1. 物理学主要分几大块
按空间尺度划分:量子力学、经典物理学、宇宙物理学;
按速率大小划分: 相对论物理学、非相对论物理学;
按客体大小划分:微观、介观、宏观、宇观;
按运动速度划分: 低速,中速,高速;
按研究方法划分:实验物理学、理论物理学、计算物理学;
1、量子力学
量子力学(Quantum Mechanics),为物理学理论,是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。
它与相对论一起构成现代物理学的理论基础。量子力学不仅是现代物理学的基础理论之一,而且在化学等学科和许多近代技术中得到广泛应用。
19世纪末,人们发现旧有的经典理论无法解释微观系统,于是经由物理学家的努力,在20世纪初创立量子力学,解释了这些现象。量子力学从根本上改变人类对物质结构及其相互作用的理解。
除了广义相对论描写的引力以外,迄今所有基本相互作用均可以在量子力学的框架内描述(量子场论)。
2、经典物理学
经典物理学,是以经典力学、经典电磁场理论和经典统计力学为三大支柱的经典物理体系。由伽利略和牛顿(等人于17世纪创立的经典物理学,经过18世纪在各个基础部门的拓展,到19世纪得到了全面、系统和迅速的发展,达到了它辉煌的顶峰。
到19世纪末,已建成了一个包括力、热、声、光、电诸学科在内的、宏伟完整的理论体系。特别是它的三大支柱——经典力学、经典电动力学、经典热力学和统计力学——已臻于成熟和完善。
不仅在理论的表述和结构上已十分严谨和完美,而且它们所蕴涵的十分明晰和深刻的物理学基本观念,对人类的科学认识也产生了深远的影响。
3、实验物理学
实验物理是相对于理论物理而言,理论物理是从理论上探索自然界未知的物质结构、相互作用和物质运动的基本规律的学科。
理论物理的研究领域涉及粒子物理与原子核物理、统计物理、凝聚态物理、宇宙学等,几乎包括物理学所有分支的基本理论问题。而实验物理主要是从实验上来探索物质世界和自然规律。
4、理论物理学
理论物理学通过为自然界建立数学模型,来试图理解所有物理现象的运行机制,通过物理理论条理化、解释、预言物理现象。
理论物理学,简要地说,就是建立在一系列定律之上的数学理论体系,是否正确依赖于其理论体系所得出的结论(推断)能否被实验验证。
5、计算物理学
计算物理学(英语:Computational physics)是研究如何使用数值方法分析可以量化的物理学问题的学科。 历史上,计算物理学是计算机的第一项应用;目前计算物理学被视为计算科学的分支。
参考资料来源:网络——物理学
2. 什么是物理理论
理论物理
一、学科概况
理论物理是从理论上探索自然界未知的物质结构、相互作用和物质运动的基本规律的学科。理论物理的研究领域涉及粒子物理与原子核物理、统计物理、凝聚态物理、宇宙学等,几乎包括物理学所有分支的基本理论问题。
二、培养目标
1.博士学位 应具备坚实的理论物理基础和广博的现代物理知识,了解理论物理学科的现状及发展方向,有扎实的数学基础,熟练掌握现代计算技术,能应用现代理论物理方法处理相关学科中发现的有关理论问题。具有独立从事科学研究的能力,具有严谨求实的科学态度和作风,在国际前沿方向或交错领域中有较深入的研究,并取得有创造性的成果。至少掌握一门外国语,能熟练地阅读本专业的外文资料,具有一定的写作能力和进行国际学术交流的能力。毕业后可独立从事前沿理论课题的研究,并能开辟新的研究领域。学位获得者应能胜任高等院校、科研院所及高科技企业的教学”研究、开发和管理工作。
2.硕士学位 应有扎实的理论物理基础和相关的背景知识,了解理论物理学科的现状及发展方向,掌握研究物质的微观及宏观现象所用的模型和方法等专业理论以及相关的数学与计算方法,有严谨求实的科学态度和作风,具备从事前沿课题研究的能力。应较为熟练地掌握一门外国语,能阅读本专业的外文资料。毕业后能胜任高等院校、科研院所及高科技企业的教学、研究、开发和管理工作。
三、业务范围
1.学科研究范围 理论物理是在实验现象的基础上,以理论的方法和模型研究基本粒子、原子核、原子、分子、等离子体和凝聚态物质运动的基本规律,解决学科本身和高科技探索中提出的基本理论问题。研究范围包括粒子物理理论、原子核理论、凝聚态理论、统计物理、光子学理论、原子分子理论、等离子体理论、量子场论与量子力学、引力理论、数学物理、理论生物物理、非线性物理、计算物理等。
2.课程设置 高等量子力学、高等统计物理、量子场论、群论、规范场论、现代数学方法、计算物理、凝聚态理论、量子多体理论、粒子物理、核理论、非平衡统计物理、非线性物理、广义相对论、量子光学、理论生物物理、天体物理、微分几何、拓扑学等。
四、主要相关学科
粒子物理与原子核物理,原子和分子物理,凝聚态物理,等离子体物理,声学,光学,无线电物理,基础数学,应用数学,计算数学,凝聚态物理,化学物理,天体物理,宇宙学,材料科学,信息科学和生命科学
-------------------------------------------------------
目前主要研究方向:
(一)、粒子物理和量子场论
粒子物理学是研究物质微观结构及基本相互作用规律的物理学前沿学科。粒子物理理论作为量子场的基本理论,取得了极大的成功。粒子物理标准模型的建立是二十世纪物理学的重大成就之一,它能统一描述目前人类已知的最小"粒子"(夸克、轻子、光子、胶子、中间玻色子、Higgs 粒子)的性质及强、电、弱三种基本相互作用。粒子物理学有许多研究方向,例如:强子物理、重味物理、轻子物理、中微子物理、标准模型精确检验、对称性和对称性破坏、标准模型扩展等等。
