其核心是因果性和物理实在问题。按动力学意义上的因果律说,量子力学的运动方程也是因果律方程,当体系的某一时刻的状态被知道时,可以根据运动方程预言它的未来和过去任意时刻的状态。但量子力学的预言和经典物理学运动方程(质点运动方程和波动方程)的预言在性质上是不同的。在经典物理学理论中,对一个体系的测量不会改变它的状态,它只有一种变化,并按运动方程演进。因此,运动方程对决定体系状态的力学量可以作出确定的预言。但在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;另一种是测量改变体系状态的不可逆变化。因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。据此,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。20世纪70年代以来,关于远隔粒子关联的实验表明,类空分离的事件存在着量子力学预言的关联。这种关联是同狭义相对论关于客体之间只能以不大于光速的速度传递物理相互作用的观点相矛盾的。于是,有些物理学家和哲学家为了解释这种关联的存在,提出在量子世界存在一种全局因果性或整体因果性,这种不同于建立在狭义相对论基础上的局域因果性,可以从整体上同时决定相关体系的行为。量子力学用量子态的概念表征微观体系状态,深化了人们对物理实在的理解。微观体系的性质总是在它们与其他体系,特别是观察仪器的相互作用中表现出来。人们对观察结果用经典物理学语言描述时,发现微观体系在不同的条件下,或主要表现为波动图象,或主要表现为粒子行为。而量子态的概念所表达的,则是微观体系与仪器相互作用而产生的表现为波或粒子的可能性。量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离性的观点.

7. 纳米材料的物理性质有哪些

广义地说,纳米材料是指在三维空间中至少有一维处在纳米尺度范围(0.1nm~100nm)或由他们作为基本单元构成的材料. 特性 : (1)表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化.例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%.主要原因就在于直径减少,表面原子数量增多.再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克.如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等. (2)小尺寸效应 当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,从而使其声、光、电、磁,热力学等性能呈现出“新奇”的现象.例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电.再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬.利用这些特性,可以高效率地将太阳能转变为热能、电能,此外又有可能应用于红外敏感元件、红外隐身技术等等. (3)量子尺寸效应 当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级.当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料的量子效应,从而使其磁、光、声、热、电、超导电性能变化.例如,有种金属纳米粒子吸收光线能力非常强,在1.1365千克水里只要放入千分之一这种粒子,水就会变得完全不透明. (4)宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应.纳米粒子的磁化强度等也有隧道效应,它们可以穿过宏观系统的势垒而产生变化,这种被称为纳米粒子的宏观量子隧道效应.

8. 关于粒子的一些性质

关于很多深一点的东西,说多了很复杂,就对你的问题一一对应回答吧……

⒈①中子、电子、质子一般来讲,我们都不会去在意它的形状,因为在微观世界里,形状并不具有太大的意义。
②物质波,这个是微观粒子波粒二象性的问题,它体现的明显不明显,当然,和宏观事物比起来,尺度确实占据一个必要条件,宏观事物都是体现的“粒子性”,然而,真正的微观世界里,要我们观察到这样的物质波,和粒子的数量还有关系……看看电子衍射图就知道。
③不确定性原理说的是空间位置和速度的不确定,能量宽度和时间的不确定性,所以对于观察你说的形状,没有太大的影响。另外,球,这个形状一般是对原子序数较小,且处在基态的核的描述。在一些激发态或者原子序数很大的情况下,核是呈一些不规则形状的……卢希庭教授编撰的《原子核物理》第8章有详细讲解。

⒉关于自旋,自旋是核子自身角动量和其轨道角动量的多重耦合,是矢量。至于你说的那个周期,确实,在一些科普丛书或者是高中老师讲课的时候都把粒子自旋等效为宏观物体的自转。自转是有周期的,自旋当然也有,只是这种周期和宏观物体有些不一样,怎么说呢?宏观物体自转,比如说地球,地球自转就是一天。微观粒子的自转?其实,正因为我们没有去过分追究微观粒子的具体形状,所以研究这个自转的意义也不见得很大,我们定义了一个自旋,自旋是角动量。在作为科普讲课的时候,老师会说,自旋=0.5的粒子,比如电子,它就相当于自转半圈π/2〖180°〗后于原来的“样子”一样,这就像一个长方形围着自己的对称中心自转似的;自旋=1的粒子,比如光子,它要围着自己的对称中心转一圈,就像月牙形一样;自旋=0的粒子,比如π介子,它就好比一个圆形,随便怎么看它都是对称的……当然,这只是为了方便理解老师才会这么说。比如一些自旋=2的粒子或是自旋更高的粒子,它们呢?用这种观点来看,显然是很难理解的。

事实上,如果你硬要这样理解,自旋为2的粒子,如χ介子,你就必须把它等效成立体的图形了,就像太阳系,因为冥王星的轨道和其它8行星轨道并不在一个平面上,所以你要等到在某一段时间之后重复当前的样子,那个周期就不是简简单单围着太阳系转一圈(相当于太阳自转一周)了……那个周期相当于是太阳系里所有星星的周期的最小公倍数。

