导航:首页 > 物理学科 > 物理学中晶体有哪些

物理学中晶体有哪些

发布时间:2023-04-05 12:56:54

1. 初二物理的晶体有哪些非晶体呢

晶体;海波、冰、食盐、水晶、明矾、各种金属、金刚石、石墨、石英、云母、硫酸铜、糖、味精

我们吃的盐是氯化钠的结晶,味精闷卜是谷氨酸钠神斗的结晶,冬天窗户玻璃上的冰花和天上飘下的雪花,是水的结晶。每家厨房中常见的砂糖、碱是晶体,每个人身上的牙齿、骨骼是晶体,工业中的矿物岩石是晶体,日常见到的各种金属及合金制蚂瞎穗品也属晶体,就连地上的泥土砂石都是晶体。

非晶体;玻璃、蜂蜡、松香、沥青、橡胶、石蜡、琥珀、珍珠。

2. 常见的晶体 非晶体都有哪些

一、常见的晶体:如食盐、金刚石、干冰和各种金属等。

晶体可分为单晶体和多晶集合体:绝大部分宝石矿物是单晶体,比如钻石、蓝宝石、祖母绿、海蓝宝石和紫晶等;也有部分宝石是多晶体,即所说的玉石,它们是由许多细小的同种或不同种晶体构成的集合体。钻石原石单晶体东陵石多晶集合体

多晶体又根据构成集合体矿物颗粒的大小,可将其分为显晶质和隐晶质:显晶质是指直接用肉眼或借助普通10倍放大镜就可辨认出其中的单个矿物晶体颗粒的集合体,如结构比较粗松的翡翠和石英岩等。

隐晶质是指用肉眼或借助普通10倍放大镜不能观察和分辨出单个矿物颗粒的集合体。

二、常见的非晶体:如玻璃、沥青、松香、塑料、石蜡、橡胶等。

非晶体又称无定形体内部原子或分子的排列呈现杂乱无章的分布状态的固体称为非晶体。 非晶态固体包括非晶态电介质、非晶态半导体、非晶态金属。它们有特殊的物理、化学性质。

例如金属玻璃(非晶态金属)比一般(晶态)金属的强度高、弹性好、硬度和韧性高、抗腐蚀性好、导磁性强、电阻率高等。这使非晶态固体有多方面的应用。它是一个正在发展中的新的研究领域,得到迅速的发展。

(2)物理学中晶体有哪些扩展阅读

一、晶体有以下共同的基本性质:

1、自限性

在适当的条件下可以自发地形成几何多面体的性质。

2、均一性

在同一晶体的不同部分,质点的分布是相同的,所以晶体的各个部分的物理化学性质也是相同的。

3、各向异性(异向性)

在晶体格子构造中,除对称原因外,往往不同方向上质点的排列是不一样的,因此晶体的性质也会随方向的不同而有所差异,如不同方向上硬度和解理的差异等都是晶体异向性的表现。

4、对称性

晶体具有格子构造本身就是对称的表现,从外部形态来看,晶体的晶面、晶棱和角顶在晶体的不同方向和部位有规律地重复出观便是晶体对称的直观体观。

5、最小内能

指在相同的热力学条件下,晶体与同种成分物质的非晶质体、液体、气体相比较,其内能最小。

6、稳定性

由于晶体具有最小内能,因而结晶状态是一种相对稳定的状态,这就是晶体的稳定性。

二、晶体与非晶体的区别

1、晶体有自范性,非晶体无自范性。

2、晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。外形为无规则形状的固体。

3、晶体有各向异性,非晶体多数是各向同性。晶体有固定的熔点,非晶体无固定的熔点,它的熔化过程中温度随加热不断升高。

3. 初中晶体都有哪些

求列出初中物理中常见的晶体与非晶体
石英、云母、明矾、食盐、硫酸铜、糖、味精等为常见的晶体

玻璃、蜂蜡、松香、沥青、橡胶等为常见的非晶体。
初闹做薯中化学。。。为什么会有晶体出现??
B因为长期暴露,水分减少
初中常见的由离子组成的物质有哪些
离子组成的物质即为离子晶体由正、负离子或正、负离子集团按一定比例通过离子键结合形成的晶体称作离子晶体。离子晶体一般硬而脆,具有较高的熔沸点,熔融或溶解时可以导电。

离子晶体有二元离子晶体、多元离子晶体与有机离子晶体等类别。

强液者碱(NaOH、KOH、Ba(OH)2)、活泼金属氧化物(Na2O、MgO、Na2O2)、大多数盐类(BeCl₂、Pb(Ac)₂等除外)都是离子晶体。
初中物理的晶体和非晶体如何区别?
晶体有固定的熔点

也就是说晶体加热中只有在达到熔点时温度才是不变耿,其他时间也是上升的

而非晶胡判体没有熔点

也就是说非晶体只要加热温度就上升

4. 物理学中常见的晶体有哪些

常见的晶体有:金属、石英、云母、明矾、食盐、硫酸铜、糖、味精等.
常见的非晶体有:玻璃、蜂蜡、松香、沥青、橡胶等.

