❶ 高一学期物理必考知识点
我们无时无刻不在学习。但每个人的 学习态度 的层次都有所不同,对于学习,我们不仅仅要做到“好之”,还需对学习怀有满腔热忱,这样,学习效果会大大提升,才能使流淌着的使知识河流永不干涸。下面是我给大家带来的高一学期物理必考知识点,希望大家能够喜欢!
高一学期物理必考知识点1
1、自由落体运动:只在重力作用下由静止开始的下落运动,因为忽略了空气的阻力,所以是一种理想的运动,是初速度为零、加速度为g的匀加速直线运动。
2、自由落体运动规律
3、竖直上抛运动:
可以看作是初速度为v0,加速度方向与v0方向相反,大小等于的g的匀减速直线运动,可以把它分为向上和向下两个过程来处理。
(2)竖直上抛运动的对称性
物体以初速度v0竖直上抛,A、B为途中的任意两点,C为点,则:
(1)时间对称性
物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA.
(2)速度对称性
物体上升过程经过A点的速度与下降过程经过A点的速度大小相等.
[关键一点]
在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也可能处于下降阶段,因此这类问题可能造成时间多解或者速度多解.
易错现象
1、忽略自由落体运动必须同时具备仅受重力和初速度为零
2、忽略竖直上抛运动中的多解
3、小球或杆过某一位置或圆筒的问题
高一学期物理必考知识点2
一、探究形变与弹力的关系
弹性形变(撤去使物体发生形变的外力后能恢复原来形状的物体的形变)范性形变(撤去使物体发生形变的外力后不能恢复原来形状的物体的形变)3、弹性限度:若物体形变过大,超过一定限度,撤去外力后,无法恢复原来的形状,这个限度叫弹性限度。
二、探究摩擦力
滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。
说明:摩擦力的产生是由于物体表面不光滑造成的。
三、力的合成与分解
(1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡
(2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上
(3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成
①确定研究对象;
②分析受力情况;
③建立适当坐标;
④列出平衡方程
四、共点力的平衡条件
1.共点力:物体受到的各力的作用线或作用线的延长线能相交于一点的力
2.平衡状态:在共点力的作用下,物体保持静止或匀速直线运动的状态.
说明:这里的静止需要二个条件,一是物体受到的合外力为零,二是物体的速度为零,仅速度为零时物体不一定处于静止状态,如物体做竖直上抛运动达到点时刻,物体速度为零,但物体不是处于静止状态,因为物体受到的合外力不为零.
3.共点力作用下物体的平衡条件:合力为零,即0
说明;
①三力汇交原理:当物体受到三个非平行的共点力作用而平衡时,这三个力必交于一点;
②物体受到N个共点力作用而处于平衡状态时,取出其中的一个力,则这个力必与剩下的(N-1)个力的合力等大反向。
③若采用正交分解法求平衡问题,则其平衡条件为:FX合=0,FY合=0;
④有固定转动轴的物体的平衡条件
五、作用力与反作用力
学过物理学的人都会知道牛顿第三定律,此定律主要说明了作用力和反作用的关系。在对一个物体用力的时候同时会受到另一个物体的反作用力,这对力大小相等,方向相反,并且保持在一条直线上。
高一学期物理必考知识点3
一、曲线运动
(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。
(2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。
(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。
二、运动的合成与分解
1、深刻理解运动的合成与分解
(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。
运动的合成与分解基本关系:
1分运动的独立性;
2运动的等效性(合运动和分运动是等效替代关系,不能并存);
3运动的等时性;
4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)
(2)互成角度的两个分运动的合运动的判断
合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。
①两个直线运动的合运动仍然是匀速直线运动。
②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。
③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。
2、怎样确定合运动和分运动
①合运动一定是物体的实际运动
②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。
③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。
3、绳端速度的分解
此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)
4、小船渡河问题
(1)L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,
(2)渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0.
所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。
(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角,根据cosθ=Vc/Vs,船头与河岸的夹角应为:θ=arccosVc/Vs.
高一学期物理必考知识点相关 文章 :
★ 高一物理必修一必背知识点
★ 高一上学期物理知识点总结
★ 高一第一学期物理课本知识点
★ 高一上册物理知识点总结人教版
★ 高中物理必背知识点知识归纳
★ 高中物理常考知识点归纳
★ 高中物理必背的知识点
★ 高一物理必修一考点(期末必备)
★ 高一物理考试知识点梳理
★ 高一物理知识点整理大全
❷ 人教版高一物理知识点
【篇一】人教版高一物理知识点
1、原子的核式结构
(1)粒子散射实验结果:绝大多数粒子沿原方向前进,少数粒子发生较大偏转。
(2)原子的核式结构模型:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间绕核旋转.