这就是你问的转两圈的问题。为什么会有这样的疑问呢?从更细微的角度看,这相当于你只看到了地球的自转,忽略了地球的公转;粒子也一样,组成粒子的基本粒子不光有基本粒子的角动量,基本粒子围绕核自身做复杂的运动的时候也有一个轨道角动量。把这个考虑进来,你转两圈的问题就应该明了了。

⒊既然问出这个问题,相信你也对《时间简史》有过涉猎吧,这是一本大众化的科普书籍。电荷实际上就是电磁相互作用。宇宙中4大基本性质的力有强力(对应强相互作用)、弱力(弱相互作用)、电磁力(电磁相互作用)、引力(引力相互作用)。目前的大统一理论已经实现了对弱力、电磁力和引力的统一,其实,这对应的能量很高,大概是在10^(9~12)eV(GeV~TeV)量级。当今最先进的加速器能把粒子加速到TeV量级(如我国的正负电子对撞机),但是更高的没见报道。要实现4种力的完全统一,那就需要更高的能量,更先进的加速器(因为有光速的限制,所以一般是加速电子这样的轻粒子。)

所谓的弦理论,实际上可以参看夸克的性质,现在大学物理教材一般都会有介绍。至于那个平衡——其实,这个相当于一个金属球壳,球里有电荷,金属可以对电荷静电屏蔽。但是,这个壳又不是完全都是金属,在金属表面有的地方或许有残缺,使得里边的电场不能被完全的屏蔽,从而导致电磁力的溢出……组成强子的夸克就是这样,夸克之间有相互作用,但是由于强子这个“金属壳”的不完美,就导致了这些力的溢漏,然后体现在比如中子质子这一类的强子身上就是核力(强力,夸克色力的溢漏)、库仑力(电磁力,夸克电磁力的溢漏)。——这就是那个不平衡了……

另外,夸克色也是科学家给定的一个参数,用于区分不同种属的夸克,和自旋一样,同样不能像把自旋简单理解成自转一样,夸克的色也不能被简单说成是颜色,你只需要把它想象成,哦,就像电荷里的正电和负电一样,是个抽象的概念,正如如果我们开始把正电定义成负电,负电定义成正电一样,名字而已,它是实际存在的东西,即使不叫这个名字,它也一样存在。夸克很小,它的物质波波长短到已经不属于可见光范畴,虽然我们也说夸克有红色、绿色、蓝色,但是这里的红色、绿色、蓝色和我们通常见到红色、绿色、蓝色根本就不一样,因为我们根本就看不见这么短的电磁波。

9. 物质处于不同状态时具有不同的物理性质吗

自然界的各种物质都是由大量微观粒子构成的.当大量微观粒子在一定的压强和温度下相互聚集为一种稳定的状态时,就叫做“物质的一种状态”,简称为物态.在19世纪,人们还只能根据物质的宏观特征来区分物质的状态,那时还只知道有三种状态,即固态、液态和气态.初中讲物态变化,就是讲这三种常见的物质状态间的变化问题.
气体物质处于高温条件下,原子分子激烈碰撞被电离,或者气体物质被射线照射以后,原子被电离,整个气体含有足够数量的离子和带负电的电子,而且一般情况下正负电荷量几乎处处相等,这种聚集态叫等离子态.如果物质处于极高的压力作用下,例如压强超过大气压的140万倍,组成物质的所有原子的电子壳层都会被“挤破”,电子都变成为“公有”,原子失去了它原来的化学特征.这些“光身”的原子核在高压作用下会紧密地堆积起来(当然,再紧密也会有电子存在和活动的空隙),成为密度非常大的(大约是水成密度的3万至6.5万倍)状态,称为超固态.有些书籍把等离子态称为物质的第四态,把超固态称为物质的第五种状态.
进一步从物质的内部结构去考虑,物态就远不止这几种了.例如,在固体物质中,有的其内部微观粒子呈周期性、对称性的规则排列,称为结晶态.而另外一些,如玻璃、沥青等物质,常温下虽然也有固定的形状和体积,不能流动,但其内部结构则更像液体,为玻璃态(非晶体).还有一些有机物质,能够流动,又具有某些晶体的光学特性,是介于液态和结晶态之间的状态,称为液晶态,很多物质在极低的温度下,会出现电阻消失的现象,称为超导态;在极低的温度下,

阅读全文

与处在定态的粒子具有哪些物理性质相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1400
沈阳初中的数学是什么版本的 浏览:1346
华为手机家人共享如何查看地理位置 浏览:1038
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1404
中考初中地理如何补 浏览:1293
360浏览器历史在哪里下载迅雷下载 浏览:696
数学奥数卡怎么办 浏览:1383
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1479
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1332
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053