5. 物理上的"晶体"和"非晶体"有什么区别和定义

一、定义不同

1、晶体

分子整齐规则排列的固体叫做晶体。

2、非晶体

分子杂乱无章排列的固体叫做非晶体。非晶体在熔化吸热时,温度不断地升高。

二、常见类型不同

1、晶体

海波、冰、石英、水晶、金刚石、食盐、明矾、金属都是晶体。

2、非晶体

松香、玻璃、石蜡、沥青都是非晶体。

三、特性不同

1、晶体

(1)自然凝结的、不受外界干扰而形成的晶体拥有整齐规则的几何外形,即晶体的自范性。

(2)晶体拥有固定的熔点,在熔化过程中,温度始终保持不变。

(3)单晶体有各向异性的特点。

(4)晶体可以使X光发生有规律的衍射。

宏观上能否产生X光衍射现象,是实验上判定某物质是不是晶体的主要方法。

(5)晶体相对应的晶面角相等,称为晶面角守恒。

2、非晶体

非晶体又称无定形体内部原子或分子的排列呈现杂乱无章的分布状态的固体称为非晶体。 如玻璃、沥青、松香、塑料、石蜡、橡胶等。非晶态固体包括非晶态电介质、非晶态半导体、非晶态金属。它们有特殊的物理、化学性质。

例如金属玻璃(非晶态金属)比一般(晶态)金属的强度高、弹性好、硬度和韧性高、抗腐蚀性好、导磁性强、电阻率高等。这使非晶态固体有多方面的应用。它是一个正在发展中的新的研究领域,得到迅速的发展。

6. 常见原子晶体有哪些

常见原子晶体有:

1、金刚石:

锗单晶是不含大角晶界或孪晶的锗晶体。呈金刚石型晶体结构,是重要的半导体材料。锗单晶产品又包括太阳能级别锗单晶,红外级锗单晶和探测器级锗单晶。

7. 常见物质的晶体类型有哪些

一般有分子晶体 如 碘单质
原子晶体 如SiO2
离子晶体 如NaCl
金属晶体 如Fe Cu单质

8. 晶体分哪几种

这个问题解答起来有点麻烦,因为有不同的分类方法。
如果按功能分,晶体有20 种之多,如半导体晶体、磁光晶体、激光晶体、电光晶体、声光晶体、非线性光学晶体、压电晶体、热释电晶体、铁电晶体、闪烁晶体、绝缘晶体、敏感晶体、光色晶体、超导晶体以及多功能晶体等。

以上来自下文(读读挺有意思的,真心的希望能够帮助你!):
晶体学和晶体材料研究的进粗族扒展2006-09-13 12:51 随着计算机技术和激光技术的发展, 人类已经走进了崭新的光电子时代; 而实现这一巨大变化的物质基础不是别的, 正是硅单晶和激光晶体。可以断言, 晶体材料的进一步发展, 必将谱写出人类科技文明的新篇章。

一、人类对晶体的认识过程及有关晶体的概念
1. 人类对晶体的认识过程
什么是晶体? 从古至今, 人类一直在孜孜不倦地探索着这个问题。早在石器时代, 人们便发现了各种外形规则的石头, 并把它们做成工具, 从而揭开了探求晶体本质的序幕。之后,经过长期观察,人们发现晶体最显着的特点就是具有规则的外形。1669 年, 意大利科学家斯丹诺(Nicolaus Steno) 发现了晶面角守恒定律, 指出在同一物质的晶体中,相应晶面之间的夹角是恒定不变的。接着,法国科学家阿羽依(Rene Just Haüy) 于1784 年提出了着名的晶胞学说, 使人类对晶体的认识迈出了一大步。根据这一学说,晶胞是构成晶体的最小单位,晶体是由大量晶胞堆积而成的。1885 年, 这一学说被该国科学家布喇菲(A.Bravais) 发展成空间点阵学说, 认为组成晶体的原子、分子或离子是按一定的规则排列的, 这种排列形成一定形式的空间点阵结构。1912 年, 德国科学家劳厄(Max van Laue) 对晶体进行了X射线衍射实验, 首次证实了这一学说的正确性, 并因此获得了诺贝尔物理奖。

2. 晶体的概念
具有空间点阵结构的物体就是晶体, 空间点阵结构共有14 种。例如, 食盐的主要成份氯化钠(NaCl) 具有面心立方结构, 是一种常见的晶体。此外, 许多金属(如钨、钼、钠、常温下的铁等) 都具有体穗宴心立方结构, 因而都属于晶体。值得注意的是, 在晶体中, 晶莹透明的有很多, 但是, 并不是所有透明的固体都是晶体, 如玻璃就不是晶体。这是因为, 组成玻璃的质点只是在一个原子附近的范围内作有规则的排列, 而在整个玻璃中并没有形成空间点阵结构。

