㈠ 大学光学实验有哪些
大学光学实验有哪些,我记得有旋光实验,雀绝激光全息照相,偏振性实验,好简还有一些可以到网络上搜顷袜姿一搜,能不能做还得看实验室条件
㈡ 大学物理波动光学杨氏双缝实验
不键裤相同。
未放置薄透镜时,清晰的干涉条纹成像在无穷远,近处得不到清晰的完全分离的条纹;
放置薄透镜后,根据几何稿扮简光学的原理,无穷远点移到缺告了焦平面上,这时清晰的干涉条纹将成像在在焦平面上。
㈢ 大学物理实验中有哪几种测量光波波长的方法 急~
大学物理实验经常用:分光计测量法;牛顿环测量法;光栅测量法
其它方法:
法布里-珀罗干涉仪
密集光波分复用系统的波长测量
镭射功率计(指标式)光功率表
菲涅耳双棱镜
双缝
多次测量求平均值
线性拟合
逐差法
螺旋测微器又称千分尺(micrometer)、螺旋测微仪、分厘卡,是比游标卡尺更精密的测量长度的工具,用它测长度可以准确到0.01mm,测量范围为几个厘米。右图为一种常见的螺旋测微器。 螺旋测微器的分类 一种电子千分尺(螺旋测微器)螺旋测微器分为机械式千分尺和电子千分尺两类。①机械式千分尺。简称千分尺,是利用精密螺纹副原理测长的手携式通用长度测量工具。1848年,法国的J.L.帕尔默取得外径千分尺的专利 。1869年,美国的J.R.布朗和L.夏普等将外径千分尺制成商品,用于测量金属线外径和板材厚度。千分尺的品种很多。改变千分尺测量面形状和尺架等就可以制成不同用途的千分尺,如用于测量内径、螺纹中径、齿轮公法线或深度等的千分尺。②电子千分尺。也叫数显千分尺,测量系统中应用了光栅测长技术和积体电路等。电子千分尺是20世纪70年代中期出现的,用于外径测量。 螺旋测微器的组成 螺旋测微器组成部分图解图上A为测杆,它的一部分加工成螺距为0.5mm的螺纹,当它在固定套管B的螺套中转动时,将前进或后退,活动套管C和螺杆连成一体,其周边等分成50个分格。螺杆转动的整圈数由固定套管上间隔0.5mm的刻线去测量,不足一圈的部分由活动套管周边的刻线去测量。所以用螺旋测微器测量长度时,读数也分为两步,即(1)从活动套管的前沿在固定套管的位置,读出整圈数。(2)从固定套管上的横线所对活动套管上的分格数,读出不到一圈的小数,二者相加就是测量值。
螺旋测微器的尾端有一装置D,拧动D可使测杆移动,当测杆和被测物相接后的压力达到某一数值时,棘轮将滑动并有咔、咔的响声,活动套管不再转动,测杆也停止前进,这时就可以读数了。
不夹被测物而使测杆和砧台相接时,活动套管上的零线应当刚好和固定套管上的横线对齐。实际操作过程中,由于使用不当,初始状态多少和上述要求不符,即有一个不等于零的读数。所以再使用之前必须要先调零。 螺旋测微器原理和使用 螺旋测微器的读数螺旋测微器是依据螺旋放大的原理制成的,即螺杆在螺母中旋转一周,螺杆便沿着旋转轴线方向前进或后退一个螺距的距离。因此,沿轴线方向移动的微小距离,就能用圆周上的读数表示出来。螺旋测微器的精密螺纹的螺距是0.5mm,可动刻度有50个等分刻度,可动刻度旋转一周,测微螺杆可前进或后退0.5mm,因此旋转每个小分度,相当于测微螺杆前进或推后0.5/50=0.01mm。可见,可动刻度每一小分度表示0.01mm,所以以螺旋测微器可准确到0.01mm。由于还能再估读一位,可读到毫米的千分位,故又名千分尺。
测量时,当小砧和测微螺杆并拢时,可动刻度的零点若恰好与固定刻度的零点重合,旋出测微螺杆,并使小砧和测微螺杆的面正好接触待测长度的两端,那么测微螺杆向右移动的距离就是所测的长度。这个距离的整毫米数由固定刻度上读出,小数部分则由可动刻度读出。
1.B 2.A 3.A 4.C 5.D
(一)调整迈克尔逊干涉仪,观察非定域干涉、等倾干涉的条纹
① 对照实物和讲义,熟悉仪器的结构和各旋钮的作用;
② 点燃He—Ne镭射器,使镭射大致垂直M1。这时在屏上出现两排小亮点,调节M1和M2背面的三个螺钉,使反射光和入射光基本重合(两排亮点中最亮的点重合且与入射光基本重合)。这时,M1 和M2大致互相垂直,即M1/、M2大致互相平行。
③ 在光路上放入一扩束物镜组,它的作用是将一束镭射汇聚成一个点光源,调节扩束物镜组的高低、左右位置使扩束后的镭射完全照射在分光板G1上。这时在观察屏上就可以观察到干涉条纹(如完全没有,请重复上面步骤)再调节M1下面的两个微调螺丝使M1/、M2更加平行,屏上就会出现非定域的同心圆条纹。