当前,该所开展的粒子物理理论研究主要围绕粒子物理标准模型中尚未解决的一些基本问题和有关实验所暗示的新物理进行。其主要内容为:电弱对称性破缺机制,CP破坏和费米子质量起源,太阳和大气中微子失踪之谜以及粒子物理中的一些重要问题,量子色动力学的低能动力学,量子味动力学,手征微扰理论,重味夸克有效场论,手征对称性和夸克禁闭,格点规范理论,重味物理,中微子物理,强子结构和性质,超高能碰撞等。研究中特别注意各种新理论和新模型,如:超对称理论和模型,超对称大统一模型,两个或多个Higgs模型,味对称规范模型。在研究方式上注重紧密与实验结合,并以实验为基础,探索超出标准模型的新理论和新模型以及新的物理概念,运用和发展量子场论、群论、数学物理和计算物理等理论物理方法,开展与粒子物理前沿相关的量子场论研究。此外,重视与其他学科的交叉,开展粒子天体物理,粒子宇宙学和粒子核物理以及与粒子物理有关的超弦理论唯象学的研究。
(二)、超弦理论和场论
量子场论是研究微观世界的基本工具,属于重要的前沿领域,它的研究成果直接地影响理论物理许多分支领域的进展。弦理论是在量子场论基础上发展起来的一种新的物理模型,它避免了通常场论中遇到的紫外发散等问题,是当前统一四种相互作用理论的重要尝试。
目前该所在此方向的研究课题为:
1、量子场论及超弦理论,特别是其非微扰问题;弦理论的最新发展;
2、场论(特别是规范场论)及弦理论的数学工具,包括非对易几何,几何量子化等以及非对易空间上的规范场论、离散群或离散点集上规范场论、用非线性联络的规范场论等。
3、各种数学物理和计算物理问题;
4、低维场论,特别是与低维凝聚态物理有关的场论;
5、与粒子物理相联系的量子场论问题;弦理论在粒子物理中的应用;
6、与引力理论相关的量子场论问题,包括源于弦理论的量子引力、黑洞熵的起源等等。
(三)、引力理论与宇宙学
爱因斯坦的广义相对论是一个十分成功的经典引力理论,将引力量子化从而 建立一个自恰的量子引力理论是当前理论物理的一大重要任务。与广义相对论相比,标量-张量引力论具有很强的竞争力。广义相对论在宇宙学及天体物理中的应用(包括大爆炸宇宙模型、中子星和黑洞、引力透镜以及引力波的预言)已取得巨大成功,但是,许多疑难问题有待解决。例如,奇性困难,暗物质的构成及其存在形式、物理性质、在宇宙中的占有比例及其对宇宙演化的作用,物质反物质的不对称性,宇宙常数和暗能量问题,原初核合成,宇宙早期相变过程的拓扑缺陷问题,宇宙早期暴涨模型的建立,黑洞的量子力学,引力的全息性质等。
国际上若干大型的空间和地面天文观测装置(包括大型望远镜、引力波天文台、等效原理的检验装置等等)将在今后若干年内投入使用,这将对现有的宇宙学模型、引力波的预言以及等效原理的正确性提供更精确的检验,随之而来的将是宇宙学和引力论的迅速发展,为理论工作提供更多获取重要成果的机遇。
理论物理所在本方向的研究围绕上述疑难问题开展。 (四)、凝聚态理论和计算凝聚态物理
复杂性和多样性是多体微观量子世界的基本特征,对其规律性的探索是凝聚态理论研究的核心。这方面的每一次突破,例如能带论和超导的BCS理论的建立,都对量子多体物理的应用和微观世界的认识产生了深刻的变革,其成果交叉渗透到数学、化学、材料、信息、计算机等许多学科和领域。近年来,在陶瓷材料、半导体异质结及其它低维固体材料中发现的大量反常物理现象召唤着新的电子论的诞生。对这些新的物理现象的研究是该所研究人员的一个中心任务,主要的研究方向包括:
量子Hall效应、高温超导电性、巨磁阻等强关联系统的物理机理、量子液体及量子临界现象;
量子多体理论方法,特别是数值计算的方法的探索和应用。计算方法包括密度矩阵重整化群、量子蒙特-卡罗计算、从头计算等;
量子点、线、碳管等纳米材料、半导体材料或结构中的非平衡量子输运及自旋电子学;
格点系统中的量子反散射与可积问题研究。
(五)、统计物理与理论生命科学
统计物理学研究方法极为普遍,研究对象广泛,它是微观到宏观的桥梁,简单到复杂的阶梯,理论到应用的途径。从生物大分子序列分析,到认识其空间结构,到理解生命活动中的物理化学过程,生命科学提出了大量富有挑战性的统计物理问题。这些问题的研究将深化对生命现象本质的认识,同时也将促进统计物理学本身的发展。
该所过去在本研究方向上重点开展了相变理论与临界现象、非线性动力学等方面的研究,目前研究重点集中在有限系统临界现象、重整化群方法、生物大分子序列分析以及生物体系中的输运问题等方面,探讨由生命科学激发的具有普遍意义的统计物理问题。生物信息学研究是本方向的热点,该所研究人员与北京华大基因研究中心有很密切的合作关系,在水稻基因组研究工作中已作出重要创新性成果。
(六)、理论生物物理
双亲分子膜是凝聚态物理软物质,或者叫复杂流体的前沿研究对象,是物理、化学、生物学交叉学科的研究课题。该所研究人员主要是运用微分几何方法,以液晶为模型,研究双亲分子膜的形状及其相变问题,已作出一组有国际影响的工作。现在本方向的研究正在向单分子膜、生物大分子与它们的生物功能联系(DNA单分子弹性、蛋白质折叠等)的理论探索扩展。
(七)、原子核理论
从20世纪九十年代中期开始到本世纪初的十年内,国际上先后有一批超大型核物理实验装置投入运行,如TJNAF(CEBAF),RIB,RHIC 等等,核物理的发展进入了一个新阶段。这些新的巨型装置为从更深入的层次上研究核子-核子相互作用、核内的短程行为和核结构、各种极端条件下的核现象、核性质和多体理论方法提供了很好的机遇。在未来十年中,该所的研究人员将集中力量开展超重元素的性质及其合成途径,极端条件下的原子核结构,核天体物理及核内夸克效应等方面的研究,以求得对原子核运动规律的新认识。
(八)、量子物理、量子信息和原子分子理论
目前高技术的发展使得以前无法得到的极端物理条件(如极端强场、超低温度和可控的介观尺度)在实验室中得以实现。在这些特殊条件下,物质与光场的相互作用过程会呈现出一系列全新的物理现象,使得人们能重新认识物理学基本问题,导致新兴学科分支(如量子信息)的建立。