3. 天然晶体与人工晶体
晶体分成天然晶体和人工晶体。千百年来, 自然界中形成了许多美丽的晶体, 如红宝石、蓝岩昌宝石、祖母绿等,这些晶体叫做天然晶体。然而,由于天然晶体出产稀少、价格昂贵,从19世纪末, 人们开始探索各种方法来生长晶体, 这种由人工方法生长出来的晶体叫人工晶体。到目前为止, 人们已发明了几十种晶体生长方法, 如提拉法、浮区法、焰熔法、坩埚下降法、助熔剂法、水热法、降温法、再结晶法等。利用这些方法,人们不仅能生长出自然界中已有的晶体, 还能制造出自然界中没有的晶体。从红、橙、黄、绿、蓝、靛、紫到各种混合颜色, 这些人工晶体五彩纷呈, 有的甚至比天然晶体还美丽。

4. 晶体的共性
由于具有周期性的空间点阵结构, 晶体具有下列共同性质: 均一性, 即晶体不同部位的宏观性质相同; 各向异性, 即晶体在不同方向上具有不同的物理性质; 自限性, 即晶体能自发地形成规则的几何外形; 对称性, 即晶体在某些特定方向上的物理化学性质完全相同;具有固定熔点;内能最小。

5. 晶体学
除了对晶体的结构、生长和一般性质的研究, 人们还探索了有关晶体的其它问题, 从而形成了晶体学这门学科。其主要研究内容包括5 个部分: 晶体生长、晶体的几何结构、晶体结构分析、晶体化学及晶体物理。其中, 晶体生长是研究人工培育晶体的方法和规律, 是晶体学研究的重要基础; 晶体的几何结构是研究晶体外形的几何理论及内部质点的排列规律, 属于晶体学研究的经典理论部分, 但是, 近年来5 次等旋转对称性的发现, 对这一经典理论提出了挑战; 晶体结构分析是收集大量与晶体结构有关的衍射数据、探明具体晶体结构及X射线结构分析方法的; 晶体化学主要研究化学成分与晶体结构及性质之间的关系; 晶体物理则是研究晶体的物理性质, 如光学性质、电学性质、磁学性质、力学性质、声学性质和热学性质等。
二、晶体的性能、应用及进展
一位物理学家说过: “晶体是晶体生长工作者送给物理学家的最好的礼物。”这是因为,当物质以晶体状态存在时, 它将表现出其它物质状态所没有的优异的物理性能, 因而是人类研究固态物质的结构和性能的重要基础。此外, 由于能够实现电、磁、光、声和力的相互作用和转换, 晶体还是电子器件、半导体器件、固体激光器件及各种光学仪器等工业的重要材料, 被广泛地应用于通信、摄影、宇航、医学、地质学、气象学、建筑学、军事技术等领域。
按功能来分,晶体有20 种之多,如半导体晶体、磁光晶体、激光晶体、电光晶体、声光晶体、非线性
光学晶体、压电晶体、热释电晶体、铁电晶体、闪烁晶体、绝缘晶体、敏感晶体、光色晶体、超导晶体以及多功能晶体等。以下简单介绍其中重要的几种。
1. 半导体晶体
半导体晶体是半导体工业的主要基础材料, 从应用的广泛性和重要性来看, 它在晶体中占有头等重要的地位。半导体晶体是从20 世纪50 年代开始发展起来的。第一代半导体晶体是锗( Ge) 单晶和硅单晶
(Si) 。由它们制成的各种二极管、三极管、场效应管、可控硅及大功率管等器件, 在无线电子工业上有着 极其广泛的用途。它们的发展使得集成电路从只包括十几个单元电路飞速发展到含有成千上万个元件的超大规模集成电路, 从而极大地促进了电子产品的微小型化, 大大提高了工作的可靠性, 同时又降低了成本, 进而促进了集成电路在空间研究、核武器、导弹、雷达、电子计算机、军事通信装备及民用等方面的广泛应用。
目前, 除了向大直径、高纯度、高均匀度及无缺陷方向发展的硅单晶之外, 人们又研究了第二代半导体晶体——Ⅲ—Ⅴ族化合物, 如(CaAs) 、磷化镓( GaP) 等单晶。近来, 为了满足对更高性能的需求,已发展到三元或多元化合物等半导体晶体。在半导体晶体材料中, 特别值得一提的是氮化镓( GaN) 晶体。由于它具有很宽的禁带宽度(室温下为3. 4eV) , 因而是蓝绿光发光二级管(LED) 、激光二极管(LD) 及高功率集成电路的理想材料,近年来在全世界范围内掀起了研究热潮, 成为炙手可热的研究焦点。目前, 中国科学院物理研究所在该晶体的生长方面独辟蹊径, 首次利用熔盐法生长出3mm×4mm的片状晶体 。一旦该晶体的质量得到进一步的提高, 它将在发光器件、光通讯系统、CD 机、全色打印、高分辨率激光打印、大屏幕全色显示系统、超薄电视等方面得到广泛的应用。