④ 观察等倾干涉的条纹。
(二)测量He—Ne镭射的波长
① 回到非定域的同心圆条纹,转动粗动和微动手轮,观察条纹的变化:从条纹的“涌出”和“陷入”说明M1/、M2之间的距离d是变大?变小?观察并解释条纹的粗细、疏密和d的关系。
② 将非定域的圆条纹调节到相应的大小(左边标尺的读数为32mm附近),且位于观察屏的中心。
③ 转动微动手轮使圆条纹稳定的“涌出”(或“陷入”),确信已消除“空回误差”后,找出一个位置(如刚刚“涌出”或“陷入”)读出初始位置d1。
④ 缓慢转动微动手轮,读取圆条纹“涌出”或“陷入”中心的环数,每50环记录相应的d2、d3、d4……
⑤ 反方向转动微动手轮,重复②、③记录下“陷入”(或“涌出”)时对应的di/。
⑥ 资料记录参考表(如上),按公式计算出He—Ne镭射的波长。用与其理论值相比较得出百分差表示出实验结果。
一般情况是这样的。
顾名思义,大学物理实验中单次测量就是指测量一次。单次测量中,没有随机误差,所以不需要计算A类不确定度,只需要计算B类不确定度。
测量是按照某种规律,用资料来描述观察到的现象,即对事物作出量化描述。测量是对非量化实物的量化过程。在机械工程里面,测量指将被测量与具有计量单位的标准量在数值上进行比较,从而确定二者比值的实验认识过程。
测量的主要要素有:
1.测量的客体即测量物件:主要指几何量,包括长度、面积、形状、高程、角度、表面粗糙度以及形位误差等。由于几何量的特点是种类繁多,形状又各式各样,因此对于他们的特性,被测引数的定义,以及标准等都必须加以研究和熟悉,以便进行测量。
2.计量单位:我国国务院于1977年5月27日颁发的《中华人民共和国计量管理条例(试行)》第三条规定中重申:“我国的基本计量制度是米制(即公制),逐步采用国际单位制。”1984年2月27日正式公布中华人民共和国法定计量单位,确定米制为我国的基本计量制度。在长度计量中单位为米(m),其他常用单位有毫米(mm)和微米(μm)。在角度测量中以度、分、秒为单位。
3.测量方法:指在进行测量时所用的按类叙述的一组操作逻辑次序。对几何量的测量而言,则是根据被测引数的特点,如公差值、大小、轻重、材质、数量等,并分析研究该引数与其他引数的关系,最后确定对该引数如何进行测量的操作方法。
4.测量的准确度:指测量结果与真值的一致程度。由于任何测量过程总不可避免地会出现测量误差,误差大说明测量结果离真值远,准确度低。因此,准确度和误差是两个相对的概念。由于存在测量误差,任何测量结果都是以一近似值来表示。
螺旋测位器的原理是一个螺钉,它每转一圈,伸出或缩排0.5mm
那么接示波器的换能器是不是没工作,或者故障
全息光栅的制作(实验报告)完美版 (2009-10-12 23:25:34)转载
标签: 光栅 干片 发散镜 双缝 白屏 教育
设计性试验看似可怕,但实际操作还是比较简单的~
我的实验报告,仅供参考~
实验报告封面
全息光栅的制作
一、 实验任务
设计并制作全息光栅,并测出其光栅常数,要求所制作的光栅不少于每毫米100条。
二、 实验要求
1、设计三种以上制作全息光栅的方法,并进行比较。
2、设计制作全息光栅的完整步骤(包括拍摄和冲洗中的引数及注意事项),拍摄出全息光栅。
3、给出所制作的全息光栅的光栅常数值,进行不确定度计算、误差分析并做实验小结。
三、 实验的基本物理原理
1、光栅产生的原理
光栅也称衍射光栅,是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。光栅的狭缝数量很大,一般每毫米几十至几千条。单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。
图1
2、测量光栅常数的方法:
用测量显微镜测量;
用分光计,根据光栅方程d·sin =k 来测量;
用衍射法测量。镭射通过光栅衍射,在较远的屏上,测出零级和一级衍射光斑的间距△x及屏到光栅的距离L,则光栅常数d= L/△x。
四、 实验的具体方案及比较
1、洛埃镜改进法:
基本物理原理:洛埃镜的特点是一部分直射光和另一部分反射镜的反射光进行干涉,如原始光束是平行光,则可增加一全反镜,同样可做到一部分直射光和一部分镜面反射光进行干涉,从而制作全息光栅。
