导航:首页 > 物理学科 > 物理光学是什么

物理光学是什么

发布时间:2023-03-19 22:26:43

A. 大一物理几何光学

其实主要是分为:几何光学和物理光学几粗亏何光学:是利用宏观的1.折射反射定律;2.直线传播定律;3。独立传播定律来对每一根光线进行追迹,是斗悔比较容易理解和比较广泛应用(成像镜头,照明系统基本都是用几何光学设计的),是一门非常古老的学科,有上千年的历史。物理光学:也叫波动光学,是17,18世纪左右开始提出的概念,从麦克斯韦预言光是电磁波到赫兹的火花实验到爱因斯坦解释光电效应,证明了光的波粒二象性。物理光学是从本质上解释了光的特性,折射反射定律等几何光学中的定律在物理上有了严格的解释和推导。物理光学的应用主要涉及衍射岩销神和干涉定律,在分析问题的时候把光束作为一个整体(主要看波前),然后利用衍射干涉定律来建立模型。最严格的时候需要用麦克斯韦电磁方程以及边界问题来分析。

B. 物理中光学的名词解释

分类: 教育/科学 >> 科学棚皮技术
问题描述:

1.完善成像

2.理想光学系统

3.主平面

4.孔径光阑

解析:

能够成理想象的光学系统叫做理想光具组或渣李理想光学系统,简称光组。

理想光组能完善像的条件是:能使物空间的同心光束转化为像空间的同心光束,也就是物空间一点经光组成的像仍是一点,即物空间与像空间是:点点对应;线线对应;面面对应。

我们知道共线光学理论是物方与像方的点与点,线与线对应,主要是用光链梁差线通过几何关系来确定物和像的位置。物与像的几何关系,通常是采用通过几对具有特殊光学特性的典型光线,构成几何图形,再根据图形边角关系来确定物像位置及放大率(横向放大率和角放大率)。光组主光轴上存在三对共轭点:焦点、主点和节点,它们统称为基点。

什么叫主点和主平面?

任何理想光组都存在一对横向放大率等于正一的共轭平面。属于物方的叫物方主平面,其轴上点叫物方主点(或叫第一主点,前主点);属于像方的叫像方主平面,其轴上点叫像方主点。分别用H与H’表示前主点和后主点。图2-22(a)和(b)所示是凸透镜的主点和主平面的情形。从物方焦点F发出的光束经两次折射后与主光轴平行;平行于主光轴的光束经两次折射后通过像方焦点。在两图中分别将每对共轭线延长并相交,这些交点的轨迹是垂轴平面,便是主平面,它们与主轴的交点便是主点。

孔径光阑:诸挡光孔中,最有效的控制成像光束光能量者,称为孔径光阑.简称孔阑

C. 物理光学包括哪些部分

物理光学是研究光的基本属性,包括它的传播规律和它与物质之间的相互作用。主要包括的内容有:光的电磁波理论、光的干涉、衍射、光的偏振和晶体光学等等。
与几何光学的区别是:几何光学是以光线为基础,用几何方法研究光在介质中的传播规律及光学系统的传播特性。我的理解是,几何光学从现象出发,通过对光的一些基本现象的研究,得出光的一些基本性质,进而研究与之相关的光学问题。物理光学偏重于从光的本质属性研究它的性质。两者不是对立,而是相辅相成,各有各的应用。

D. 物理光学与光学的区别

物理光学是光学中研究光的属性和光在媒质中传播时各种性质的学科。以光是一种波动为基础的物理光学,称为波动光学;以光是一种粒子为基础的物理光学,称为量子光学。
光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。
可见物理光学只是光学的一个学科范围。

E. 物理光学包括哪些部分

物理光学——人类对光本性的认识发展过程

(1)微粒说(牛顿) 基本观点 认为光像一群弹性小球的微粒。实验基础 光的直线传播、光的反射现象。困难问题 无法解释两种媒质界面同时发生的反射、折射现象以及光的独立传播规律等。

(2)波动说(惠更斯) 基本观点 认为光是某种振动激起的波(机械波)。实验基础 光的干涉和衍射现象。

①个的干涉现象——杨氏双缝干涉实验

条件 两束光频率相同、相差恒定。装置 (略)。 现象 出现中央明条,两边等距分布的明暗相间条纹。解释 屏上某处到双孔(双缝)的路程差是波长的整数倍(半个波长的偶数倍)时,两波同相叠加,振动加强,产生明条;两波反相叠加,振动相消,产生暗条。应用 检查平面、测量厚度、增强光学镜头透射光强度(增透膜).