2. 激光晶体
激光晶体是激光的工作物质, 经泵浦之后能发出激光, 所以叫做激光晶体。1960 年, 美国科学家Maiman 以红宝石晶体作为工作物质, 成功地研制出世界上第一台激光器, 取得了举世瞩目的重大科学
成就。目前,人们已研制出数百种激光晶体。其中,最常用的有红宝石(Cr :Al 2O3) 、钛宝石( Ti :Al2O3) 、掺钕钆铝石榴石(Nd : Y3Al 5O12) 、掺镝氟化钙(Dy : CaF2) 、掺钕钒酸钇(Nd : YVO4) 、四硼酸铝钕(NdAl 3(BO3) 4) 等晶体。
近年来, 由于新的激光晶体的不断出现以及非线性倍频、差频、参量振荡等技术的发展, 利用激光
晶体得到的激光已涉及紫外、可见光到红外谱区,并被成功地应用于军事技术、宇宙探索、医学、化学
等众多领域。例如,在各种材料的加工上,晶体产生的激光大显身手, 特别是对于超硬材料的加工, 它具有无可比拟的优越性。比如, 同样是在金刚石上打一个孔, 用传统方法需要两小时以上的时间, 而用晶体产生的激光,连0. 1 秒的时间都不用。此外,用激光进行焊接, 可以高密度地把很多电子元件组装在一起, 并能够大大提高电路的工作可靠性, 从而大幅度地减小电子设备的体积。激光晶体还可以制成激光测距仪和激光高度计, 进行高精度的测量。令人兴奋的是, 法国天文台利用具有红宝石晶体的装置, 首次实现了对同一颗人造卫星的跟踪观察实验,精确地测定了这颗卫星到地面的距离。在医学上,激光晶体更是得到了巧妙的应用。它发出的激光通过可以自由弯曲的光导管进行传送, 在出口端装有透镜和外科医生用的手柄。经过透镜, 激光被聚焦成直径仅有几埃的微小斑点, 变成一把无形却又十分灵巧的手术刀, 不但能够彻底
杀菌, 而且可以快速地切断组织, 甚至可以切断一个细胞。对于极其精细的眼科手术, 掺铒的激光晶体是最合适不过的了。这种晶体可以产生近3μm波长的激光, 由于水对该激光的强烈吸收, 导致它进入生物组织后, 只有几微米短的穿透深度, 因此, 这种激光是十分安全的, 不会使患者产生任何痛苦。由于用这种激光可以快速而精确地进行切割, 手术时间极短, 因而避免了眼球的不自觉运动对手术的干扰,保证了手术的顺利进行。此外, 激光电视、激光彩色立体电影、激光摄影、激光计算机等都将是激动人心的激光晶体的新用途。
3. 非线性光学晶体
光通过晶体进行传播时, 会引起晶体的电极化。当光强不太大时, 晶体的电极化强度与光频电场之间呈线性关系, 其非线性关系可以被忽略; 但是, 当光强很大时, 如激光通过晶体进行传播时, 电极化强度与光频电场之间的非线性关系变得十分显着而不能忽略, 这种与光强有关的光学效应称为非线性光学效应, 具有这种效应的晶体就称为非线性光学晶体。
非线性光学晶体与激光紧密相连, 是实现激光的频率转换、调制、偏转和Q开关等技术的关键材料。当前,直接利用激光晶体获得的激光波段有限, 从紫外到红外谱区, 尚有激光空白波段。而利用非线性光学晶体, 可将激光晶体直接输出的激光转换成新波段的激光, 从而开辟新的激光光源, 拓展激光晶体的应用范围。常用的非线性光学晶体有碘酸锂(α - Li IO3) 、铌酸钡钠(Ba2NaNb5O15) 、磷酸二氘钾(KD2PO4) 、偏硼酸钡(β- BaB2O4) 、三硼酸锂(LiB3O5)等。其中,偏硼酸钡和三硼酸锂晶体是我国于20 世纪80 年代首先研制成功的, 具有非线性光学系数大、激光损伤阈值高的突出优点, 是优秀的激光频
率转换晶体材料,在国际上引起了很大的反响。另一种着名的晶体是磷酸钛氧钾晶体( KTiOPO4) ,它是迄今为止综合性能最优异的非线性光学晶体, 被公认为1. 064μm和1. 32μm激光倍频的首选材料, 它可以把1. 064μm的红外激光转换成0. 53μm的绿色激光。由于绿光不仅能够用于医疗、激光测距, 还能够进行水下摄影和水中通信等, 因此,磷酸钛氧钾晶体得到了广泛的应用。
4. 压电晶体