优点:这种方法省去了制造双缝的步骤。
缺点:光源必须十分靠近平面镜。
实验原理图:
图2
2、杨氏双缝干涉法:
基本物理原理:S1,S2为完全相同的线光源,P是萤幕上任意一点,它与S1,S2连线的中垂线交点S'相距x,与S1,S2相距为rl、r2,双缝间距离为d,双缝到萤幕的距离为L。
因双缝间距d远小于缝到屏的距离L,P点处的光程差:
图3
δ=r2-r1=dsinθ=dtgθ=dx/L sinθ=tgθ
这是因为θ角度很小的时候,可以近似认为相等。
干涉明条纹的位置可由干涉极大条件δ=kλ得:
x=(L/d)kλ,
干涉暗条纹位置可由干涉极小条件δ=(k+1/2)λ得:
x=(D/d)(k+1/2)λ
明条纹之间、暗条纹之间距都是
Δx =λ(D/d)
因此干涉条纹是等距离分布的。
而且注意上面的公式都有波长引数在里面,波长越长,相差越大。
条纹形状:为一组与狭缝平行、等间隔的直线(干涉条纹特点)d= L/△x
优点:使用镭射光源相干条件很容易满足。
缺点:所需的实验仪器较复杂,不易得到。
实验原理图:
图4
3、马赫—曾德干涉仪法:
基本物理原理:只要调节光路中的一面分光镜的方位角,就可以改变透射光和反射光的夹角,从而改变干涉条纹的间距。
优点:这种方法对光路的精确度要求不高,实验效果不错,易于学生操作。
缺点:这种方法对光路的精确度要求不高,实验可能不够精确。
实验原理图:
图5
五、 仪器的选择与配套
综合考虑各方面条件,本次试验采用马赫—曾德干涉仪法,所需的实验仪器有He-Ne镭射发射器1架、发散镜1面、凸透镜1面、半反半透镜2面、全反镜2面和白屏、光阑各一、拍摄光栅用的干片若干、架子。
六、 实验步骤
(一)制作全息光栅
1.开启He-Ne镭射发射器,利用白屏使镭射束平行于水平面。
2.调节发散镜和镭射发射器的距离使镭射发散。
3.调节凸透镜和发散镜的距离使之等于凸透镜的焦距,得到平行光。
4. 调节2面半反半透镜和2面全反镜的位置和高度,使它们摆成一个平行四边形(如图5)。
5.调节半反半透镜和全反镜上的微调旋钮,使得到的2个光斑等高,且间距为4-6cm。
6. 测出实验中光路的光程差△l。
(在实验中我们测得的光路的光程差△l=1.5cm)
(二)拍摄全息光栅
1.挡住镭射束,把干片放在架子上,让镭射束照射在干片上1-2秒,挡住镭射束,把干片取下带到暗房中。
2.把干片泡在显影液中适当的时间(时间长度由显影液的浓度决定),取出,用清水冲洗,在泡在定影液中约5分钟。取出,冲洗后晾干。
3.用镭射束检验冲洗好的干片,若能看见零级、一级的光斑,说明此干片可以用于测定光栅常数。
(三)测定所制光栅的光栅常数
实际图:
此图参照老师所给实验内容报告上的图来画
图6
原始资料表:
x
1
2
3
4
5
6
r(cm)
23.81
24.12
23.93
24.24
23.65
23.66
h(cm)
144.36
144.65
143.84
144.03
144.52
144.11
计算过程:
七、实验注意事项
1、不要正对着镭射束观察,以免损坏眼睛。
2、半导体镭射器工作电压为直流电压3V,应用专用220V/3V直流电源工作(该电源可避免接通电源瞬间电感效应产生高电压的功能),以延长半导体镭射器的工作寿命。
㈣ 大学物理实验都有哪些
大学物理实验有:杨氏模量,迈克尔逊干涉仪,全息照相,衍射光栅,单缝衍射,光电效应,用分光计测量玻璃折射率,透镜组基点的测量,测量波的传播速度,密里根油滴实验,模拟示波器的使用,磁电阻巨磁电阻测量,半导体电光光电器件特性测量、等厚干涉
1、杨氏模量
杨氏模量是描述固体材料抵抗形变能力的物理量。当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量。
2、迈克尔逊干涉仪
迈克尔逊干涉仪,是1881年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。它是利用分振幅法产生双光束以实现干涉。
3、等厚干涉
等厚干涉是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉.(牛顿环和楔形平板干涉都属等厚干涉.)
