❶ 光学是什么意思
光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。光学的起源在西方很早就有光学知识的记载。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。
❷ 光学系统有什么作用
一个光学系统除了要考虑高斯光学的有关问题,诸如物像共轭位置、放大率、转像和转折光路等以外,还需考虑成像范围的大小、成像光束孔径角的大小、成像波段的宽窄以及像的清晰度和照度等一系列问题。满足一系列要求的实际光学系统往往不是几个透镜的简单组合,而由一系列透镜、曲面反射镜、平面镜、反射棱镜和分划板等多种光学零件组成,并且要通过合理设置光阑、精细校正像差和恰当确定光学零件的横向尺寸等手段才能得到合乎需要的高质量系统。[2]
中文名
光学系统
外文名
optical system
用途
通常用来成像或做光学信息处理
实际系统
高斯光学等的有关问题
理论
光线和波面的传播规律
快速
导航
物像关系放大率光阑渐晕现象成像光束像差对称共轴作图
理想光学系统
理想光学系统是能产生清晰的、与物完全相似的像的成像系统。光束中各条光线或其延长
线均交于同一点的光束称为同心光束。入射的同心光束经理想光学系统后,出射光束必定也是同心光束。入射和出射同心光束的交点分别称为物点和像点。理想光学系统具有下述性质:①交于物点的所有光线经光学系统后,出射光线均交于像点。
❸ 帮我找一下初二物理中有关光学的知识.谢谢.
一、光的直线传播
1、光源:定义:能够发光的物体叫光源。
分类:自然光源,如 太阳、萤火虫;人造光源,如 篝火、蜡烛、油灯、电灯。月亮 本身不会发光,它不是光源。
2、规律:光在同一种均匀介质中是沿直线传播的。
3、光线是由一小束光抽象而建立的理想物理模型,建立理想物理模型是研究物理的常用方法之一。
练习:☆为什么在有雾的天气里,可以看到从汽车头灯射出的光束是直的?
答:光在空气中是沿直线传播的。光在传播过程中,部分光遇到雾发生漫反射,射入人眼,人能看到光的直线传播。
☆早晨,看到刚从地平线升起的太阳的位置比实际位置 高 ,该现象说明:光在非均匀介质中不是沿直线传播的。
4、应用及现象:
① 激光准直。
②影子的形成:光在传播过程中,遇到不透明的物体,在物体的后面形成黑色区域即影子。
③日食月食的形成:当地球 在中间时可形成月食。
如图:在月球后
1的位置可看
到日全食,在2的
位置看到日偏食,在3的位置看
到日环食。
④ 小孔成像:小孔成像实验早在《墨经》中就有记载小孔成像成倒立的实像,其像的形状与孔的形状无 关。
5、光速:
光在真空中速度C=3×108m/s=3×105km/s;光在空气中速度约为3×108m/s。光在水中速度为真空中光速的3/4,在玻璃中速度为真空中速度的2/3 。
二、光的反射
1、定义:光从一种介质射向另一种介质表面时,一部分光被反射回原来介质的现象叫光的反射。
2、反射定律:三线同面,法线居中,两角相等,光路可逆.即:反射光线与入射光线、法线在同一平面上,反射光线和入射光线分居于法线的两侧,反射角等于入射角。光的反射过程中光路是可逆的。
3、分类:
⑴ 镜面反射:
定义:射到物面上的平行光反射后仍然平行
条件:反射面 平滑。
应用:迎着太阳看平静的水面,特别亮。黑板“反光”等,都是因为发生了镜面反射
⑵ 漫反射:
定义:射到物面上的平行光反射后向着不同的方向 ,每条光线遵守光的反射定律。
条件:反射面凹凸不平。
应用:能从各个方向看到本身不发光的物体,是由于光射到物体上发生漫反射的缘故。
练习:☆请各举一例说明光的反射作用对人们生活、生产的利与弊。
⑴有利:生活中用平面镜观察面容;我们能看到的大多数物体是由于物体反射光进入我们眼睛。
⑵有弊:黑板反光;城市高大的楼房的玻璃幕墙、釉面砖墙反光造成光污染。
☆把桌子放在教室中间,我们从各个方向能看到它原因是:光在桌子上发生了漫反射。
4、面镜:
⑴平面镜:
成像特点:等大,等距,垂直,虚像