当晶体受到外力作用时, 晶体会发生极化, 并形成表面电荷, 这种现象称为正压电效应; 反之, 当晶体受到外加电场作用时, 晶体会产生形变, 这种现象称为逆压电效应。具有压电效应的晶体则称为压电晶体,它只存在于没有对称中心的晶类中。最早发现的压电晶体是水晶(α- SiO2) 。它具有频率稳定的特性, 是一种理想的压电材料, 可用来制造谐振器、滤波器、换能器、光偏转器、声表面波器件及各种热敏、气敏、光敏和化学敏器件等。它还被广泛地应用于人们的日常生活中, 如石英表、电子钟、彩色电视机、立体声收音机及录音机等。
近年来, 人们又研制出许多新的压电晶体, 如钙钛矿型结构的铌酸锂(LiNbO3) 、钽酸钾( KTaO3)
等,钨青铜型结构的铌酸钡钠(Ba2NaNb5O15) 、铌酸钾锂( K1 - xLiNbO3) 等以及层状结构的锗酸铋(Bi 12GeO20) 等。利用这些晶体的压电效应,可制成各种器件, 广泛地用于军事上和民用工业, 如血压计、呼吸心音测定器、压电键盘、延迟线、振荡器、放大器、压电泵、超声换能器、压电变压器等。
5. 闪烁晶体
这种晶体在X射线激发下会产生荧光, 形成闪烁现象。最早得到应用的闪烁晶体是掺铊碘化钠(Tl :NaI) 晶体。该晶体的发光波长在可见光区,闪烁效率高, 又易于生长大尺寸单晶, 在核科学和核工
业上得到广泛的应用。20 世纪80 年代初, 中科院上海硅酸盐研究所采用坩埚下降法成功地生长了大尺寸锗酸铋(Bi 4Ge 3O12) 单晶。由于这种晶体阻挡高能射线能力强、分辨率高, 因而特别适合于高能粒子和高能射线的探测, 在基本粒子、空间物理和高能物理等研究领域有广泛的应用, 并已十分成功地用于欧洲核子研究中心L3 正负电子对撞机的电磁量能器上。此后, BaF2 晶体成为又一新型闪烁材料。除了在高能物理中应用之外, 该晶体在低能物理方面已用于正电子湮没谱仪, 使谱仪的分辨率和计数效率
均得到很大的提高。此外, 它还可用于检查隐藏的爆炸物、石油探测、放射性矿物探测、正电子发射层
析照相(简称PET) 等方面,具有良好的应用前景。
6. 声光晶体
当光波和声波同时射到晶体上时, 声波和光波之间将会产生相互作用, 从而可用于控制光束, 如使光束发生偏转、使光强和频率发生变化等, 这种晶体称为声光晶体, 如钼酸铅( PbMoO4) 、二氧化碲(TeO2) 、硫代砷酸砣( Tl 3AsS4) 等。利用这些晶体,人们可制成各种声光器件, 如声光偏转器、声光调Q 开关、声表面波器件等, 从而把这些晶体广泛地用于激光雷达、电视及大屏幕显示器的扫描、光子计
算机的光存储器及激光通信等方面。
7. 光折变晶体
光折变晶体是众多晶体中最奇妙的一种晶体。当外界微弱的激光照到这种晶体上时, 晶体中的载流子被激发, 在晶体中迁移并重新被捕获, 使得晶体内部产生空间电荷场, 然后, 通过电光效应,空间电荷场改变晶体中折射率的空间分布, 形成折射率光栅,从而产生光析变效应。光折变效应的特点是, 在弱光作用下就可表现出明显的效应。例如,在自泵浦相位共轭实验中,一束毫瓦级的激光与光折变晶体作用就可以产生相 位共轭波, 使畸变得无法辨认的图像清晰如初。由于折射率光栅在空间上是非局域的, 它在波矢方向相对于干涉条纹有一定的空间相移, 因而能使光束之间实现能量转换。如两波耦合实验中, 当一束弱信号光和一束强光在光折变晶体中相互作用时, 弱信号光可以增强1 000 倍。此外, 凭借着光折变效应, 光折变晶体还具有以下特殊的性能: 可以在3cm3 的体积中存储5 000幅不同的图像, 并可以迅速显示其中任意一幅; 可以精密地探测出小得只有10 - 7米的距离改变; 可以滤去静止不变的图像, 专门跟踪刚发生的图像改变;甚至还可以模拟人脑的联想思维能力。因此,这种晶体一经发现,便引起了人们的极大兴趣。
目前, 有应用价值的光折变晶体有钛酸钡(BaTiO3) 、铌酸钾( KNbO3) 、铌酸锂(LiNbO3) 、铌酸锶
钡(Sr1 - xBaxNb2O6) 系列、硅酸铋(Bi 12SiO20) 等晶体。其中,掺铈钛酸钡(Ce :BaTiO3) 是由中国科学院物理研究所于90 年代在国际上首次研制成功的。它的优异性能, 使光折变晶体在理论研究和实用化方面取得突破性进展。当前, 光折变晶体已发展成一种新颖的功能晶体, 在光的图像和信息处理、相位共轭、全息存储、光通讯和光计算机神经网络等方面展示着良好的应用前景。