(3)原子核的大小:原子的半径大约是10-10米,原子核的半径大约为10-14米~10-15米.
2、玻尔理论有三个要点:
(1)原子只能处于一系列的不连续的能量状腊键谈态中,在这些状态中原子是稳定的.电子虽然绕核旋转,但并不向外辐射能量,这些状态叫定态.
(2)原子从一种定态跃迁到另一定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两个定态的能量差决定.即hν=E2-E1
(3)原子的不同能量状态对应于电子沿不同圆形轨道运动.原子的定态是不连续的,因而电子的可能轨道是分立的.
在玻尔模型中,原子的可能状态是不连续的,各状态对应的能量也是不连续的,这些不连续的能量值的能量值叫做能级。
3、原子核的组成核力
原子核是由质子和中子组成的.质子和中轮碰子统称为核子.
将核子稳固地束缚在一起的力叫核力,这是一种很强的力,而且是短程力,只能在2.0X10-15的距离内起作用,所以只有相邻的核子间才有核力作用.
4、原子核的衰变
(1)天然放射现象:有些元素自发地放射出看不见的射线,这种现
象叫天然放射现象.
(2)放射性元素放射的射线有三种:、射线、射线,
这三种射线可以用磁场和电场加以区别,
(3)放射性元素的衰变:放射性元素放射出粒子或粒子后,衰变成新的原子核,原子核的这种变化称为衰变.
衰变规律:衰变中的电荷数和质量数都是守恒的.
(4)半衰期:放射性元素的原子核有半数发生衰变所需要的时间称为半衰期.不同的放射性元素的半衰期是不同的,但对于确定的放射性元素,其半衰期是确定的.它由原子核的内部因素所决定,跟元素的化学状态、温度、压强等因素无关.
(5)同位素:具有相同质子数,中子数不同的原子在元素周期表中处于同一位置,互称同位素。
【篇二】人教版高一物理知识点
一、受力分析
1、概念
把研究对象(指定物体)在指定的物理环境中受到的所有力都分析出来,并画出物体所受的力的示意图,这个过程就是受力分析。
2、受力分析的重要依据
①从力的概念判断,寻找对应的施力物体;
②从力的性质判断,寻找产生各性质力的原因;
③从力的效果判断,寻找是否改变物体的形状或改变物体的运动状态(即是否产生加速度)(是静止、匀速还是变速运动)。
3、受力分析一般顺序
一般先分析场力(重力、电场力、磁场力);然后分析弹力,环绕物体一周,找出跟研究对象接触的物体,并逐个分析这些物体对研究对象是否有弹力作用;最后分析摩擦力,对凡有弹力作用的地方逐一进行分析。
二、受力分析常用的方法
1、整体法与隔离法
整体法、隔离法在受力分析时要灵活选用:
(1)当所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简单明了,而不必考虑亮耐内力的作用。
(2)当涉及的物理问题是物体间的作用时,要应用隔离分析法,这时系统中物体间相互作用的内力就会变为各个独立物体的外力。
2、假设法
在受力分析时,若不能确定某力是否存在,可先对其作出存在或不存在的情况假设,然后再就该力存在与否对物体运动状态影响的不同来判断该力是否存在。
三、受力分析的步骤
(1)明确研究对象--即确定受力分析的物体,研究对象可以是单个物体,也可以是多个物体的组合.
(2)隔离物体分析--将研究对象从周围物体中隔离出来,进而分析周围有哪些物体对它施加了力的作用.
(3)画出受力示意图--边分析边将力画在示意图上,准确标出各力的方向.
(4)检查画出的每一个力能否找到它的施力物体,检查分析结果能否使研究对象处于题目所给运动状态,否则,必然发生了漏力、多力等错误。
四、受力分析要注意的问题
受力分析就是指把指定物体(研究对象)在特定的物理情景中所受到的所有外力找出来,并画出受力图.受力分析时要注意以下五个问题:
(1)研究对象的受力图,通常只画出根据性质命名的力,不要把按效果分解的力或合成的力分析进去。受力图完成后再进行力的合成和分解,以免造成混乱。
(2)区分内力和外力:对几个物体组成的系统进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现;当把其中的某一物体单独隔离分析时,原来的内力变成外力,要画在受力图上。
(3)防止"添力":找出各力的施力物体,若没有施力物体,则该力一定不存在。为避免多力,应注意
①分析出的所有力都应找到施力物体;
②不能把研究对象对其他物体的作用力也分析进去;
③不能同时考虑合力和分力.