量子信息是以量子力学基本原理为基础、充分利用量子相干的独特性质(量子并行和量子纠缠),探索以全新的方式进行计算、编码和信息传输的可能性,为突破芯片元件尺度的极限提供新概念、新思路和新途径。量子力学与信息科学结合,充分显示了学科交叉的重要性,可能会导致信息科学观念和模式的重大变革。该所本方向的研究将基于量子物理基本问题的理论和最新实验的结合, 鼓励学科间的交叉渗透。发挥理论物理对量子信息研究具有前瞻性和指导性的作用,瞄准国际前沿,立足思想创新、探索和解决当前量子信息前沿领域的关键理论性问题。
目前该所在此方向上的研究课题主要为:
1.量子测量和量子开系统的基本问题:包括量子系统与经典系统相互作用,量子到经典过渡的基本模型,微观信息宏观提取的理论机制,量子耗散和量子退相干理论;也包括发展和应用实际的量子测量理论,探讨提高探测量子态效率的可能性。
2. 特殊量子态的基本特性。包括研究各种宏观量子态(原子玻色-爱因斯坦凝聚和原子激光,介观电流,微腔激子-极化子)的基本特性和运动规律,并探索它们作为量子信息载体的可能性.也包括超冷囚禁原子、分子系统与受限光场的相互作用,如腔量子电动力学和原子光学。
3.量子信息方案的物理基础。包括演化过程的动力学控制、纠缠态的度量,多粒态的局域制备和纯化、已知量子态远程制备和未知量子态远程传输。还包括提出新的量子算法、量子编码和量子纠错的新型方案,研究量子信息中的计算复杂性理论和相应的各种数学物理问题。
4. 强场中的原子分子运动。主要兴趣集中在强磁场和强激光场中原子分子的动力学行为,其中,许多全新的实验现象要求发展处理非微扰问题的崭新概念和方法。这方面的研究对揭示混沌体系的动力学和利用外场控制分子、原子过程有着重要意义。
(九)、计算物理
辛算法和保结构算法是我国着名数学家冯康及其学派在80年代中期系统提出、并完善和发展起来的。他们在这个领域的工作不仅一直领先,而且在计算数学领域占有非常重要的地位并取得了国际上的公认。在计算数学和计算物理中,引入保持所计算的Hamilton系统的辛结构,或者对于接触系统等保持系统有关的几何结构的思想非常重要。最近,国际上沿着保结构的思想,有关领域又有新的进展。比如多辛算法和李群算法的提出等等,它们分别是保持无限维系统的多辛结构的算法和系统李群对称性的算法。
该所在本研究方向上研究辛算法、多辛算法等各种保结构算法 及其在物理中的应用。
3. 理论物理学要学哪些课程
理论物理学及其交叉科学若干前沿问题》
2004年项目指南
理论物理学是对自然界各个层次物质结构和运动基本规律进行理论探索和研究的学科。物理学及其相关交叉科学的基本理论的建立是一个艰苦的、需要长期积累的过程,它需要各种思维类型的科学工作者,特别是高素质的优秀人才相互合作、多方探索方可取得突破。而正确的理论一旦建立,常会出人意料地把许多表面上看起来互不相干的现象联系起来,发挥理论的指导作用,带动物理学、其他自然科学乃至技术科学的发展。这些充分显示出理论物理研究作为基础研究的长期性、前瞻性和先导性,同时也清晰地表明同相关学科之间的相互交叉是理论物理适用范围的自然延伸。理论物理几乎包容了从小到基本粒子、大到宇宙天体所有物质世界的物理规律的认识,它几乎渗透到现代一切科技领域,与数学、天文、化学、生物、材料、信息、能源、工程、环境、航空、航天等许多领域都有着深层次层面上的交叉,所以通过"研究计划"整合与集成不同学科背景、不同学术思路和不同层次的研究,选择有限的目标,突出几个最重要的基础性的前沿领域,是本计划的一项重要任务。深层次的基础理论队伍的存在,不仅是人类对认识世界的追求的要求,也是保证交叉学科持久兴旺的前提;同时,兴旺的交叉学科也为理论物理基础研究源源不断地提供源头创新的机会。前期的实施取得了显着的成绩。有的工作在国际上受到相当多的引用和重视;有的工作可能会开拓出新的研究方向;有的工作预言了新的实验,有的工作对实验工作有指导意义;有的工作成功地解释了国际上一些较为重要的实验。本重大研究计划的设立,旨在充分发挥理论物理研究的前瞻性、基础性和原始创新的作用,造就出一批理论研究的杰出人才,增强我国自然科学研究的原始创新能力,使我国理论物理及其交叉科学在21世纪前期步入国际最先进行列。
本"研究计划"在实施中贯彻"基础研究的长期性、前瞻性和包容性,以及注意学科交叉、促进不同观点的碰撞、开拓源头创新",明确了 "研究计划"的指导思想:1)要进行重大科学问题源头创新,2)要推动交叉学科的发展,3)要造就一批高水平理论物理人才,4)要服务于国家战略目标;在设立和实施过程中形成了"三大板块"、"9个前沿领域"相互交融、相互交叉的核心科学问题。
开展物质世界深层次规律的研究,是基于人类对认识物质世界的无限追求的要求,也是人类现代文明和发展的一个重要的原动力;同时,它也是推动自然科学整体发展的基础研究中一个最为基础的重要组成部分。作为占世界人口总数1/4的大国,我们也理应在这一关系到世界文明发展的重要方向上作出贡献。因此本计划选择物质世界深层次规律的探索作为本研究计划的第一大板块。自20世纪后半叶以来,凝聚态物理学基于物质结构规律已发展成为一个覆盖面宽广,同时又十分活跃的前沿研究领域,它的发展不仅深化和拓宽了我们对物质世界的认识,也为人类社会提供了多种多样高新技术的创新源头。对于这一层次物质形态的研究既是理论物理学的一个重要组成部分,在一定意义上也是物理学与众多学科交叉的中介。所以,本计划选择凝聚态理论为我们三大板块中的又一大板块。物理学及其所包含的理论物理学向其他学科的渗透,常常会形成一些新的交叉科学生长点。这种跨学科的基础研究也常常是未来高新技术的发展的重要源泉。历史也告诉我们,理论物理本身在向其他学科渗透和交叉中,也常因不断获得新的源泉而兴旺发达。现在理论物理已经与几乎一切科技领域有着紧密的交叉,根据对当前发展态势的认识,本计划将理论物理与生命、化学、材料和信息这四个交叉学科中的某些前沿领域,作为研究计划的第三大板块。这种交叉作用是双向的,相关学科也为理论物理发展提供了有意义的创新源头和机遇。