三、晶体研究的发展趋势
随着人们对晶体认识的不断深入, 晶体研究的方向也逐步地发生着变化, 其总的发展趋势是: 从晶态转向非晶态; 从体单晶转向薄膜晶体; 从通常的晶格转向超晶格; 从单一功能转向多功能; 从体性质转向表面性质;从无机扩展到有机,等等。此外, 鉴于充分认识到晶体结构—性能关系的重要性, 人们已经开始利用分子设计来探索各种新型晶体。而且, 随着光子晶体和纳米晶体的出现和发展, 人类对晶体的认识更是有了新的飞跃。可以相信, 在不久的将来, 晶体的品种将会更多、性能将会更优异、应用范围也将会越来越广。

总之,晶体不仅是美丽的,而且也是有用的。它蕴涵着丰富的内容, 是人类宝贵的财富。但迄今为
止, 人们对它的认识犹如冰山之一角, 还有许多未知领域等待着我们去探索。

(王皖燕 中国科学院物理研究所,博士北京100080)

9. 晶体的分类

晶体的科学分类是以晶体的对称特点为基础的,所以先简要介绍一下晶体的对称特点。

一、晶体的对称

对称是指物体相同部分有规律地重复,如某些动物、植物的叶子和花瓣等。但物体对称的高低程度有所不同,有的对称程度很高,有的很低,或者说不具某些对称性(见图1-1-3)。

从宏观上来看,晶体的对称表现为构成其外部几何形态的面、棱和角顶有规律地重复。

从微观角度来看,由于晶体都具有格子构造,而格子构造本身就是质点在三维空间周期性重复的体现,因此从这种意义上来讲,所有的晶体都是对称的。

图1-1-3 蝴蝶的对称性(a)和树叶的不对称性(b)

晶体的对称特点取决于它内在的格子构造。不同的宝石矿物由于其格子构造不同,因而具有不同的对称性。有的矿物晶体对称性很高(如钻石和尖晶石等),有的则对称性较低(如黄玉、斜长石)。只有符合格子构造规律的对称才能在晶体上体现出来,因此晶体的对称是有限的。

另外晶体的对称不仅体现在外形上,同时也体现在物理性质(如光学、热学和电学性质等)上,即晶体的对称不仅仅是几何意义上的对称,也包括物理意义上的对称。

为了研究和分析晶体的对称性,往往要进行一系列的操作。使晶轮知体中相同部分重复而进行的操作叫对称操作。进行对称操作所借助的几何要素(点、线、面)称为对称要素,一般对称要素包括对称面、对称轴和对称中心等。

1.对称面(P)

对称面是一个假想态侍的通过晶体中心的平面,它将晶体平分为互为镜像的两个相等部分。对称面可以垂直并平分晶面,可以垂直晶棱并通过它的中点,也可以包含晶棱(见图1-1-4)。

图1-1-4 对称面(a)和非对称面(b)

图1-1-5 晶体中的对称轴L2、L3、L4和L6举例下面的图表示垂直该轴的切面

2.对称轴(L)

对称轴是一根假想的通过晶体中心的直线,相应的对称操作是围绕此直线的旋转。旋转一周,晶体中相同部分重复的次数叫轴次。晶体外形上可能出现的有意义的对称轴有二次对称轴(L2)、三次对称轴(L3)、四次对称轴(L4)和六次对称轴(L6),轴次高于二次的对称轴,即L3、L4、L6称为高次轴(见图1-1-5)。

3.对称中心(C)

对称中心是一个假想的位于晶体中心的点,相应的对称操作就是对此点的反伸。如果通过此点作任意直线,则在此直线上距对称中心等距离的两端必定可找到对应点(见图1-1-6)。

图1-1-6 具有对称中心(C)的图形1与1′、2与2′为对应点

一个晶体中所有对称要素的组合称为该晶体的对称型。例如,钻石晶体存在三个L4、四个L3、六个L2、九个对称面P、一个对称中心C,那么钻石的对称型就是所有这些对称要素的总和,可记为:3L44L36L29PC。自然界中所有晶体归纳起来共有32种对称型(见表1-1-1)。

二、晶体的分类

(一)晶体的分类

根据晶体对称性的特点,可以把晶体划分成七大晶系。再根据晶体是否有高次轴和有几个(一个或多个)高次轴,把七大晶系归纳为低、中、高级三个晶族。低级晶族没有高次轴,它包括三斜晶系(无对称轴和对称面)、单斜晶系(二次轴或对称面不多于一个)和斜方晶系(二次轴或对称面多于一个,无高次轴);中级晶族(只有一个高次轴)包括四方晶系(有一个四次轴)、三方晶系(有一个三次轴)和六方晶系(有一个六次轴);高级晶族只有等轴晶系,它有一个以上的高次轴(如都具有四个三次轴)。

(二)晶体的定向及晶格常数

1.晶体定向

晶体定向就是在晶体中确定一个坐标系统,也就是选择坐标轴(又可称为晶轴)和确定各晶轴上单位长(轴长)之比(轴率)。给晶体定向的目的是为了更确切地描述和帆桐吵表达构成晶体的晶面、晶棱在空间的展布方位。

晶轴 系指交于晶体中心的三条直线,它们分别为X轴、Y轴和Z轴(有些书籍中采用a、b、c来表示晶轴,它们分别与X、Y、Z相对应),晶轴的展布和正负方向与几何学中的规定相同。对于三方和六方晶系要增加一个U轴,其前端为负,后方为正。晶轴一般与对称轴或对称面的法线重合,或与某个晶棱方向平行。晶轴的选择要遵循一定的结晶学规律,各晶系的选轴原则见表1-1-2。