(4)防止"漏力":严格按照重力、弹力、摩擦力、其他力的步骤进行分析是防止"漏力"的有效办法。为避免漏力,应做到:
①养成"一重二弹三摩四其他"的顺序分析受力的习惯;
②分析是弹力、摩擦力这些接触力时,按一定的绕向围绕研究对象,对接触面逐一分析.
(5)受力分析还要密切注意物体的运动状态,运用平衡条件或牛顿运动定律判定未知力的有无及方向。
【篇三】人教版高一物理知识点
1、光的干涉现象:
频率相同,振动方向一致,相差恒定(步调差恒定)的两束光,在相遇的区域出现了稳定相间的加强区域和减弱区域的现象。
(1)产生干涉的条件:
①若S1、S2光振动情况完全相同,则符合,(n=0、1、2、3…)时,出现亮条纹;
②若符合,((n=0,1,2,3…)时,出现暗条纹。相邻亮条纹(或相邻暗条纹)之间的中央间距为。
(2)熟悉条纹特点
中央为明条纹,两边等间距对称分布明暗相间条纹。
2.用双缝干涉测量光的波长
原理:两个相邻的亮纹或暗条纹的中心间距是Δx=lλ/d
测波长为:λ=d?Δx/l
(1)观察双缝干涉图样:
只改变缝宽,用不同的色光来做,改变屏与缝的间距看条纹间距的变化
单色光:形成明暗相间的条纹。
白光:中央亮条纹的边缘处出现了彩色条纹。这是因为白光是由不同颜色的单色光复合而成的,而不同色光的波长不同,在狭缝间的距离和狭缝与屏的距离不变的条件下,光波的波长越长,各条纹之间的距离越大,条纹间距与光波的波长成正比。各色光在双缝的中垂线上均为亮条纹,故各色光重合为白色。
(2)测定单色光的波长:
双缝间距是已知的,测屏到双缝的距离,测相邻两条亮纹间的距离,测出个亮纹间的距离,则两个相邻亮条纹间距:
3.光的色散:
不同的颜色的光,波长不同在双缝干涉实验中,各种颜色的光都会发生干涉现象,用不同色光做实验,条纹间距是不同的,说明:不同颜色的光,波长不同。
含有多种颜色的光被分解为单色光的现象叫光的色散。
各种色光按其波长的有序排列就是光谱。
从红光→紫光,光波的波长逐渐变小。
4.薄膜干涉中的色散现象
把这层液膜当做一个平面镜,用它观察灯焰的像:是液膜前后两个反射的光形成的,与双缝干涉的情况相同,在膜上不同位置,来自前后两个面的反射光用图中实虚线来代表两列光,所走的路程差不同。
在某些位置叠加后加强,出现了亮纹,在另一些位置,叠加后相互削弱,于是出现了暗纹。
注意:
关于薄膜干涉要弄清的几个问题:
(1)是哪两列光波发生干涉;
(2)应该从哪个方向去观察干涉图样;
(3)条纹会向哪个方向侧移
5.应用
(1)照相机、望远镜的镜头表面的增透膜。
(2)检查工件表面是否平整。
6.光的衍射现象
光偏离直线传播绕过障碍物进入阴影区域里的现象。
产生明显衍射的条件:障碍物或孔(缝)的尺寸与波长可比(相差不多)或更小。
单色光单缝衍射图象特点:中央条纹最宽最亮,两侧为不等间隔的明暗相间的条纹。
应用:用衍射光栅测定光波波长。
❸ 高一上册物理知识点归纳
一、质点的运动
(1)——直线运动
1)匀变速直线运动
1、平均速度V平=S/t(定义式)2、有用推论Vt^2–Vo^2=2as
3、中间时刻速度Vt/2=V平=(Vt+Vo)/24、末速度Vt=Vo+at
5、中间位置速度Vs/2=(Vo^2+Vt^2)/21/26、位移S=V平t=Vot+at^2/2=Vt/2t
7、加速度a=(Vt-Vo)/t以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8、实验用推论ΔS=aT^2ΔS为相邻连续相等时间(T)内位移之差
9、主要物理量及单位:初速(Vo):m/s
加速度(a):m/s^2末速度(Vt):m/s
时间(t):秒(s)位移(S):米(m)路程:米速度单位换算:1m/s=3、6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s——t图/v——t图/速度与速率/
2)自由落体
1、初速度Vo=0
2、末速度Vt=gt
3、下落高度h=gt^2/2(从Vo位置向下计算)4、推论Vt^2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9、8m/s^2≈10m/s^2重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3)竖直上抛
1、位移S=Vot-gt^2/22、末速度Vt=Vo-gt(g=9、8≈10m/s2)
3、有用推论Vt^2–Vo^2=-2gS4、上升最大高度Hm=Vo^2/2g(抛出点算起)