②光的衍射现象——单缝衍射(或圆孔衍射)

条件 缝宽(或孔径)可与波长相比拟。装置 (略)。现象 出现中央最亮最宽的明条,两边不等距发表的明暗条纹(或明暗乡间的圆环)。困难问题 难以解释光的直进、寻找不到传播介质。

(3)电磁说(麦克斯韦) 基本观点 认为光是一种电磁波。 实验基础 赫兹实验(证明电磁波具有跟光同样的性质和波速)。各种电磁波的产生机理 无线电波 自由电子的运动;红外线、可见光、紫外线 原子外层电子受激发;x射线 原子内层电子受激发;γ射线 原子核受激发。可见光的光谱 发射光谱——连续光谱、明线光谱;吸收光谱(特征光谱。 困难问题 无法解释光电效应现象。

(4)光子说(爱因斯坦) 基本观点 认为光由一份一份不连续的光子组成每份光子的能量E=hν。实验基础 光电效应现象。装置 (略)。现象 ①入射光照到光电子发射几乎是瞬时的;②入射光频率必须大于光阴极金属的极限频率ν。;
③当ν>v。时,光电流强度与入射光强度成正比;④光电子的最大初动能与入射光强无关,只随着人射光灯中的增大而增大。解释 ①光子能量可以被电子全部吸收.不需能量积累过程;②表面电子克服金属原子核引力逸出至少需做功(逸出功)hν。;③入射光强。单位时间内入射光子多,产生光电子多;④入射光子能量只与其频率有关,入射至金属表,除用于逸出功外。其余转化为光电子初动能。 困难问题 无法解释光的波动性。

(5)光的波粒二象性 基本观点 认为光是一种具有电磁本性的物质,既有波动性。又有粒子性。大量光子的运动规律显示波动性,个别光子的行为显示粒子性。实验基础 微弱光线的干涉,X射线衍射.

F. 物理光学的介绍

光学中研究光的属性和光在媒质中传播时各种性质的学科。以光是一种波动为基础的物理光学,称为波动光学;以光是一种粒子为基础的物理光学,称为量子光学。本书以光的波动性为主要研究对象,从电磁波理论和傅里叶分析两个角度,研究光的传播、干涉、衍射、偏振性质,以及光的信息处理。在这些经典内容的编排上,力求结构合理、铺垫充分、线索清晰。除了基础内容外,还适当增加了光压、光子晶体、干涉条纹分析等,以反映科学研究和工程应用中的热点问题。

G. 高中物理光学学的都是什么

几何光学:主要是光的折射、全反射、色散
物理光学:光的干涉、衍射、电磁波、光电效应、波粒二象性

H. 光学属于什么学科

光学属于物理学科。

光学(optics)是物理学的重要分支学科。也是与光学工程技术相关的学科。狭义来说,光学是关于光和视见的科学,optics词早期只用于跟眼睛和视见相联系的事物。

而今天常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线和γ射线的宽广波段范围内的电磁辐射的产生、传播、接收和显示,以及与物质相互作用的科学,着重研究的范围是从红外到紫外波段。它是物理学的一个重要组成部分。

光学是研究光的行为和性质的物理学科。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组来描述;同时,光具有波粒二象性,光的粒子性则需要用量子力学来描述。

(8)物理光学是什么扩展阅读:

物理学的其他分类

1、牛顿力学(Newton mechanics)与分析力学(analytical mechanics)研究物体机械运动的基本规律及关于时空相对性的规律

2、电磁学(electromagnetism)与电动力学(electrodynamics)研究电磁现象,物质的电磁运动规律及电磁辐射等规律

3、热力学(thermodynamics)与统计力学(statistical mechanics)研究物质热运动的统计规律及其宏观表现

4、狭义相对论(special relativity)研究物体的高速运动效应以及相关的动力学规律。

5、广义相对论(general relativity)研究在大质量物体附近,物体在强引力场下的动力学行为。

6、量子力学(quantum mechanics)研究微观物质运动现象以及基本运动规律。

I. 高三物理光学知识点

如果你热爱读书,那你就会从书籍中得到灵魂的慰藉;从书中找到生活的榜样;从书中找到自己生活的乐趣;并从中不断地发现自己,提升自己,从而超越自己。以下是我给大家整理的 高三物理 光学知识点,希望能助你一臂之力!