2.晶格常数

轴角 系指晶轴正端之间的夹角,它们分别以a(Y∧Z)、β(Z∧X)、γ(X∧Y)表示。

轴长与轴率。晶轴实际上是格子构造中的行列,该行列上的结点间距称为轴长或轴单位,X、Y、Z轴上的轴单位(结点间距,又称轴长)分别以a0、b0和c0表示。由于结点间距极小(以nm计),需要借助X射线分析才能测定,因此只根据晶体外形的宏观研究是不能确定轴长的。但根据几何结晶学的方法可以确定出它们之间的比率:a:b:c,这一比率称为轴率。

晶体常数 轴率a∶b∶c和轴角a、β、γ合称为晶体常数。在一般性描述中常叙述晶体常数的特征,而不给出具体的轴比率值或非特殊的轴角值。如轴率特征只说明轴单位之间相等或不相等(如a=b≠c),轴角只说明是否为特殊角(如a=90°、β>90°、γ=120°)即可。

表1-1-1 晶体的分类

表1-1-2 各晶系选择晶轴的原则及晶体常数特点

(三)各晶系对称及晶格常数特征

1.等轴晶系

等轴晶系有三个等长且相互垂直的结晶轴,即a=b=c,α=β=y=90°(见图1-1-7)。该晶系最高对称型为3L44L36L29PC。三个结晶轴相当于该晶系中三个相互重直的L4或L2。其常见单形为立方体、八面体、菱形十二面体、五角十二面体、四角三八面体和四面体等。属于等轴晶系的宝石矿物有钻石、石榴石、尖晶石、萤石和方钠石等。

图1-1-7 等轴晶系的晶体及对称特点

2.四方晶系

四方晶系有三个相互垂直的结晶轴,其中两个水平轴(X轴和Y轴)等长,但与纵轴(Z轴)不等长,即a=b≠c,a=β=γ=90°(如图1-1-8)。该晶系最高对称型

。该晶系唯一的一个高次轴——四次轴(L4)相当于纵轴(Z轴),另外两个相互垂直的二次轴(L2)或对称面的法线(若无L2或P,X、y轴平行晶棱选取)分别相当于X轴和Y轴。

该晶系的常见单形为四方柱和四方双锥。属于四方晶系的宝石矿物有锆石、金红石、锡石、方柱石和符山石等。

3.六方晶系

六方晶系的晶体有四个结晶轴,其纵轴(Z轴)与其他三个水平轴(X、Y、U)不相等(长或短);三个水平轴等长且彼此间呈120°交角,即a=b≠c,a=β=90°,γ=120°(见图1-1-9)。该晶系最高对称型为

六次轴(L6)相当于纵轴(Z),三个彼此相交为120°角的L2或P的法线相当于三个水平轴。若无L2或P,则三个水平轴平行晶棱选取。

图1-1-8 四方晶系的晶体及对称特点

该晶系的常见单形为六方柱和六方双锥等。属于六方晶系的宝石矿物有磷灰石、绿柱石和蓝锥矿等。

图1-1-9 六方晶系的晶体及对称特点

4.三方晶系

三方晶系与六方晶系相同,晶体有四个结晶轴,其纵轴(Z轴)与其他三个水平轴(X、Y、U)不相等(长或短);三个水平轴等长且彼此间呈120°交角,即a=b≠c,α=β=90°,γ=120°(图1-1-10)。该晶系最高对称型为

。该晶系唯一的一个高次轴——三次轴(L3)相当于纵轴(Z),三个相交成120°角的二次轴(L2)或P的法线相当于三个水平轴(X、Y、U),若无L2和P,则三个横轴平行晶棱选取。

图1-1-10 三方晶系的晶体及对称特点

三方晶系的常见单形为三方柱、三方双锥、菱面体和六方柱等(见图1-1-10)。属于三方晶系的宝石矿物有蓝宝石、红宝石、电气石、石英(水晶、紫晶、黄晶、烟晶、芙蓉石)和菱锰矿等。

5.斜方晶系

斜方晶系具三个相互垂直但互不相等的结晶轴,即a≠b≠c,α=β=y=90°。纵轴(Z)处于直立状态,水平轴(X、Y)穿过晶体侧面(见图1-1-11)。该晶系最高对称型

。三个结晶轴分别相当于三个互相垂直的二次轴(在L22P对称型中以L2为Z轴,以两个P的法线为X、Y轴)。

常见单形为斜方柱和斜方双锥等。属于该晶系的宝石矿物有橄榄石、黄玉、黝帘石、堇青石、金绿宝石、红柱石、柱晶石、赛黄晶和顽火辉石等。

图1-1-11 斜方晶系的晶体及对称特点

6.单斜晶系

单斜晶系具三个互不相等的结晶轴,Y轴垂直于X轴和Z轴,X轴斜交于包含Z轴和Y轴的平面,即a≠b≠c,a=y=90°,β>90°(见图1-1-12)。这个晶系有时用如下方式说明,即假设一个底面为长方形的柱体,其一边被推而底面留在原地不动,即朝一个方向倾斜。该晶系最高对称型为