本重大研究计划要求所申请的项目应在科学上具有特色及创新思想,欢迎各方面高水平的研究人员参与,并鼓励进行学科交叉及理论与实验相结合的研究。
通过国家自然科学基金会组织的中期评估,本研究计划在总结评估前三年资助项目进展情况的基础上,明确今后2年(2004-2005年度)项目组织实施经费投入的基本思路是重点与面上项目之比为4:6(2004年度拟公布五个重点项目,见后),以对形成的优势、创新和交叉的方向给予相应强度的资助和保证适度的资助面,促进原始创新思想和新的交叉点的产生。加强学术交流,围绕某一方向形成项目群,是本研究计划的又一特色。
(一)板块一:深层次物质结构和动力学规律的前沿领域
粒子物理的标准模型理论,它包含弱电统一规范理论和量子色动力学。这一理论成功地经受了大量实验的检验,但又面临着一些十分尖锐的挑战,有待进一步的检验和发展。电弱对称破缺机制、CP破坏产生的机制、夸克禁闭、费米子质量起源这样一些基本理论问题都尚未得到解决。正在运行的B介子工厂对于研究B介子衰变及其中的CP破坏机制提供了良好的条件。中微子实验已经证实中微子振荡和非零质量。作为描写强相互作用的量子色动力学面临非微扰求解困难。结合相对论重离子对撞机RHIC(BNL)的实验结果以及未来大型强子对撞机LHC的重离子碰撞实验(ALICE),探索高温高密QCD相变机制,夸克胶子等离子体和手征对称性恢复等,对了解新的物质状态及量子色动力学的非微扰性质有重要意义。自九十年代以来,天文观测已经积累了许多相当精确的宇宙学数据,进入了一个精确宇宙学年代,使得宇宙学中存在的大爆涨、暗物质、暗能量三大问题更加突出。越来越多、越来越精确的天文观测数据使得粒子物理、量子场论、引力理论、宇宙学等基本理论的发展相互交叉紧密地联系在一起提出了新的挑战和机遇。这些问题的解决与粒子物理和量子场论的发展密切相关,形成物理学和宇宙学的一个具有极大发展前景的交叉学科。
1.量子场论及与宇宙学相关的前沿理论问题
科学目标:
探索和解决量子场论中的非微扰问题(如夸克囚禁和超对称破缺)和四种相互作用的统一问题,着重发挥量子场论研究中提出的新概念、新方向、新方法和对其他领域的指导作用,争取在超弦基本问题和宇宙学常数问题等方面有重要进展。
资助方向:
(1)弦宇宙学和宇宙常数问题。
(2)量子场论中的对偶性和非微扰问题。
(3)弯曲空间中超弦理论的量子化和非交换几何。
2.粒子物理及与宇宙学相关的前沿理论问题
科学目标:
结合国际上LHC、B工厂实验和国内BEPC/BES实验进一步精确检验和发展粒子物理中标准模型理论,探索新物理、发展非微扰方法、重味物理和粒子宇宙学等方面取得重要进展。
资助方向:
(1)高能对撞机物理及新物理的理论研究。
(2)宇宙中暗物质、暗能量及与宇宙学相关的科学问题。
(3)味物理、BES物理和CP破坏机制。
(4)量子色动力学的微扰和非微扰理论。
3.高能重离子碰撞和强子物理中动力学规律的理论研究
科学目标:
结合RIHC和LHC相对论重离子碰撞实验物理探索夸克胶子等离子体的存在证据及其物理性质,研究QCD相变结构和高密天体结构。结合国际低能强子物理实验研究各种新强子态性质、强子结构和强子间相互作用。
资助方向:
(1)相对论重离子碰撞和夸克胶子等离子体。
(2)QCD相变机制和高密天体物理。
(3)强子结构和新强子态。
(二)板块二:凝聚态理论研究的两个前沿领域
强关联多电子系统和纳米尺度受限小量子系统是当今凝聚态领域最为突出的研究领域,这两者之间又有着非常紧密的联系。在低维小量子系统中,由于强的量子涨落,即使是非常一般强度的相互作用,其关联效应就非常重要,通常基于弱相互作用的多体量子理论,必须要由全新的适用于强关联的多电子量子理论所代替。强关联和无序是凝聚态物理中的两个重要基本问题,它们常常出现在同一个体系之中。强关联效应不仅与相互作用有关,而且也与空间维度和载流子浓度有关。高温超导体的正常态性质和超导机理、低维多电子系统的物性等等均涉及到我们对强关联多电子系统和低维凝聚态系统的认识和了解。当系统的量子相干长度与系统的尺度相比拟时,系统的特征时间尺度有可能短于各种元激发的产生和湮灭时间。在这类系统中量子态波函数的相位因子起着主导作用。受限系统中的相位干涉及其退相干、耗散、关联效应、物理过程的演化和控制以及纳米受限系统的非平衡态的输运理论等是这一研究方向的重要问题。本研究计划将继续突出这两前沿领域的研究,推动我国凝聚理论研究在深层次上质的飞跃。
4.强关联多电子系统的理论研究
科学目标:
高温超导体的正常态性质和超导机理、低维多电子系统的物性等等均涉及到我们对强关联多电子系统和低维凝聚态系统的认识和了解。同时,也应努力发展强关联和低维凝聚态系统的数值模拟新方法,以求早日形成在国际上有影响的研究基地。力争在较短的时间内进入国际前沿行列。
资助方向:
(1)低维关联电子系统和一些模型体系的物理性质的理论研究;高温超导正常态性质和超导机理的研究;
(2)金属-绝缘体转变;不同有序态的竟争和共存及量子相变的理论研究;
(3)加强探索处理强关联系统的新理论方法和对强关联系统性质的数值计算和计算方法的研究。
(4)低维磁性系统的量子理论研究
5.受限小量子系统的理论研究
科学目标:
以小量子(纳米)系统国际前沿研究领域中的关键理论问题作为研究方向,受限系统中的相位干涉及其退相干、耗散、关联效应、物理过程的演化和控制以及纳米受限系统的非平衡态的输运理论等是这一研究方向的重要问题,争取在整体上取得国际一流的研究成果,并力争解释一些有重要意义的实验,提出一些原创性的受限小量子结构和检验基本原理的实验设计。
资助方向:
(1)介观系统输运理论、量子限制效应、载流客体性质的量子测量,超快过程的多体理论;
(2)自旋电子学中的基础理论问题研究;