5、往返时间t=2Vo/g(从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)——曲线运动万有引力
1)平抛运动
1、水平方向速度Vx=Vo2、竖直方向速度Vy=gt
3、水平方向位移Sx=Vot4、竖直方向位移(Sy)=gt^2/2
5、运动时间t=(2Sy/g)1/2(通常又表示为(2h/g)1/2)
6、合速度Vt=(Vx^2+Vy^2)1/2=Vo^2+(gt)^21/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/Vo
7、合位移S=(Sx^2+Sy^2)1/2,
位移方向与水平夹角α:tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。
(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。
(3)θ与β的关系为tgβ=2tgα。
(4)在平抛运动中时间t是解题关键。
(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1、线速度V=s/t=2πR/T2、角速度ω=Φ/t=2π/T=2πf
3、向心加速度a=V^2/R=ω^2R=(2π/T)^2R4、向心力F心=Mv^2/R=mω^2-R=m(2π/T)^2-R
5、周期与频率T=1/f6、角速度与线速度的关系V=ωR
7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8、主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)
周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s
角速度(ω):rad/s向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1、开普勒第三定律T2/R3=K(=4π^2/GM)R:轨道半径T:周期K:常量(与行星质量无关)
2、万有引力定律F=Gm1m2/r^2G=6、67×10^-11N·m^2/kg^2方向在它们的连线上
3、天体上的重力和重力加速度GMm/R^2=mgg=GM/R^2R:天体半径(m)
4、卫星绕行速度、角速度、周期V=(GM/R)1/2ω=(GM/R^3)1/2T=2π(R^3/GM)1/2
5、第一(二、三)宇宙速度V1=(g地r地)1/2=7、9Km/sV2=11、2Km/sV3=16、7Km/s
6、地球同步卫星GMm/(R+h)^2=m-4π^2(R+h)/T^2h≈3、6kmh:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。
(2)应用万有引力定律可估算天体的质量密度等。
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。
(5)地球卫星的最大环绕速度和最小发射速度均为7、9Km/S。
四、机械能
1、功
(1)做功的两个条件:作用在物体上的力。
物体在里的方向上通过的距离。
(2)功的大小:W=Fscosa功是标量功的单位:焦耳(J)
1J=1N-m
当00F做正功F是动力
当a=派/2w=0(cos派/2=0)F不作功
当派/2<=a派W<0F做负功F是阻力
(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa
2、功率
(1)定义:功跟完成这些功所用时间的比值。
P=W/t功率是标量功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s1000w=1kw
(2)功率的另一个表达式:P=Fvcosa
当F与v方向相同时,P=Fv。(此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率:当v为平均速度时
2)瞬时功率:当v为t时刻的瞬时速度
(3)额定功率:指机器正常工作时最大输出功率
实际功率:指机器在实际工作中的输出功率
正常工作时:实际功率≤额定功率
(4)机车运动问题(前提:阻力f恒定)
P=FvF=ma+f(由牛顿第二定律得)
汽车启动有两种模式
1)汽车以恒定功率启动(a在减小,一直到0)
P恒定v在增加F在减小尤F=ma+f
当F减小=f时v此时有最大值