4、示波器的使用
波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。
5、电桥法测电阻
采用典型的四线制测量法。以期提高测量电阻(尤其是低阻)的准确度。程控恒流源、程控前置放大器、A/D转换器构成了测量电路的主体。中央控制单元通过控制恒流源给外部待测负载施加一个恒定、高精度的电流,然后,将所获得的数据(包括测试电压、当前的测试电流等)进行处理,得到实际电阻值。
㈤ 大学物理实验都有哪些
㈥ 大学物理演示实验的目录
1 力、热学
1.1 力学
1.1.1 向心力
1.1.2 弹性碰撞
1.1.3 圆锥爬坡
1.1.4 科里奥利力
1.1.5 傅科摆
1.1.6 质心运动
1.1.7 转动定律
1.1.8 角速度合成
1.1.9 直升飞机的角动量守恒
1.1.10 角动量守恒转台
1.1.11 常平架回转仪
1.1.12 进动演示仪
1.1.13 混沌摆
1.2 空气动力学
1.2.1 气体流速与压强演示仪
1.2.2 飞机升力
1.2.3 伯努利悬浮球
1.2.4 气体涡旋演示仪
1.3 振动与波
1.3.1 旋转乔量演示仪
1.3.2 简谐振动合成仪
1.3.3 机械共振
1.3.4 音叉
1.4.5 拍频摆
1.4.6 驻波共振
1.4.7 纵驻波
1.4.8 昆特管
1.4.9 鱼洗
1.4.10 水波干涉
1.4.11 傅立叶振动合成仪
1.4.12 声波波形演示仪
1.4.13 声聚焦
1.4.14 超声雾化
1.4 热学
1.4.1 分子运动
1.4.2 伽尔顿板
1.4.3 模拟电冰箱实验装置
1.4.4 投影式相临界点状态演示仪
2 光学
2.1 几何光学
2.1.1 分光计
2.1.2 三棱镜
2.1.3 尼克尔棱镜模型
2.1.4 方解石与双折射
2.1.5 窥视无穷
2.1.6 人造火焰
2.1.7 光栅变换图
2.1.8 激光反射运动合成仪
2.1.9 反射式运动合成仪
2.1.10 海市蜃景演示仪
2.1.11 光学幻影演示仪
2.1.12 光学分形演示仪
2.1.13 普氏摆
2.1.14 光瞳实验演示仪
2.2 波动光学
2.2.1 动态多缝衍射强度实时显示仪
2.2.2 旋转式小孔衍射仪
2.2.3 散射光干涉演示仪
2.2.4 激光光纤干涉演示仪
2.2.5 台式皂膜
2.2.6 帘式皂膜
2.2.7 光栅视镜系统
2.2.8 光学仪器分辨率
2.2.9 反射白光全息图
2.2.10 透射白光全患合成图
2.3 偏振光学
2.3.1 自然光、偏振光模型
2.3.2 偏振光状态演示仪
2.3.3 旋光色散演示仪
2.3.4 偏振光干涉、应力演示仪
2.4 光学综合
2.4.1 热辐射机
2.4.2 氦氖激光器
2.4.3 看得见的激光
2.4.4 绿激光器
2.4.5 激光光学演示仪
2.4.6 红外接收演示仪
2.4.7 梦幻时钟
2.4.8 梦幻球
2.4.9 激光多普勒试验仪
2.4.10 超声光栅演示仪
2.4.11 电光调制演示仪
2.4.12 法拉第磁旋光演示仪
2.4.13 光纤和互感通讯演示仪
2.4.14 3D立体影像演示仪
2.4.15 光纤陀螺演示仪
2.4.16 夫兰克一赫兹演示仪
3 电学
3.1 静电学
3.1.1 维氏起电机
3.1.2 高压电源
3.1.3 指针验电器
3.1.4 静电摆球
3.1.5 静电除尘
3.1.6 静电跳球
3.1.7 静电植绒
3.1.8 雅格布天梯
3.1.9 低气压下辉光放电
3.1.10 辉光球、辉光盘
3.1.11 电子束偏转
3.1.12 库仑扭秤
3.2 导体与电介质