高三物理光学知识点1

几何光学以光的直线传播为基础,主要研究光在两个均匀介质分界面处的行为规律及其应用。

从知识要点可分为四方面:一是概念;二是规律;三为光学器件及其光路控制作用和成像;四是光学仪器及应用。

(一)光的反射

1.反射定律

2.平面镜:对光路控制作用;平面镜成像规律、光路图及观像视场。

(二)光的折射

1.折射定律

2.全反射、临界角。全反射棱镜(等腰直角棱镜)对光路控制作用。

3.色散。棱镜及其对光的偏折作用、现象及机理

应用注意:

1.解决平面镜成像问题时,要根据其成像的特点(物、像关于镜面对称),作出光路图再求解。平面镜转过α角,反射光线转过2α

2.解决折射问题的关键是画好光路图,应用折射定律和几何关系求解。

3.研究像的观察范围时,要根据成像位置并应用折射或反射定律画出镜子或遮挡物边缘的光线的传播方向来确定观察范围。

4.无论光的直线传播,光的反射还是光的折射现象,光在传播过程中都遵循一个重要规律:即光路可逆。

(三)光导纤维

全反射的一个重要应用就是用于光导纤维(简称光纤)。光纤有内、外两层材料,其中内层是光密介质,外层是光疏介质。光在光纤中传播时,每次射到内、外两层材料的界面,都要求入射角大于临界角,从而发生全反射。这样使从一个端面入射的光,经过多次全反射能够没有损失地全部从另一个端面射出。

(四)光的干涉

光的干涉的条件是有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的 方法 有两种:(1)利用激光(因为激光发出的是单色性极好的光)。(2)设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。

(五)干涉区域内产生的亮、暗纹

1.亮纹:屏上某点到双缝的光程差等于波长的整数倍(相邻亮纹(暗纹)间的距离)。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹,各级彩色条纹都是红靠外,紫靠内。

(六)衍射

注意关于衍射的表述一定要准确。(区分能否发生衍射和能否发生明显衍射)

1.各种不同形状的障碍物都能使光发生衍射。

2.发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。

(七)光的电磁说

1.麦克斯韦根据电磁波与光在真空中的传播速度相同,提出光在本质上是一种电磁波?D?D这就是光的电磁说,赫兹用实验证明了光的电磁说的正确性。

2.电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。

各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的(伴随α、β衰变而产生)。

3.各种电磁波的产生、特性及应用。

(八)光的偏振

光的偏振也证明了光是一种波,而且是横波。各种电磁波中电场E的方向、磁场

(九)光电效应

1.在光的照射下物体发射电子的现象叫光电效应。(下图装置中,用弧光灯照射锌版,有电子从锌版表面飞出,使原来不带电的验电器带正电。)光效应中发射出来的电子叫光电子。

ν0,只有ν0才能发生光电效应;②光电子的初动能与入射光的强度无关,只随入光的频率增大而增大;③当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比;④瞬时性(光电子的产生不超过10-9s)。

3.爱因斯坦的光子说。光是不连续的,是一份一份的,每一份叫做一个光子,光子的能量成正比:E=hν

4.爱因斯坦光电效应方程:h-W(W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功。)

(十)康普顿效应

在研究电子对X射线的散射时发现:有些散射波的波长比入射波的波长略大。康普顿认为这是因为光子不仅有能量,也具有动量。实验结果证明这个设想是正确的。因此康普顿效应也证明了光具有粒子性。

(十一)光的波粒二象性

干涉、衍射和偏振以无可辩驳的事实表明光是一种波;光电效应和康普顿效应又用无可辩驳的事实表明光是一种粒子;因此现代物理学认为:光具有波粒二象性。

高三物理光学知识点2

公式

光的反射和折射(几何光学)

1.反射定律α=i {α;反射角,i:入射角}

2.绝对折射率(光从真空中到介质)n=c/v=sin /sin {光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速, :入射角, :折射角}

3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C:sinC=1/n

2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角

注:

(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;

(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;

(3)光导纤维是光的全反射的实际应用〔见第三册P12〕,放大镜是凸透镜,近视眼镜是凹透镜;

(4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;

(5)白光通过三棱镜发色散规律:紫光靠近底边出射见〔第三册P16〕。

高三物理光学知识点3

光的直线传播

1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C=3?108m/s; 各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v<c。< p="">

2.本影和半影

(l)影:影是自光源发出并与投影物体表 面相 切的光线在背光面的后方围成的区域.

