① 凝聚态物理找工作
凝聚态名义上是物理学中比较有用的专业,实际就业之中,是找工作比较难的一个专业。读半导体物理、磁性物理方向的可能还好一些。 相对来说光学类找工作要方便很多。理论物理方向道理上是很难找工作的,实际上他们都去自学IT、金融数学、统计一类的方向了,出来可以去IT或者金融,也不错。
② 女硕士研究生凝聚态物理专业就业情况怎样
凝聚态物理专业硕士毕业生主要就业方向是高等院校、科研院所和高科技公司,做研究员、工程师、技术骨干等等,前景还是很乐观的。
显然最适合做计算机硬件方面的研究工作,从事晶体管、集成电路、高纯硅、纳米技术等研究就业前景十分广阔,真可以说是钱途无量,缺点在于目前在国内尚属冷门,还不太吃香,建议走出国门,一定会备受外国公司青睐,建议适当多联系学习与凝聚态物理相关联的学科,包括理论物理、核物理、化学、数学、生物、电子技术、计算机科学等等。
凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。经过半个世纪的发展,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等。从而使凝聚态物理学成为当前物理学中最重要的分支学科之一,从事凝聚态研究的人数在物理学家中首屈一指,每年发表的论文数在物理学的各个分支中居领先位置。有力地促进了诸如化学、物理、生物物理学和地球物理等交叉学科的发展。
③ 凝聚态物理毕业之后有什么就业方向
凝聚态名义上是物理学中比较有用的专业,实际就业之中,是找工作比较难的一个专业。读半导体物理、磁性物理方向的可能还好一些。 相对来说光学类找工作要方便很多。理论物理方向道理上是很难找工作的,实际上他们都去自学IT、金融数学、统计一类的方向了,出来可以去IT或者金融,也不错。
④ 凝聚态物理就业前景
毕业生既可以继续攻读博士学位或赴海外深造,也可以在科研机构、高等院校、国家政府部门和相关领域从事物理方面的教学、服务和管理工作,或在信息、材料、能源等相关高技术的企事业单位从事技术性工作。凝聚态物理是近年来物理学中不断发现新现象、新成果的重要分支。该专业以凝聚态物质的物理现象和物理规律为研究对象,主要研究内容包括:高温超导物理、巨磁阻材料物理、磁性物理与材料、新型超导材料的探索、低维强关联体系物理、自旋电子学、纳米团簇及介观物理,人工微结构及表面物理等。
总之,凝聚态物理就业前景还是非常好的。
⑤ 吉林大学凝聚态物理博士好就业吗
不好就业。凝聚态物理是对于研究生而言,凝聚态物理是分理论,计算,实验三个方向的,不同方向的就业前景相差甚远。做理论的,直接去找工作不大可能,基本都是进了研究所和高校做博后。计算物理的,和理论物理差不多,不读博后不去做老师也都基本转到CS方向了。实验的话,就业是三个中相对最好的,一般来说可以去大的半导体公司或者企业做工程师。
⑥ 凝聚态物理硕士毕业,到底该找什么工作
主要就业方向是高等院校、科研院所和高科技公司,做研究员、工程师、技术骨干等等。也可以在科研机构、高等院校、部门和相关领域从事物理方面的教学、服务和管理工作,或在信息、材料、能源等相关高技术的企事业单位从事技术性工作。
如果你对研究型的工作感兴趣,计算方面的可以进公司做研发,软件测试;实验方面的可以进LED、材料方面的公司做技术或研发。当然,无论哪个方向的都可以进科研机构和高校。
凝聚态物理专业研究方向
该专业的研究方向有:高温超导及相关强关联体系的基本电子性质、低维自旋和电荷系统、纳米功能材料的基本电子性质研究、自旋电子学材料基本性质。
凝聚态物理专业就业前景
目前凝聚态物理学正处在枝繁叶茂的兴旺时期。并且,由于凝聚态物理的基础性研究往往与实际的技术应用有着紧密的联系,凝聚态物理学的成果是一系列新技术、新材料和新器件,在当今世界的高新科技领域起着关键性的不可替代的作用。
近年来凝聚态物理学的研究成果、研究方法和技术日益向相邻学科渗透、扩展,有力的促进了诸如化学、物理、生物物理和地球物理等交叉学科的发展,与此相应此专业的相关人才应用范围很广,前景还是很乐观的。
⑦ 凝聚态物理专业硕士毕业就业前景
凝聚态物理专业硕士毕业就业前景还是很好的,毕业就业前景不错,国内有很多知名的科技企业都在做相关研发,如华为等。
凝聚态物理学是从微观角度出发,研究由大量粒子组成的凝聚态物质的结构、动力学过程及其与宏观物理性质之间联系的一门学科。简单地说,凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相。
凝聚态物理专业其他情况简介。
本研究方向旨在通过计算机模拟研究材料物性和设计新型材料,目前主要从事结构稳定性、晶体缺陷和掺杂理论、以及过渡金属表面的催化机制研究。
具体涉及高性能的磁性半导体材料、太阳能电池材料、储氢材料、合金催化剂材料的性能研究及设计,以及复杂系统物理的模拟计算。本专业拥有较完备的科学计算软件,自己的集群计算中心以及中科院和国家超算中心等丰富计算资源。
以上内容参考网络——凝聚态物理专业