。唯一的一个二次轴(L2)或对称面(P)的法线相当于Y轴。

常见的单形包括斜方柱和平行双面。属于该晶系的宝玉石有翡翠(硬玉)、透辉石、软玉(透闪石)、孔雀石、正长石及锂辉石等,其中翡翠、软玉、孔雀石呈多晶集合体形式产出。

图1-1-12 单斜晶系的晶体及对称特点

7.三斜晶系

三斜晶系具三个互不相等且互相斜交的结晶轴,即a≠b≠c,α≠β≠γ≠90°(见图1-1-13)。这一晶系有时用如下方式说明,即假设一个长方形底面的柱体,其一个边棱被向侧面和向后推,而底面不动时,柱体就向旁边和向后倾斜。该晶系无对称轴或对称面,只有一个对称中心(C)或L1。以不在同一平面内的三个主要晶棱的方向为X、Y、Z轴。

该晶系单形只有平行双面,一个完整的晶体至少由3组平行双面组成。属于该晶系的宝石包括斜长石、绿松石(常以多晶集合体形式产出)、蔷薇辉石和斧石等。

图1-1-13 三斜晶系的晶体及对称特点

三、常用的基本概念

(一)单形和聚形

晶体形态可以分成两种类型,即单形和聚形。

1.单形

单形是指由对称要素联系起来的一组晶面的总合。换句话说,单形就是借对称型中全部对称要素的作用可以使它们相互重复的一组晶面,它们具有相同的性质。因此,在理想状态下只有同形等大的一组晶面才可能构成一个单形。根据拓扑学推导,晶体的几何形态共有47种单形,三大晶族可能出现的单形见图1-1-14。

单形可分为开形和闭形两种。闭形是指其晶面可以包围成一个封闭的空间的单形,如立方体和八面体单形;开形是指其晶面不能包围成一个封闭空间的单形,如柱类、单锥类单形和平行双面等。

2.聚形

单形的聚合称为聚形。即聚形是由两个或两个以上单形组成的(见图1-1-15)。但单形的聚合不是任意的,必须是属于同一对称型的单形才能相聚。

(二)晶面符号

表征晶面空间方位的符号称为晶面符号。一般用晶面在三个(或四个)晶轴上的截距系数的倒数比来表示,常称为米氏符号。在X、Y、Z三个轴上的倒数比用h:k:l表示,h、k、l称为晶面指数,晶面指数用小括号括之就是晶面符号,记为(hkl)。例如,假设一个晶面在X、Y、Z轴上的截距分别为2a、3b、6c,2、3、6称为截距系数,其倒数比为1/2:1/3:1/6=3:2:1,那么该晶面的晶面符号就记为(321)。如果晶面与某个晶轴平行,那么它的截距系数就是∞,其倒数为0。由此可知在等轴、四方和斜方晶系中,(100)晶面表示的是垂直X轴,并与Y、Z轴平行的晶面。在这些晶系中,同样道理我们可以知道(100)、(010)、(001)晶面不但是分别垂直X、Y、Z轴的三个晶面,还可以推断这三个晶面之间也是相互垂直的(见图1-1-16)。

图1-1-14 四十七种单形

图1-1-15 立方体、菱形十二面体的聚形(a)和四方柱、四方双锥的聚形(b)

图1-1-16 晶面符号图解(a)、八面体晶面符号(b)和四方柱、平行双面晶面符号(c)

(三)单形符号

单形符号是指在一个单形中按照一定的原则选择一个晶面,用该晶面的晶面指数加上“{}”括起来,用来表征组成该单形的一组晶面的结晶学取向的符号。选择代表晶面的一般原则是选择正指数最多的晶面,同时还要遵循先前(X轴指数最大)、次右(Y轴指数次大)、后上(Z轴指数最小)的原则。例如,在等轴晶系中立方体单形由(100)(010)(001)

六个晶面组成,根据原则就应该选择(100)晶面的指数作为其单形符号的指数,即立方体的单形符号为{100}(见图1-1-17(a)。该符号就代表了由对称要素联系着的六个晶面。同理,该晶系六八面体的单形符号为{321}(图1-1-17(b)。三、六方晶系六方柱和菱面体的单形符号分别为{1010﹜和{1011}。

图1-1-17 立方体单形﹛100}(a)和六八面体单形{321﹜(b)

10. 求列出初中物理中常见的晶体与非晶体

晶体:石英、云母、明矾、食盐、硫酸铜、味精。

非晶体:玻璃、石蜡、松香、沥青、塑料。

晶体拥有固定的熔点,在熔化过程中,温度始终保持不变。单晶体有各向异性的特点。晶体可以使X光发生有规律的衍射。宏观上能否产生X光衍射现象,是实验上判定某物质是不是晶体的主要方法。晶体相对应的晶面角相等,称为晶面角守恒。

(10)物理学中晶体有哪些扩展阅读:

晶体与非晶体的区别:

本质区别:

晶体有自范性,非晶体无自范性。

物理性质:

晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。

非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。外形为无规则形状的固体。

晶体有各向异性,非晶体多数是各向同性。晶体有固定的熔点,非晶体无固定的熔点,它的熔化过程中温度随加热不断升高。

微观结构:

晶体和非晶体所以含有不同的物理性质,主要是由于它的微观结构不同。

阅读全文

与物理学中晶体有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1048
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1692
西安瑞禧生物科技有限公司怎么样 浏览:951
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1642
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050