2)汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定F不变(F=ma+f)V在增加P实逐渐增加最大
此时的P为额定功率即P一定
P恒定v在增加F在减小尤F=ma+f
当F减小=f时v此时有最大值
3、功和能
(1)功和能的关系:做功的过程就是能量转化的过程
功是能量转化的量度
(2)功和能的区别:能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别。
4、动能。动能定理
(1)动能定义:物体由于运动而具有的能量。用Ek表示
表达式Ek=1/2mv^2能是标量也是过程量
单位:焦耳(J)1kg-m^2/s^2=1J
(2)动能定理内容:合外力做的功等于物体动能的变化
表达式W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
5、重力势能
(1)定义:物体由于被举高而具有的能量。用Ep表示
表达式Ep=mgh是标量单位:焦耳(J)
(2)重力做功和重力势能的关系
W重=-ΔEp
重力势能的变化由重力做功来量度
(3)重力做功的特点:只和初末位置有关,跟物体运动路径无关
重力势能是相对性的,和参考平面有关,一般以地面为参考平面
重力势能的变化是绝对的,和参考平面无关
(4)弹性势能:物体由于形变而具有的能量
弹性势能存在于发生弹性形变的物体中,跟形变的大小有关
弹性势能的变化由弹力做功来量度
6、机械能守恒定律
(1)机械能:动能,重力势能,弹性势能的总称
总机械能:E=Ek+Ep是标量也具有相对性
机械能的变化,等于非重力做功(比如阻力做的功)
ΔE=W非重
机械能之间可以相互转化
(2)机械能守恒定律:只有重力做功的情况下,物体的动能和重力势能
发生相互转化,但机械能保持不变
表达式:Ek1+Ep1=Ek2+Ep2成立条件:只有重力做功
1、定义:把某个特定的物体在某个特定的物理环境中所受到的力一个不漏,一个不重地找出来,并画出定性的受力示意图。对物体进行正确地受力分析,是解决好力学问题的关键。
2、相对合理的顺序:先找场力(电场力、磁场力、重力),再找接触力(弹力、摩擦力),最后分析其它力。
3、为了在受力分析时不多分析力,也不漏力,一般情况下按下面的步骤进行:
(1)确定研究对象—可以是某个物体也可以是整体。
(2)按顺序画力
①.先画重力:作用点画在物体的重心,方向竖直向下。
②.次画已知力
③.再画接触力—(弹力和摩擦力):看研究对象跟周围其他物体有几个接触点(面),先对某个接触点(面)分析,若有挤压,则画出弹力,若还有相对运动或相对运动的趋势,则再画出摩擦力。分析完一个接触点(面)后,再依次分析其他的接触点(面)。
④.再画其他场力:看是否有电、磁场力作用,如有则画出。
第一章 力
知识要点:
1、本专题知识点及基本技能要求
(1)力的本质
(2)重力、物体的重心
(3)弹力、胡克定律
(4)摩擦力
(5)物体受力情况分析
1、力的本质:(参看例1、2、3)
(1)力是物体对物体的作用。
※脱离物体的力是不存在的,对应一个力,有受力物体同时有施力物体。找不到施力物体的力是无中生有。(例如:脱离枪筒的子弹所谓向前的冲力,沿光滑平面匀速向前运动的小球受到的向前运动的`力等)
(2)力作用的相互性决定了力总是成对出现:
※甲乙两物体相互作用,甲受到乙施予的作用力的同时,甲给乙一个反作用力。作用力和反作用力,大小相等、方向相反,分别作用在两个物体上,它们总是同种性质的力。(例如:图中N与N 均属弹力,均属静摩擦力)
(3)力使物体发生形变,力改变物体的运动状态(速度大小或速度方向改变)使物体获得加速度。
※这里的力指的是合外力。合外力是产生加速度的原因,而不是产生运动的原因。对于力的作用效果的理解,结合上定律就更明确了。
(4)力是矢量。
※矢量:既有大小又有方向的量,标量只有大小。
力的作用效果决定于它的大小、方向和作用点(三要素)。大小和方向有一个不确定作用效果就无法确定,这就是既有大小又有方向的物理含意。
(5)常见的力:根据性质命名的力有重力、弹力、摩擦力;根据作用效果命名的力有拉力、下滑力、支持力、阻力、动力等。
2、重力,物体的重心(参看练习题)
(1)重力是由于地球的吸引而产生的力;
(2)重力的大小:G=mg,同一物体质量一定,随着所处地理位置的变化,重力加速度的变化略有变化。从赤道到两极G?大(变化千分之一),在极地G最大,等于地球与物体间的万有引力;随着高度的变化G?小(变化万分之一)。
❹ 高一物理必修一课本课本内容