①像、物大小相等
②像、物到镜面的距离相等。
③像、物的连线与镜面垂直
④物体在平面镜里所成的像是虚像。
成像原理:光的反射定理
作 用:成像、 改变光路
实像和虚像:实像:实际光线会聚点所成的像
虚像:反射光线反向延长线的会聚点所成的像
⑵球面镜:
定义:用球面的 内 表面作反射面。
性质:凹镜能把射向它的平行光线 会聚在一点;从焦点射向凹镜的反射光是平行光
应 用:太阳灶、手电筒、汽车头灯
定义:用球面的 外 表面做反射面。
性质:凸镜对光线起发散作用。凸镜所成的象是缩小的虚像
应用:汽车后视镜
练习:☆在研究平面镜成像特点时,我们常用平板玻璃、直尺、蜡烛进行实验,其中选用两根相同蜡烛的目的是:便于确定成像的位置和比较像和物的大小。
☆ 汽车司机前的玻璃不是竖直的,而是上方向内倾斜,除了可以减小前进时受到的阻力外,从光学角度考虑这样做的好处是:使车内的物体的像成在司机视线上方,不影响司机看路面。汽车头灯安装在车头下部:可以使车前障碍物在路面形成较长的影子,便于司机及早发现。
三、颜色及看不见的光
1、白光的组成:红,橙,黄,绿,蓝,靛,紫.
色光的三原色:红,绿,蓝. 颜料的三原色:品红,黄,青
2、看不见的光:红外线, 紫外线
一、光的折射
1、定义:光从一种介质斜射入另一种介质时,传播方向一般会发生变化;这种现象叫光的折射现象。
2、光的折射定律:三线同面,法线居中,空气中角大,光路可逆
⑴折射光线,入射光线和法线在同一平面内。
⑵折射光线和入射光线分居与法线两侧。
⑶ 光从空气斜射入水或其他介质中时,折射角小于入射角,属于近法线折射。
光从水中或其他介质斜射入空气中时,折射角大于入射角,属于远法线折射。
光从空气垂直射入(或其他介质射出),折射角=入射角= 0 度。
3、应用:从空气看水中的物体,或从水中看空气中的物体看到的是物体的虚像,看到的位置比实际位置 高
练习:☆池水看起来比实际的 浅 是因为光从 水中斜射向 空气中时发生折射,折射角大于入射角。
☆蓝天白云在湖中形成倒影,水中鱼儿在“云中”自由穿行。这里我们看到的水中的白云是由 光的反射 而形成的 虚像 ,看到的鱼儿是由是由光的折射而形成的 虚像 。
二、透镜
1、 名词:薄透镜:透镜的厚度远小于球面的半径。
主光轴:通过两个球面球心的直线。
光心:(O)即薄透镜的中心。性质:通过光心的光线传播方向不改变。
焦点(F):凸透镜能使跟主光轴平行的光线会聚在主光轴上的一点,这个点叫焦点。
焦距(f):焦点到凸透镜光心的距离。
2、 典型光路
名称 又名 眼镜 实物
形状 光学
符号 性质
凸透镜 会聚透镜 老化镜
对光线有会聚作用
凹透镜 发散透镜 近视镜
对光线有发散作用
3、填表:
三、凸透镜成像规律及其应用
1、实验:实验时点燃蜡烛,使烛焰、凸透镜、光屏的中心大致在同一高度,目的是:使烛焰的像成在光屏中央。
若在实验时,无论怎样移动光屏,在光屏都得不到像,可能得原因有:①蜡烛在焦点以内;②烛焰在焦点上③烛焰、凸透镜、光屏的中心不在同一高度;④蜡烛到凸透镜的距离稍大于焦距,成像在很远的地方,光具座的光屏无法移到该位置。
2、实验结论:(凸透镜成像规律)
F分虚实,2f大小,实倒虚正,
具体见下表:
物距 像的性质 像距 应用
倒、正 放、缩 虚、实
u>2f 倒立 缩小 实像 f<v<2f 照相机
f<u<2f 倒立 放大 实像 v>2f 幻灯机
u<f 正立 放大 虚象 |v|>u 放大镜
3、对规律的进一步认识:
⑴u=f是成实像和虚象,正立像和倒立像,像物同侧和异侧的分界点。
⑵u=2f是像放大和缩小的分界点
⑶当像距大于物距时成放大的实像(或虚像),当像距小于物距时成倒立缩小的实像。
⑷成实像时:
⑸成虚像时:
四、眼睛和眼镜
1、成像原理: 从物体发出的光线经过晶状体等一个综合的凸透镜在视网膜上行成倒立,缩小的实像,分布在视网膜上的视神经细胞受到光的刺激,把这个信号传输给大脑,人就可以看到这个物体了。
2、近视及远视的矫正:近视眼要戴凹透镜,远视眼要戴凸透镜.