(2)本影:发光面较小的光源在投影物体后形成的光线完全不能到达的区域.

(3)半影:发光面较大的光源在投影物体后形成的只有部分光线照射的区域.

(4)日食和月食:人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食.当地球的本影部分或全部将月球反光面遮住,便分别能看到月偏食和月全食.

3.用眼睛看实际物体和像

用眼睛看物或像的本质是凸透镜成像原理:角膜、水样液、晶状体和玻璃体共同作用的结果相当于一只 凸透镜。发散光束或平行光束经这只凸透镜作用后,在视网膜上会聚于一点,引起感光细胞的感觉,通过视神经传给大脑,产生视觉。

高三物理光学知识点相关 文章 :

★ 高三物理光学知识点梳理(2)

★ 高中物理光学复习要点

★ 高中物理光学知识点(2)

★ 高中物理选修3-4光学重要知识点

★ 高中物理光学知识点

★ 高中物理之带你走进光学知识点总结归纳

★ 高考物理考点光学的总结和复习的知识点介绍

★ 高中物理选修3-4光学知识点

★ 高中物理光学知识点总结归纳

J. 物理光学和应用光学有什么区别

区别:

1、性质不同

物理光学是从光的波动性出发来研究光在传播过程中所发生的现象,它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。主要是理论研究。

应用光学它主要是讲解几何光学、典型光学仪器原理、光度学、色度学、光纤光学系统、激光光学系统及红外光学系统等的基础理论和方法。主要用于工程实践应用研究。

2、应用不同

应用光学它的应用主要是几何光学和波动光学。随着光学学科的飞速发展,如激光的出现及其广泛的应用,光纤通信和光电子成像技术的发展

物理光学的应用主要涉及衍射和干涉定律,在分析问题的时候把光束作为一个整体(主要看波前),然后利用衍射干涉定律来建立模型。

(10)物理光学是什么扩展阅读

1、物理光学是光学的一个分支,研究的是光的基本特性、传播规律和光与其他物质之间的相互作用。其中的干涉、衍射、偏振现象是以几何光学无法解释的。

是建立在惠更斯原理之上,可以建立复波前(包括振幅与相位)通过光学系统的模型。这一技术能够利用计算机数值仿真模拟或计算衍射、干涉、偏振特性、像差 等各种复杂光学现象。由于仍然有所近似,因此物理光学不能像电磁波理论模型那样能够全面描述光传播。

对于大多数实际问题来说,完整电磁波理论模型计算量太大,在现在的一般计算机硬件条件下并不十分实用,但小尺度的问题可以使用完整波动模型进行计算。

2、应用光学包括几何光学、典型光学系统和像差理论三大部分。几何光学部分以高斯光学理论为核心内容,包括光线光学的基本概念与成像理论、球面和平面光学系统及其成像原理、理想光学系统原理、光能和光束限制等基础内容。

典型光学系统部分包括眼睛、显微镜与照明系统、望远镜与转像系统、摄影光学系统和投影光学系统等成像原理、光束限制、放大倍率及其外形尺寸计算。

像差理论详细叙述了光学系统的轴上点像差、轴外点像差和色差的形成原因、概念、现象、基本计算、典型结构的像差特征和校正像差的基本方法。

阅读全文

与物理光学是什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:735
乙酸乙酯化学式怎么算 浏览:1398
沈阳初中的数学是什么版本的 浏览:1344
华为手机家人共享如何查看地理位置 浏览:1037
一氧化碳还原氧化铝化学方程式怎么配平 浏览:878
数学c什么意思是什么意思是什么 浏览:1402
中考初中地理如何补 浏览:1291
360浏览器历史在哪里下载迅雷下载 浏览:694
数学奥数卡怎么办 浏览:1381
如何回答地理是什么 浏览:1016
win7如何删除电脑文件浏览历史 浏览:1049
大学物理实验干什么用的到 浏览:1479
二年级上册数学框框怎么填 浏览:1693
西安瑞禧生物科技有限公司怎么样 浏览:952
武大的分析化学怎么样 浏览:1242
ige电化学发光偏高怎么办 浏览:1331
学而思初中英语和语文怎么样 浏览:1643
下列哪个水飞蓟素化学结构 浏览:1419
化学理学哪些专业好 浏览:1480
数学中的棱的意思是什么 浏览:1051