① 实验中为什么要测扭转常数
是刚体转动惯量吧 难道你是CHINA UNIWERCITY OF ....的学生?
我是这样做的
试验中每个扭摆的螺旋弹簧的性质不同 因此需要测量
采用了多次测量取平均值法
② 大学物理实验《扭摆法测量物体的转动惯量》思考题答案
转动惯量与哪些因素有关
③ 大学物理实验如何用扭摆法测定任意形状的刚体对特定轴的转动惯量
刚体绕轴转动惯性的度量。其数值为J=∑ mi*ri^2,
式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。
;求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。
描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。
还有垂直轴定理:垂直轴定理
一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。
表达式:Iz=Ix+Iy
刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离 ,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。
转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。
刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。
补充对转动惯量的详细解释及其物理意义:
先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。
E=(1/2)mv^2 (v^2为v的2次方)
把v=wr代入上式 (w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r)
得到E=(1/2)m(wr)^2
由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替,
K=mr^2
得到E=(1/2)Kw^2
K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。
这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。
为什么变换一下公式就可以从能量角度分析转动问题呢?
1、E=(1/2)Kw^2本身代表研究对象的运动能量
2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。
3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质
心运动情况。
4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积
分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样)
所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。
若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV
其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。
补充转动惯量的计算公式
转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。
对于杆:
当回转轴过杆的中点并垂直于轴时;J=mL^2/12
其中m是杆的质量,L是杆的长度。
当回转轴过杆的端点并垂直于轴时:J=mL^2/3
其中m是杆的质量,L是杆的长度。
对与圆柱体:
当回转轴是圆柱体轴线时;J=mr^2/2
其中m是圆柱体的质量,r是圆柱体的半径。
转动惯量定理: M=Jβ
其中M是扭转力矩
J是转动惯量
β是角加速度
例题:
现在已知:一个直径是80的轴,长度为500,材料是钢材。计算一下,当在0.1秒内使它达到500转/分的速度时所需要的力矩?
分析:知道轴的直径和长度,以及材料,我们可以查到钢材的密度,进而计算出这个轴的质量m,由公式ρ=m/v可以推出m=ρv=ρπr^2L.
根据在0.1秒达到500转/分的角速度,我们可以算出轴的角加速度β=△ω/△t=500转/分/0.1s
电机轴我们可以认为是圆柱体过轴线,所以J=mr^2/2。
所以M=Jβ
=mr^2/2△ω/△t
=ρπr^2hr^2/2△ω/△t
=7.8*10^3 *3.14* 0.04^2 * 0.5 * 0.04^2 /2 * 500/60/0.1
=1.2786133332821888kg/m^2
单位J=kgm^2/s^2=N*m
④ 扭摆法测定物体转动惯量中扭转常数K值与摆动角度有何关系怎样才能见效实验误差
K值在摆角在40度到90度之间时基本相同,在小角度时变小,K值不是固定常数,在测定各种物体的摆动周期时,摆角不宜过小、变化过大。若摆动20次后摆角减小,可使其增大后再测量,且整个实验中摆角基本保持在这一范围内。
扭转应力在横截面上由扭矩作用产生的剪切应力。在弹性范围内,圆柱形横截面上的扭转应力是沿圆形截面的轴由中心向外表面直线增加的。
(4)大学物理实验如何测量扭摆弹簧的扭转常数扩展阅读:
圆周线只是绕圆筒轴线转动,其形状、大小、间距不变——横截面在变形前后都保持为形状、大小未改变的平面,没有正应力产生;
所有纵向线发生倾斜且倾斜程度相同——横截面上有与圆轴相切的切应力且沿圆筒周向均匀分布。
截面上的扭矩等于截面左段或右段上所有作用平面垂直于杆件轴线的力偶的代数和,用右手螺旋,拇指背离截面的力偶产生正扭矩,拇指指向截面的力偶产生负扭矩。
⑤ 扭摆法测转动惯量试验中中弹簧的扭转常数k是不是固定常数
你说的是大物实验吧
K不是固定常数
不同的扭摆有不同的K
⑥ 求扭摆法测定物体的转动惯量实验数据
实验原理:
1.扭摆运动——角简谐振动
(1)
此角谐振动的周期为
(2)
式中,为弹簧的扭转常数式中,为物体绕转轴的转动惯量。
2.弹簧的扭转系数的测定:
实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,
再由实验数据算出本仪器弹簧的值。方法如下:
(1)测载物盘摆动周期,由(2)式其转动惯量为
(2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为
(3)塑料圆柱体的转动惯量理论值为
⑦ 实验中为什么要测量扭转常数采用了什么方法
一个棱柱体的任意截面受纯扭时适用于端面。
据推测,没有任何负荷的一方面临卷力量可以忽略不计。该材料的棒是各向同性和身体非线性,也就是说不断的弹性性质的不同应力水平。六个应力分量,有4个是等于零: σ x = σ为Y = σ ž = τ代理= 0 。由于棒是扭曲,旋转的截面稍通过一些,但其轮廓角度不扭曲。
这个问题可以得到解决的经典理论的弹性用应力函数(x,y),根据给定的边界条件,是不断的截面轮廓。所以是一个杆的单连通截面值= 0的轮廓
⑧ 在扭摆实验中,弹簧扭转常数越大,摆动周期是否越大
无关
⑨ 扭摆法测定物体转动惯量实验
在“扭摆法测量物体转动惯量”的实验中,当悬盘的摆角很小时,阻力可以忽略不计,悬盘的摆动可以看成简谐振动;而且,摆动过程中能量守恒,利用简谐振动和能量守恒即可求出转动惯量.
在实验中,先测出空载时悬盘的周期、上、下盘的半径和悬线的长度,即可求出悬盘的转动惯量,然后放上待测物体,测量此时的周期,得到悬盘与待测物体转动惯量的和,减去悬盘的转动惯量后,即得待测物体的转动惯量.
可利用平行轴定理,先测定物体绕与特定轴平行的过物体质心的轴的转动惯量J',仪器可用扭摆或三线摆,若特定轴与过质心轴的距离为L,则物体绕特定轴转动的转动惯量J=J'+mL^2。
转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。
(9)大学物理实验如何测量扭摆弹簧的扭转常数扩展阅读:
面积对于一轴的转动惯量,等于该面积对于同此轴平行并通过形心之轴的转动惯量加上该面积同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此面积绕过形心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。
转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。
而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量应用于刚体各种运动的动力学计算中。