A. 微积分在物理学中的应用有哪些
微积分在物理学中的应用
物理学是定量科学,所以在物理学中广泛地使用数学,可以说数学是物理学的语言。可见,物理学是离不开数学的,因为数学为物理学提供了定量表示和预言能力,在相当长的一段时间里,数学与物理几乎是不可分割地联系在一起。而微积分作为数学的一大发现在物理学中的应用更是非常的广泛。
微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在大学物理中,微积分思想发挥了极其重要的作用。
微积分在物理学中的应用相当普遍,有许多重要的物理概念 ,物理定律就,,,dv,dr是直接以微积分的形式给出的,如速度,加速度a,,转动惯量v,dtdt
,,,d,2I,dm,r,,N,安培定律,电磁感应定律…… ,dF,Idl,B,dt
B. 微积分在大学物理中该如何 应用
一般来看,大部分学生对于物理题意的直接翻译存在一定的困难,尽管在本人看来只是一个机械的过程.要在大学物理中运用微积分,(你确定只有微积分),主要是对整个物理过程的连续变化性要有较为深刻的认识(尽管很多过程并不连续,但题目还是可以出成连续过程的),再者对于一段极小的变化要加以放大认识,还有就是你对微积分操作的熟练程度了.
步骤上可以有以下几类
一、直接由题意分析,得到一个具有广泛意义的微元,进行微元分析,如dv=a*dt之类,当然不会这么简单.然后就直接进行积分.这种题一般都是比较简单的,或是物理意义上比较明显的.
二、根据题意,对于一个暂态过程写出一个平衡等式,然后对两边微分,得到一个微元结果,对这个微分式进行积分操作.这类题一般是会比上一种复杂一些,但操作起来也不困难.
注意点:以上描述都是在遵从题意的情况下;微积分的数学处理要熟练;微分分析的结果一般是一个微分方程,求解微分方程时注意初始条件;若是积分,要注意在取上下限时,满足边界条件,上下限对齐.
我能想到的先只有这些了,你若有疑问就再发站内信给我吧.以上纯属个人意见,如有异议,请用文明用语指正.
C. 微积分在物理学中的应用
极多,随便打开一篇名字里带某某理论某某设计的论文,没有用到积分算我输。
具体来说,物理学经常要进行的测量实验就用到微积分,比如我要获取某工件A的速度加速度曲线,用来研究它的工作状态从而进行前馈补偿什么的。我们没法直接测速度,我们能测的是用激光干涉仪得到的他的位置参数,得到的是个距离-时间曲线。我们最终要得到的是速度-时间曲线,速度-时间曲线就是通过距离-时间曲线做一次求导得到的。
D. 微积分在高中物理中的运用
伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分。
微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。
微积分学是微分学和积分学的总称。 它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分堪称是人类智慧最伟大的成就之一。在高中物理中,微积分思想多次发挥了作用。
1、解决变速直线运动位移问题
匀速直线运动,位移和速度之间的关系x=vt;但变速直线运动,那么物体的位移如何求解呢?
例1、汽车以10m/s的速度行驶,到某处需要减速停车,设汽车以等减速2m/s2刹车,问从开始刹车到停车,汽车走了多少公里?
【解析】 现在我们知道,根据匀减速直线运动速度位移公式 就可以求得汽车走了0.025公里。
但是,高中所谓的的匀变速直线运动的位移公式是怎么来的,其实就是应用了微积分思想:把物体运动的时间无限细分。在每一份时间微元内,速度的变化量很小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移就可以知道。现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的“面积”,即 。
【微积分解】汽车在减速运动这段时间内速度随时间变化的关系 ,从开始刹车到停车的时间t=5s, 所以汽车由刹车到停车行驶的位移
小结:此题是一个简单的匀变速直线运动求位移问题。对一般的变速直线运动,只要结合物理知识求速度关于时间的函数,画出v-t图像,找“面积”就可以。或者,利用定积分就可解决.
2、解决变力做功问题
恒力做功,我们可以利用公式直接求出 ;但对于变力做功,我们如何求解呢?
例2:如图所示,质量为m的物体以恒定速率v沿半径为R的竖直圆轨道运动,已知物体与竖直圆轨道间的摩擦因数为 ,求物体从轨道最低点运动到最高点的过程中,摩擦力做了多少功。
【解析】物体沿竖直圆轨道从最低点匀速率运动到最高点的过程中,在不同位置与圆环间的正压力不同,故而摩擦力为一変力,本题不能简单的用 来求。
可由圆轨道的对称性,在圆轨道水平直径上、下各取两对称位置A和B,设OA、OB与水平直径的夹角为θ。在 的足够短圆弧上,△S可看作直线,且摩擦力可视为恒力,则在A、B两点附近的△S内,摩擦力所做的功之和可表示为:
又因为车在A、B两点以速率v作圆周运动,所以:
综合以上各式得:
故摩擦力对车所做的功:
【微积分解】物体在轨道上受到的摩擦力 ,从最低点运动到最高点摩擦力所做的功为
小结:这题是一个复杂的变力做功问题,利用公式直接求功是难以办到的。利用微积分思想,把物体的运动无限细分,在每一份位移微元内,力的变化量很小,可以忽略这种微小变化,认为物体在恒力作用下的运动;接下来把所有位移内的功相加,即“无限求和”,则总的功就可以知道。
在高中物理中还有很多例子,比如我们讲过的瞬时速度,瞬时加速度、感应电动势、引力势能等都用到了微积分思想,所有这些例子都有它的共性。作为大学知识在高中的应用,虽然微积分高中不要求,但他的思想无不贯穿整个高中物理。“微积分思想”丰富了我们处理问题的手段,拓展了我们的思维。我们在学习的时候,要学会这种研究问题的思想方法,只有这样,在紧张的学习中,我们才能做到事半功倍。