(3)受限光子系统如光子量子点及类分子结构的理论研究。
(三)板块三:跨学科理论研究新领域
板块三是板块一与板块二的自然延伸,是向相关学科的渗透和结合,以推动相关学科的深入发展。如果说板块一和板块二是理论物理研究的主体,那么板块三是理论物理研究(特别是板块二)的交叉外延。生命、材料和信息是当前科技和经济发展中最具影响力的学科,也是迫切需要理论物理介入的学科。例如,生命科学的研究已经进入到定量化和系统建模的新阶段,其基因网络调控的解析、蛋白质折叠机制和三级结构预测等等都是重大的理论问题,也对理论物理提出的新挑战。这是考虑板块三的组成时的一个思路。另一个考虑是:要既顾选择与理论物理交叉有较好基础的学科,如理论化学(的新问题)、材料设计(的关键问题),也要选择一些新兴交叉学科,如生命、量子信息。于是,板块三由四个前沿研究领域组成。
6.理论物理与生命科学交叉的理论研究
科学目标:
围绕生物大分子理论及生物信息学中关键问题,在DNA链复杂性、基因组序列信息分析、编码区和非编码区的统计分析、基因组全信息的生物进化等方面提出新理论、建立新方法;开展多重时空尺度上的生物大分子和生物凝聚体的结构、相互作用、性质及其调控理论的创新研究。
资助方向:
(1)生物信息学研究:基因识别(包括编码区和启动子区域识别)的新方法;分析多个基因组新方法并应用于分子进化;基因网络与系统生物学研究。
(2)计算分子生物学与计算细胞生物学研究:单分子生物物理理论;蛋白质二、三级结构预测新方法;生物大分子的自组装(如生物膜、肌纤、蛋白微管等)理论等。
7.有机固体和聚合物的理论物理研究
科学目标:
围绕有机固体和聚合物的关键科学问题,发挥理论物理的先导作用,重视理论与实验结合,在有机固体的输运机制、光电磁性能及功能器件、聚合物链的折叠、结晶等方面有所创新。
资助方向:
(1)有机固体中载流子、自旋的激发、输运和复合过程。
(2)尺度、维度、各向异性与光电磁功能的相关性,以及器件理论研究。
(3)聚合物链的折叠、结晶与复杂流体的理论研究。
(4)外场作用下聚合物形态和结构演变的机制和理论。
8.材料设计的基础理论研究
科学目标:
以材料组分、结构设计和性能预测为主导,针对材料的关联效应和低激发态、纳米体系输运性质、物性计算等方面,在多层次、不同尺度上建立新模型,发展新方法,提出新理论,解释新实验,为材料性能预测和新材料设计提供坚实的理论物理基础。
资助方向:
(1)第一原理计算中的关联效应和低激发态计算模型和方法。
(2)材料物性的原子、电子层次高精度计算与动力学模拟。
(3)纳米体系力学性能、输运性质的计算和理论。
(4)材料设计中的多尺度计算方法和理论。
9.量子信息的理论研究
科学目标:
在量子信息领域,选择量子信息交换、量子信息传输、量子存储等重要问题,与国内的实验研究工作相结合,进行实质性的研究,争取在几个重要问题上有所突破。
资助方向:
(1)新型量子信息处理、计算或传输方案的理论探索。
(2)量子测量的理论研究,包括量子退相干、量子耗散等问题。
(3)新型量子信息载体产生与控制的理论研究。
2004年度重点资助项目
(1)宇宙中暗能量、暗物质的理论研究
(2)味物理和量子色动力学研究
(3)受限小量子系统中量子相干性研究
(4)细胞与分子生物学系统的统计物理学研究
(5)有机固体和聚合物中新效应的理论探索
本研究计划2004年度经费投入预算为1300万元,以面上项目和重点项目方式组织实施,面上项目的平均资助强度为25万元,重点项目平均资助强度为150万元。
申请者应根据项目指南确定的研究内容,针对某一研究方向中的一个或者几个问题,提出选题新颖,开拓性强的研究项目,组织好研究队伍,向国家自然科学基金委员会提出申请(对于既有"另辟蹊径"的独到想法,又有科学根据的项目申请,可以不受本《指南》研究内容的限制)。以下是有关项目申请的一些具体问题,请申请者给予特别注意:
本重大研究计划由数理科学部、化学科学部、生命科学部,工程与材料科学部和信息科学部组成学科联合工作组受理申请。
申请者必须填写《国家自然科学基金申请书》,基本信息表中的"资助类别"栏选择"重大研究计划","亚类说明"栏选择"面上项目"或"重点项目","附注说明"栏选择"理论物理学及其交叉科学若干前沿问题"。申请代码根据实际研究内容选择,对于申请板块三的项目,申请代码按项目研究内容选择生命、化学、工程与材料、或信息科学部相应的申请代码。
申请者和参加者(不包括博士后和博士生等年轻人)都需在申请书的研究基础部分的申请者和项目组主要成员的学历和研究工作简历中,提供各自近5年发表的代表性论文5~10篇(不要超过10篇)的目录和相应的SCI他引次数,以及各自已发表的全部论文的他引总数。鼓励年轻人参加,年轻人可根据各自的实际情况附代表性论文。
4. 理论物理学详细资料大全
理论物理学通过为自然界建立数学模型,来试图理解所有物理现象的运行机制,通过物理理论条理化、解释、预言物理现象。理论物理学,简要地说,就是建立在一系列定律之上的数学理论体系,是否正确依赖于其理论体系所得出的结论(推断)能否被实验验证。
在中国,大学本科物理专业的主流课程设定,通常会有五个理论物理学科,分别为:分析力学、统计力学、电动力学(严格地说,应该叫做“经典电动力学”)、相对论、量子力学。俗称“五大力学”。
5. 关于物理学,你知道它涉及到哪些领域吗
物理学是一门研究化学或生物学所不能研究的非生命物质和能量的性质和特性以及物质宇宙的基本定律的科学。因此,这是一个庞大而多样的研究领域。
为了弄懂它,科学家们把注意力集中在该学科的一两个较小的领域。这使得他们能够成为这一狭窄领域的专家,而不会陷入关于自然世界的大量知识中。
现代物理学包括原子及其组成部分,相对论和高速的相互作用,宇宙学和空间探索,以及介观物理学,即那些大小在纳米和微米之间的宇宙碎片。现代物理学的一些领域是:
6. 物理学的都是什么
物理学是研究物质运动最一般规律和物质基本结构的学科。作为自然科学的带头学科,物理学研究大至宇宙,小至基本粒子等一切物质最基本的运动形式和规律,因此成为其他各自然科学学科的研究基础。它的理论结构充分地运用数学作为自己的工作语言,以实验作为检验理论正确性的唯一标准,它是当今最精密的一门自然科学学科。
物理学研究的领域可分为下列四大方面:
1. 凝聚态物理:研究物质宏观性质,这些物相内包含极大数目的组元,且组员间相互作用极强。最熟悉的凝聚态相是固体和液体,它们由原子间的键和电磁力所形成。更多的凝聚态相包括超流和波色-爱因斯坦凝聚态(在十分低温时,某些原子系统内发现);某些材料中导电电子呈现的超导相;原子点阵中出现的铁磁和反铁磁相。凝聚态物理一直是最大的的研究领域。历史上,它由固体物理生长出来。1967年由菲立普·安德森最早提出,采用此名。
2. 原子、分子和光学物理:研究原子尺寸或几个原子结构范围内,物质-物质和光-物质的相互作用。这三个领域是密切相关的。因为它们使用类似的方法和有关的能量标度。它们都包括经典和量子的处理方法;从微观的角度处理问题。原子物理处理原子的壳层,集中在原子和离子的量子控制;冷却和诱捕;低温碰撞动力学;准确测量基本常数;电子在结构动力学方面的集体效应。原子物理受核的影晌。但如核分裂,核合成等核内部现象则属高能物理。 分子物理集中在多原子结构以及它们,内外部和物质及光的相互作用,这里的光学物理只研究光的基本特性及光与物质在微观领域的相互作用。
3. 高能/粒子物理:粒子物理研究物质和能量的基本组元及它们间的相互作用;也可称为高能物理。因为许多基本粒子在自然界不存在,只在粒子加速器中与其它粒子高能碰撞下才出现。据基本粒子的相互作用标准模型描述,有12种已知物质的基本粒子模型(夸克和轻粒子)。它们通过强,弱和电磁基本力相互作用。标准模型还预言一种希格斯-波色粒子存在。
4. 天体物理:天体物理和天文学是物理的理论和方法用到研究星体的结构和演变,太阳系的起源,以及宇宙的相关问题。因为天体物理的范围宽。它用了物理的许多原理。包括力学,电磁学,统计力学,热力学和量子力学。1931年卡尔发现了天体发出的无线电讯号。开始了无线电天文学。天文学的前沿已被空间探索所扩展。地球大气的干扰使观察空间需用红外,超紫外,伽玛射线和x-射线。物理宇宙论研究在宇宙的大范围内宇宙的形成和演变。爱因斯坦的相对论在现代宇宙理论中起了中心的作用。20世纪早期哈勃从图中发现了宇宙在膨胀,促进了宇宙的稳定状态论和大爆炸之间的讨论。1964年宇宙微波背景的发现,证明了大爆炸理论可能是正确的。大爆炸模型建立在二个理论框架上:爱因斯坦的广义相对论和宇宙论原理。宇宙论已建立了ACDM宇宙演变模型;它包括宇宙的膨胀,黑能量和黑物质。 从费米伽玛-射线望运镜的新数据和现有宇宙模型的改进,可期待出现许多可能性和发现。
物理学(Physics):物理现象、物质结构、物质相互作用、物质运动规律
物理学研究的范围 ——物质世界的层次和数量级
空间尺度:
原子、原子核、基本粒子、DNA长度、最小的细胞、太阳山哈勃半径、星系团、银河系、恒星的距离、太阳系、超星系团等。人蛇吞尾图形象地表示了物质空间尺寸的层次。
微观粒子Microscopic:质子 10⁻¹⁵ m
介观物质mesoscopic
宏观物质macroscopic
宇观物质cosmological 类星体 10²⁶m
时间尺度:
基本粒子寿命 10⁻²⁵s
宇宙寿命 10¹⁸s
按空间尺度划分:量子力学、经典物理学、宇宙物理学
按速率大小划分: 相对论物理学、非相对论物理学
按客体大小划分:微观、介观、宏观、宇观
按运动速度划分: 低速,中速,高速
按研究方法划分:实验物理学、理论物理学、计算物理学
分类简介
●牛顿力学(Mechanics)与理论力学(Rational mechanics)研究物体机械运动的基本规律及关于时空相对性的规律
●电磁学(Electromagnetism)与电动力学(Electrodynamics)研究电磁现象,物质的电磁运动规律及电磁辐射等规律
●热力学(Thermodynamics)与统计力学(Statistical mechanics)研究物质热运动的统计规律及其宏观表现
●相对论(Relativity)研究物体的高速运动效应以及相关的动力学规律
●量子力学(Quantum mechanics)研究微观物质运动现象以及基本运动规律
此外,还有:
粒子物理学、原子核物理学、原子与分子物理学、固体物理学、凝聚态物理学、激光物理学、等离子体物理学、地球物理学、生物物理学、天体物理学等等。
研究领域
物理学研究的领域可分为下列四大方面:
1.凝聚态物理——研究物质宏观性质,这些物相内包含极大数目的组元,且组员间相互作用极强。最熟悉的凝聚态相是固体和液体,它们由原子间的键和电磁力所形成。更多的凝聚态相包括超流和波色-爱因斯坦凝聚态(在十分低温时,某些原子系统内发现);某些材料中导电电子呈现的超导相;原子点阵中出现的铁磁和反铁磁相。凝聚态物理一直是最大的的研究领域。历史上,它由固体物理生长出来。1967年由菲立普·安德森最早提出,采用此名。
2.原子,分子和光学物理——研究原子尺寸或几个原子结构范围内,物质-物质和光-物质的相互作用。这三个领域是密切相关的。因为它们使用类似的方法和有关的能量标度。它们都包括经典和量子的处理方法;从微观的角度处理问题。原子物理处理原子的壳层,集中在原子和离子的量子控制;冷却和诱捕;低温碰撞动力学;准确测量基本常数;电子在结构动力学方面的集体效应。原子物理受核的影晌。但如核分裂,核合成等核内部现象则属高能物理。 分子物理集中在多原子结构以及它们,内外部和物质及光的相互作用,这里的光学物理只研究光的基本特性及光与物质在微观领域的相互作用。