五、显微镜和望远镜
1、显微镜: 显微镜镜筒的两端各有一组透镜,每组透镜的作用都相当于一个凸透镜,靠近眼睛的凸透镜叫做目镜,靠近被观察物体的凸透镜叫做物镜。来自被观察物体的光经过物镜后成一个放大的实像,道理就像投影仪的镜头成像一样;目镜的作用则像一个普通的放大镜,把这个像再放大一次。经过这两次放大作用,我们就可以看到肉眼看不见的小物体了。
2、望远镜:有一种望远镜也是由两组凸透镜组成的。靠近眼睛的凸透镜叫做目镜,靠近被观察物体的凸透镜叫做物镜。我们能不能看清一个物体,它对我们的眼睛所成“视角”的大小十分重要。望远镜的物镜所成的像虽然比原来的物体小,但它离我们的眼睛很近,再加上目镜的放大作用,视角就可以变得很大。
❹ 光学主要研究的什么
光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。
我们通常把光学分成几何光学、物理光学和量子光学。
几何光学
是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。
物理光学
是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。
量子光学
英文名称:quantum optics
量子光学是以辐射的量子理论研究光的产生、传输、检测及光与物质相互作用的学科。
这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。
光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。
❺ 光学是什么
光学
光学是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。
光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。
光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元前约330~260)的<反射光学>(Catoptrica)研究了光的反射;阿拉伯学者阿勒·哈增(AI-Hazen,965~1038)写过一部<光学全书>,讨论了许多光学的现象。
光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。17世纪,望辽镜和显微镜的应用大大促进了几何光学的发展。
光的本性也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如乾涉、绕射等,用光的波动性就很容易解释。于是光学的波动说又占了上风。两种学说的争论构成了光学发展史上的一根红线。
狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到 X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。
光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。
人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。
自《墨经)开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。
1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。
牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。
牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。
惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。
19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的乾涉和衍射现象,也能解释光的直线传播。
在进一步的研究中,观察到了光的偏振和偏振光的乾涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。
1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。
1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。
对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用乾涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。
1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。
量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。
1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。
1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。
这样,在20世纪初,一方面从光的乾涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。
1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。
此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。
爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。
光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。
自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“博里叶光学”。再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。
在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。
光学的研究内容
我们通常把光学分成几何光学、物理光学和量子光学。
几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。
物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。
波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。
量子光学 1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。
1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。
这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。
光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。
应用光学 光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。
❻ 光学在现实中的应用有什么光学研究对于人类将来的生存有什么贡献
几何光学中,有各种镜头镜片的应用,例如单反照相机,眼镜,显微镜等等
物理光学中,有光纤传导,各种光电仪器等
未来社会是信息化的社会,用光这种波粒二象性的东西装载信息,能极大地提高信息的传输率,是社会的发展交流更迅速便捷。
还有光学器件在人们平时的生活中,医疗中,工作中,科研中都起着至关重要的角色。小到我们手里的手机里的光电ccd成像器件,大到宇宙望远镜。可以说现在无论走到哪里都能看到光学的影子。