不同地方可能学的有的不一样,我是江苏的。必修一主要是运动学和力学。第一章主要是认识一下运动学中的物理量,第二章研究直线运动,主要研究匀变速直线运动,第三章是力学,主要是认识几个常见的力和学习力的合成与分解,第四章是牛顿研究运动的几个定律,就是牛顿第一、第二、第三运动定律,还有运用定律解决实际问题。具体就不说了,你会学的。总的来说,必修一的内容不难,关键是要真心理解那几个物理量吧,反正姐姐是这么学过来的。噢对,必修一的力学部分其实还是为了运动学的深入。
❺ 人教版高一物理上学期知识点
【篇一】
牛顿第一定律表明,当合外力为零时,原来静止的物体将继续保持静止状态,原来运动的物体则将继续以原来的速度做匀速直线运动。合外力为零包括两种情况:一种是物体受到的所有外力相互抵消,合外力为零;另一种是物体不受外力的作用。有的专家学者认为这种表述方式并不严谨,所以通常采用原始表述。
二、演绎过程
伽利略研究运动学的方法是把实验和数学结合在一起,既注重逻辑推理,又依靠实验检验。他对光滑斜面的推论是通过实验观察,并推论得到的。但是这个完全光滑的斜面在现实中不存在,因为无法将摩擦力完全消除,因此理想斜面实验属于伽利略的逻辑推理部分。
伽利略对光滑斜面的推论
现实中,当一个球沿斜面向下滚时,它的速度增大,而向上滚时,它的速度减小。
由此伽利略推论,当球沿水平面滚动时,它的速度应不增不减。实际上他发现,球愈来愈慢,最后停下来。伽利略认为,这并非是它的“自然本性”,而是由于摩擦阻力的缘故,因为他同样还观察到,表面愈光滑,球便会滚得愈远。
于是他推论,若没有摩擦阻力,球将永远滚下去。
伽利略的理想斜面实验
伽利略的理想斜面实验实验如图所示,让小球沿一个光滑斜面从静止状态开始下滚,小球将滚上另一个斜面,达到与原来差不多的高度然后再下滚。他推论,只是因为摩擦力,球才没能达到原来的高度。然后,他减小后一斜面的倾角,小球在这个斜面上仍达到同一高度,但这时它要滚得远些。继续减小第二个斜面的倾角,球达到同一高度就会滚得更远。
于是他对斜面平放时的情况进行研究,结论显然是球将永远滚下去。这就是说,力不是维持物体的运动即清仔维持物体的速度的原因,而恰恰是改变物体运动状态即改变物体速度的原因。因此,一旦物体具有某一速度,如果它不受力,就将以这一速度匀速直线地运动下去。
三、适用范围
牛顿第一定律只适用于惯性参考系。在质点不受外力作用时,能够判断出质点静止或作匀速直线运动的参考系一定是惯性参考系,因此只有在惯性参考系中牛顿第一运动定律才适用。
牛顿第一定律在非惯性参考系(即有加速度的系统)中不适用,因为不受外力的毕正物体,在该参考系中也可能具有加速度,这与牛顿第一定律相悖。
当牛顿第一定律不成立时,即非惯性系中,要用非惯性系中的力学方程求解力学问题。式中为在惯性系中测得的物体受的合力,为在非惯性系中测得的惯性力,为非惯性系统的加速度。
1、超重现象
定义:物体对支持物的压力大于物体所受重力的情况叫超重现象。
产生原因:物体具有竖直向上的加速度。
2、失重现象
定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。
产生原因:物体具有竖直向下的加速度。
3、完全失重现象
定义:物体对支持物的压力等于零的情况即与支持物或悬挂物虽然接触但无相互作用。
产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。是否发生完全失重现象与运动方向无关,只要物体竖直向下的加速度等于重力加速度即可。
只有在平衡状态下,才能用弹簧秤测出物体的重力,因为此时弹簧秤对物体的支持力(或拉力)的大小恰等于它的重力。假若系统在竖直方向有加速度,那么弹簧秤的示数就不等于物体的重力了,大于mg时叫“超重”小于mg叫“失重”(等于零时叫“完全失重”)。
注意:物体处于“超重”或“失重”状态,地球作用于物体的重力始终存在,大小也无变化。发生“超重”或“失重”现象与物体的速度V方向无关,只取决于物体加速度的方向。在“完全失重”(a=g)的状态,平常一切由重力产生的物理现象都会完全消失,比如答数汪单摆停摆、浸在水中的物体不受浮力等。
另外,“超重”或“失重”状态还可以从牛顿第二定律的独立性(是指作用于物体上的每一个力各自产生对应的加速度)上来解释。上述状态中物体的重力始终存在,大小也无变化,自然其产生的加速度(通常称为重力加速度g)是不发生变化的,自然重力不变。
❻ 高一上册物理知识点
物理学是研究物质运动最一般规律和物质基本结构的学科。要想学好物理,首先就是要掌握它的知识点。下面是我给大家整理的高一上册物理知识点,欢迎大家阅读学习。
高一上册物理知识点1
一、质点
1.质点:用来代替物体的有质量的点.