3.高能/粒子物理——粒子物理研究物质和能量的基本组元及它们间的相互作用;也可称为高能物理。因为许多基本粒子在自然界不存在,只在粒子加速器中与其它粒子高能碰撞下才出现。据基本粒子的相互作用标准模型描述,有12种已知物质的基本粒子模型(夸克和轻粒子)。它们通过强,弱和电磁基本力相互作用。标准模型还预言一种希格斯-波色粒子存在。现正寻找中。
4.天体物理——天体物理和天文学是物理的理论和方法用到研究星体的结构和演变,太阳系的起源,以及宇宙的相关问题。因为天体物理的范围宽。它用了物理的许多原理。包括力学,电磁学,统计力学,热力学和量子力学。1931年卡尔发现了天体发出的无线电讯号。开始了无线电天文学。天文学的前沿已被空间探索所扩展。地球大气的干扰使观察空间需用红外,超紫外,伽玛射线和x-射线。物理宇宙论研究在宇宙的大范围内宇宙的形成和演变。爱因斯坦的相对论在现代宇宙理论中起了中心的作用。20世纪早期哈勃从图中发现了宇宙在膨胀,促进了宇宙的稳定状态论和大爆炸之间的讨论。1964年宇宙微波背景的发现,证明了大爆炸理论可能是正确的。大爆炸模型建立在二个理论框架上:爱因斯坦的广义相对论和宇宙论原理。宇宙论已建立了ACDM宇宙演变模型;它包括宇宙的膨胀,黑能量和黑物质。 从费米伽玛-射线望运镜的新数据和现有宇宙模型的改进,可期待出现许多可能性和发现。尤其是今后数年内,围绕黑物质方面可能有许多发现。
物理学史
●伽利略·伽利雷(1564年-1642年)人类现代物理学的创始人,奠定了人类现代物理科学的发展基础。
● 1900-1926年 建立了量子力学。
● 1926年 建立了费米狄拉克统计。
● 1927年 建立了布洛赫波的理论。
● 1928年 索末菲提出能带的猜想。
● 1929年 派尔斯提出禁带、空穴的概念,同年贝特提出了费米面的概念。
● 1947年贝尔实验室的巴丁、布拉顿和肖克莱发明了晶体管,标志着信息时代的开始。
● 1957年 皮帕得测量了第一个费米面超晶格材料纳米材料光子。
● 1958年杰克.基尔比发明了集成电路。
● 20世纪70年代出现了大规模集成电路。
物理与物理技术的关系:
● 热机的发明和使用,提供了第一种模式:技术—— 物理—— 技术
● 电气化的进程,提供了第二种模式:物理—— 技术—— 物理
当今物理学和科学技术的关系两种模式并存,相互交叉,相互促进“没有昨日的基础科学就没有今日的技术革命”。例如:核能的利用、激光器的产生、层析成像技术(CT)、超导电子技术、粒子散射实验、X 射线的发现、受激辐射理论、低温超导微观理论、电子计算机的诞生。几乎所有的重大新(高)技术领域的创立,事先都在物理学中经过长期的酝酿。
物理学的方法和科学态度:提出命题 → 理论解释 → 理论预言 → 实验验证 →修改理论。
现代物理学是一门理论和实验高度结合的精确科学,它的产生过程如下:
①物理命题一般是从新的观测事实或实验事实中提炼出来,或从已有原理中推演出来;
②首先尝试用已知理论对命题作解释、逻辑推理和数学演算。如现有理论不能完美解释,需修改原有模型或提出全新的理论模型;
④新理论模型必须提出预言,并且预言能够为实验所证实;
⑤一切物理理论最终都要以观测或实验事实为准则,当一个理论与实验事实不符时,它就面临着被修改或被推翻。
● 怎样学习物理学?
着名物理学家费曼说:科学是一种方法,它教导人们:一些事物是怎样被了解的,什么事情是已知的,了解到了什么程度,如何对待疑问和不确定性,证据服从什么法则;如何思考事物,做出判断,如何区别真伪和表面现象?着名物理学家爱因斯坦说:发展独立思考和独立判断的一般能力,应当始终放在首位,而不应当把专业知识放在首位.如果一个人掌握了他的学科的基础理论,并且学会了独立思考和工作,他必定会找到自己的道路,而且比起那种主要以获得细节知识为其培训内容的人来,他一定会更好地适应进步和变化 。
● 学习的观点:从整体上逻辑地,协调地学习物理学,了解物理学中各个分支之间的相互联系。
● 物理学的本质:物理学并不研究自然界现象的机制(或者根本不能研究),我们只能在某些现象中感受自然界的规则,并试图以这些规则来解释自然界所发生任何的事情。我们有限的智力总试图在理解自然,并试图改变自然,这是物理学,甚至是所有自然科学共同追求的目标。
以物理学为基础的相关科学:化学,天文学,自然地理学等。
学科性质
基本性质
物理学是人们对无生命自然界中物质的转变的知识做出规律性的总结。这种运动和转变应有两种。一是早期人们通过感官视觉的延伸,二是近代人们通过发明创造供观察测量用的科学仪器,实验得出的结果,间接认识物质内部组成建立在的基础上。物理学从研究角度及观点不同,可分为微观与宏观两部分,宏观是不分析微粒群中的单个作用效果而直接考虑整体效果,是最早期就已经出现的,微观物理学随着科技的发展理论逐渐完善。
其次,物理又是一种智能。
诚如诺贝尔物理学奖得主、德国科学家玻恩所言:“如其说是因为我发表的工作里包含了一个自然现象的发现,倒不如说是因为那里包含了一个关于自然现象的科学思想方法基础。”物理学之所以被人们公认为一门重要的科学,不仅仅在于它对客观世界的规律作出了深刻的揭示,还因为它在发展、成长的过程中,形成了一整套独特而卓有成效的思想方法体系。正因为如此,使得物理学当之无愧地成了人类智能的结晶,文明的瑰宝。
大量事实表明,物理思想与方法不仅对物理学本身有价值,而且对整个自然科学,乃至社会科学的发展都有着重要的贡献。有人统计过,自20世纪中叶以来,在诺贝尔化学奖、生物及医学奖,甚至经济学奖的获奖者中,有一半以上的人具有物理学的背景;——这意味着他们从物理学中汲取了智能,转而在非物理领域里获得了成功。——反过来,却从未发现有非物理专业出身的科学家问鼎诺贝尔物理学奖的事例。这就是物理智能的力量。难怪国外有专家十分尖锐地指出:没有物理修养的民族是愚蠢的民族!