3.2.1 静电感应盘
3.2.2 卡文迪许球
3.2.3 导体静电荷接曲率分布
3.2.4 尖端放电
3.2.5 电风轮、电风转筒
3.2.6 避雷针
3.2.7 静电屏蔽
3.2.8 高压带电作业
3.2.9 电介质极化
3.2.10 电介质对电容影响
3.2.11 PGM数字小电容测试仪
3.2.12 绝缘体转换为导体
3.3 电学综合
3.3.1 手触式电池
3.3.2 压电效应
3.3.3 基尔霍夫定律
3.3.4 RLC电路串并联谐振
……
4 磁学
参考文献
㈦ 大学物理实验有哪些
牛顿第二运动定律的验证、动量守恒定律的验证、液体表面张力系数的测定、霍尔效应实验、声速的测定、霍耳效应、测量薄透镜的焦距、钨的逸出电位的测定。
1、牛顿第二运动定律
牛顿第二运动定律的常见表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。
该定律是由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的。牛顿第二运动定律和第一、第三定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
2、动量守恒定律
动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。最初它们是牛顿定律的推论, 但后来发现它们的适用范围远远广于牛顿定律,是比牛顿定律更基础的物理规律, 是时空性质的反映。
其中,动量守恒定律由空间平移不变性推出,能量守恒定律由时间平移不变性推出,而角动量守恒定律则由空间的旋转对称性推出。
3、液体表面张力
凡作用于液体表面,使液体表面积缩小的力,称为液体表面张力。它产生的原因是 液体跟气体接触的表面存在一个薄层,叫做表面层,表面层里的分子比液体内部稀疏,分子间的距离比液体内部大一些,分子间的相互作用表现为引力。
就象你要把弹簧拉开些,弹簧反而表现具有收缩的趋势。正是因为这种张力的存在,有些小昆虫才能无拘无束地在水面上行走自如。
4、霍尔效应
霍尔效应是电磁效应的一种,这一现象是美国物理学家霍尔(E.H.Hall,1855—1938)于1879年在研究金属的导电机制时发现的。
当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在半导体的两端产生电势差,这一现象就是霍尔效应,这个电势差也被称为霍尔电势差。霍尔效应使用左手定则判断。
5、声速
音速是介质中微弱压强扰动的传播速度,其大小因媒质的性质和状态而异。空气中的音速在1个标准大气压和15℃的条件下约为340m/秒。
㈧ 美国大学近代物理实验有哪些
您好,美国大学近代物理实验包括:
1.热力学实验:探索热力学定律,如热容量、热导率和热传导率的测量。做稿
2.光学实验:探索光的性质,如光的衍射、折射、反射和折叠。
3.电磁学实验:探索电磁学定律,如电场、磁场、电势和磁势的测量。
4.原子物理实验:探索原子物理定律,如原子结构、原子谱和原子能旁芹级的测量。
5.核物理实验:探索核物理定律,如核反应、核吸收和核裂变的测量。
6.量子力学实验:探索量子力学定律,如量子力学的基本原理和量子力学的应用。
7.统计物理实验:探索统计物理定律,如热力学系统的熵和热力学系统的热力学性质的测量。
8.流体力学实验:探索流体力学定律,如流体的压力、流速和流量的测量。
9.固体力学实验:运胡毕探索固体力学定律,如弹性模量、泊松比和应力应变关系的测量。
10.声学实验:探索声学定律,如声压、声速和声音的传播的测量。