2.说明:(1)质点是一个理想化模型,实际上并不存在.
(2) 物体可以简化成质点的情况:①物体各部分的运动情况都相同时(如平动).②物体的大小和形状对所研究问题的影响可以忽略不计的情况下(如研究地球的公转).
二、参考系和坐标系
1.参考系:在描述一个物体的运动时,用来作为标准的另外的物体.
说明:
(1)同一个物体,如果以不同的物体为参考系,观察结果可能不同.
(2)参考系的选取是任意的,原则是以使研究物体的运动情况简单为原则;一般情况下如无说明,则以地面或相对地面静止的物体为参考系.
2.坐标系:为定量研究质点的位置及变化,在参考系上建立坐标系,如质点沿直线运动,以该直线为x轴;研究平面上的运动可建立直角坐标系.
三、时刻和时间
1.时刻:指的是某一瞬间,在时间轴上用—个确定的点表示.如“3s末”;和“4s初”.
2.时间:是两个时刻间的一段间隔,在时间轴上用一段线段表示.
四、位置、位移和路程
1.位置:质点所在空间对应的点.建立坐标系后用坐标来描述.
2.位移:描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的线段的长度.
3.路程:物体运动轨迹的长度,是标量.
五、速度与速率
1. 速度:位移与发生这个位移所用时间的比值(v= ),是矢量,方向与Δx的方向相同.
2.瞬时速度与瞬时速率:瞬时速度指物体在某一时刻(或某一位置)的速度,方向沿轨迹的切线方向,其大小叫瞬时速率,前者是矢量,后者是标量.
3.平均速度与平均速率:在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度(v= ),是矢量,方向与位移方向相同;而物体在某段时间内运动的路程与所用时间的比值叫平均速率,是标量.
说明:速度都是矢量,速率都是标量;速度描述物体运动的快慢及方向,而速率只能描述物体运动的快慢;瞬时速率就是瞬时速度的大小,但平均速率不一定等于平均速度的大小,只有在单方向直线运动中,平均速率才等于平均速度的大小,即位移大小等于路程时才相等.
六、加速度
1.物理意义:描述速度改变快慢及方向的物理量,是矢量.
2.定义:速度的改变量跟发生这一改变所用时间的比值.
3.公式:a= =
4.大小:等于单位时间内速度的改变量.
5.方向:与速度改变量的方向相同.
6.理解:要注意区别速度(v)、速度的改变(Δv)、速度的变化率( ).加速度的大小即 ,而加速度的方向即Δv的方向
七.速度、速度变化量及加速度有哪些区别?
速度等于位移跟时间的比值.它是位移对时间的变化率,描述物体运动的快慢和运动方向.也可以说是描述物体位置变化的快慢和位置变化的方向.
速度的变化量是描述速度改变多少的,它等于物体的末速度和初速度的矢量差.它表示速度变化的大小和变化的方向,在匀加速直线运动中,速度变化的方向与初速度的方向相同;在匀减速直线运动中,速度的变化的方向与速度的方向相反.速度的变化与速度大小无必然联系.
加速度是速度的变化与发生这一变化所用时间的比值.也就是速度对时间的变化率,在数值上等于单位时间内速度的变化.它描述的是速度变化的快慢和变化的方向.加速度的大小由速度变化的大小和发生这一变化所用时间的多少共同决定,与速度本身的大小以及速度变化的大小无必然联系.