总之,物理学是对自然界概括规律性的总结,是概括经验科学性的理论认识。
六大性质
1.真理性:物理学的理论和实验揭示了自然界的奥秘,反映出物质运动的客观规律。
2.和谐统一性:神秘的太空中天体的运动,在开普勒三定律的描绘下,显出多么的和谐有序。物理学上的几次大统一,也显示出美的感觉。牛顿用三大定律和万有引力定律把天上和地上所有宏观物体统一了。麦克斯韦电磁理论的建立,又使电和磁实现了统一。爱因斯坦质能方程又把质量和能量建立了统一。光的波粒二象性理论把粒子性、波动性实现了统一。爱因斯坦的相对论又把时间、空间统一了。
3.简洁性:物理规律的数学语言,体现了物理的简洁明快性。如:牛顿第二定律,爱因斯坦的质能方程,法拉第电磁感应定律。
4.对称性:对称一般指物体形状的对称性,深层次的对称表现为事物发展变化或客观规律的对称性。如:物理学中各种晶体的空间点阵结构具有高度的对称性。竖直上抛运动、简谐运动、波动镜像对称、磁电对称、作用力与反作用力对称、正粒子和反粒子、正物质和反物质、正电和负电等。
5.预测性:正确的物理理论,不仅能解释当时已发现的物理现象,更能预测当时无法探测到的物理现象。例如麦克斯韦电磁理论预测电磁波存在,卢瑟福预言中子的存在,菲涅尔的衍射理论预言圆盘衍射中央有泊松亮斑,狄拉克预言电子的存在。
6.精巧性:物理实验具有精巧性,设计方法的巧妙,使得物理现象更加明显。
7. 物理包括那几大类
大体上分普通物理和理论物理 普物包括声光热电磁力和运动等 理论拆洞物理包括量子力学、电动力学、理论力学和原子物理等 以上是我大学塌雀的基本课程分类 网络上说:理论物理的研究领域涉及粒子物理与原子核物理、统计物理、凝聚态物理、宇宙学等,几乎包括物理学所有分支的基本理团御早论问题.
8. 物理学专业有哪些方向
物理学当然是存在的,现在几乎所有的力学,光学,电磁学,电知腔工学,微波,天文学和气象学都是物理学分出去的,严格来说他们还仍然属于物理。只不过是更工程化了一些。
物理学专业现在主要的方向有理论物理、粒子物理与原子核物理、原子与分子物理、等离子体物理、凝聚态物理、光学、声学、无线电物理、天体物理等方向
理论物理是大量计算的物理,特别是数学大量的应用,也包含很多方面,各个方面,只要涉及大量理论数学计算的都称为理论物理.凝聚态物理则是考虑固体,液体,和趋于固体和液体之间的一种凝聚态,晶体多数处于这种状态.
有趣的是,所有的学科几没圆乎都是物理学分细化了以后分出去的,各个学科尽管表面上繁花似锦,但是他们都要搭察衫满足一定的数学规律,特别是物质守恒,动量守恒,能量守恒,电磁守恒这些规律以及他们的相似描述方法渗透到科学每一个分支。
9. 理论物理涉及数学吗
学科概况
理山指论物理是从理论上探索自然界未知的物质结构、相互作用和逗携配物质运动的基本规律的学科。隐慎理论物理的研究领域涉及粒子物理与原子核物理、统计物理、凝聚态物理、宇宙学等,几乎包括物理学所有分支的基本理论问题。
理论物理不是扯淡,没有数学是寸步难行的.牛顿之所以成为伟大的物理学家,就在于他比同时代的其他物理学家数学好.
10. 理论物理学要学的课程(量子力学与相对论、M理论及弦理论方向),以下哪些是必学的,还有别的要学吗
我认为数学的话基本都要学,除了微分几何,拓扑学可以不用怎么看,其他的数学课程都是蛮基础的。量子力学最重要的是线性代数的基本功,建议你线代好好看看。当然高数也很重要。
普通物理肯定都要学,你是物理专业的,这些课程本科肯定都要学的,最基础的东西
四大力学理论力学是最基础的,其他像量力和固体物理是必须的,电动力学就是普通物理里面电磁学的升级版,但和量子力学关系不是最大
研究课程你是相对论方向的,那你针对性的挑选几门吧。什么天体物理,核物理应该关系不大可以不用看
微分几何应该不用
关于固体物理、计算物理、粒子物理、微分几何、数理方程、复变函数:
固体物理物理专业必学的科目,我学过,是研究固体材料的热容,半导体,能带理论什么的,这里面大量运用到了量子力学的理论,建议还是学习一下好
计算物理的话是计算机模拟吧好像我记得,你纯理论研究的话我认为不是很需要。
粒子物理我觉得应该要的,量子力学研究的就是一个电子的状态,不过这门课我也没学过,也不大好说
数理方程和复变函数属于基础的数学学科。工科大学生也都是要求学习的。
数理方程就是用数学的方法研究物理现象,解偏微分方程的方法。应为量子力学中大量涉及到电子态的偏微分方程,所以还是看一下吧
复变函数的话也是很基础的课程,但是我学完之后没觉得用处有多大,但是本科物理专业的这两门数学课必学的。你自己看看你想到什么程度吧。。。