高一上册物理知识点 2
基本规律
1、匀速直线运动:s=vt (v 是恒量),位移随时间均匀增加。
2、匀变速直线运动:速度随时间均匀变化,即加速度不变;运动过程中任意相邻相等时间内的位移差相等。
公式:
vt = v0+ at
s = v0 t + 1/2at^2
vt^2= v0^2 + 2as
s = (v0 + vt )t/2
△s=s(i+1)-si=aT^2
v(1/2)=V(平均)=(vt+v0)/2
v(1/2)=√(vt^2+v0^2)/2
初速度为零时的比例关系:
1?? 第一秒、第二秒、第三秒……第 n 秒内的位移比:1:3:5:……:(2n-1)
2?? 第一秒、第二秒、第三秒……第 n 秒内的平均速度之比:1:3:5:……:(2n-1)
3?? 1T 内、2T 内、3T 内……nT 内的位移之比:1:4:9:……:n^2
4??第一个 s、第二个 s、第三个 s……第 n 个 s 的时间之比:1:(√2-1):√3-√2......:√n-√(n-1)
3、自由落体运动:初速度为零,加速度等于重力加速度 g(g 通常取 9.8m/s2)
公式:
v = gt
h = 1/2gt^2
4、竖直上抛运动:加速度 a=-g,上升和下降通过同一点时的速度等值反向,物体从某一位置到最高点的时间与从最高点回到该点时的时间相等,即上升和下降过程有对称性。物体上升的最大高度由初速度决定。
公式:
vt=v0-gth=v0t-1/2gt^2
H高=vo^2/2g
t高=v/g
5、图像: 图中(1)表示匀速运动,(2)表示匀加速直线运动(3)表示匀减速直线运动(4)表示与正方向相反的匀加速直线运动(5)表示匀减速直线运动。注意:图中线的斜率表示加速度,线下面积表示位移。
高一上册物理知识点 3
力和物体平衡部分
1、力学中常见的三种力:重力(G)、弹力(F)、摩擦力(f)
重力:由于地球的吸引而产生,方向竖直向下,施力物体为地球,重力的反作用力作用在地球上
弹力产生条件:直接接触且有弹性形变;方向与形变方向向反,且和接触面垂直。弹力的施力物体是发生形变的物体本身。
摩擦力产生条件:有相对运动或运动趋势,物体间摩擦系数不为零,物体间有正压力; 方向:与物体间相对运动或相对运动趋势方向相反。
注意:物体间摩擦力的方向可能与物体的运动方向相同。
滑动摩擦力的大小:f=μN,(μ为滑动摩擦系数,与接解面的材料和光滑程度有关),滑动摩擦力与接触面的面积大小无关。
静摩擦力的大小:其大小往往与物体的运动状态有关,与物体间的正压力无关,常根据物体的平衡或牛顿第二定律求出。其取值范围:大于等于零而小于等于最大静摩擦力(最大静摩擦力与正压力有关)
2、共点力和共点力作用下物体的平衡
1??共点力:力的作用线相交于同一点的力。
2??共点力作用下物体的平衡条件:物体所受的合外力为零。共点力作用下物体的平衡状态:静止或匀速直线运动。
3??二力平衡时:两个力等值反向;三力平衡时:三力中任意两个力的合与另外一个力等值反向,若三力不共线,则这三力一定共面共点;多力平衡时:其中任意一个力与其余所有力的合力等值反向。
3、常用解题 方法 :相似三角形法,封闭的矢量三角形法。具体计算中可以用正交分解法。
4、解平衡问题的一般思路:
1??先确定研究对象(可以是物体,也可以是结点;可以是单个物体,也可以是几个物体组成的系统);
2??然后对研究对象进行受力分析,画出正确的受力示意图(可按重力、弹力、摩擦力、已知力的顺序,画力的示意图时画在物体的重心上即可);
3??选择合理的矢量运算方法计算(如相似三角形、封闭的矢量三角形、力的正交分解等),根据题意列出方程并求出结果。
5、力的合成与分解:
1??力的合成与力的分解采用了等效替代的方法。
2??合力可以大于、小于或等于分力。
3??两个力的合力大于等于两分力之差,小于等于两分力之和。三个力的合力的取值要看其中一个力是否在另两个的合力范围内,若在则合力的最小值为零,最大值为三力之和。
4??力的合成与分解满足平行四边形法则。用作图法求两个力的合力时,以表示两个力的线段为邻边作平行四边形,过两力交点的对角线就表示合力,箭头画在顶点处。
5??已知几个力求其合力结果是唯一的,但将一个力分解时,如果没有条件限制结果往往不唯一。将力分解时有唯一值的条件是:已知两个分力的方向或已知一个分力的大小和方向。
高一上册物理知识点 4
基本概念
1、矢量:物理学中把有大小有方向才能确定的物理量叫做矢量。如位移、力、速度、加速度等。
2、标量:物理学中把只有大小就可以确定的物理量叫做标量。如路程、时间、质量、速率等。
3、路程:表示物体运动轨迹的长度。
4、位移:表示物体位置变化的物理量,是矢量。大小:等于物体运动始末两点间距离,
方向:从起点指向末点。
注意:只有在单向直线运动中物体的位移大小才等于路程,其余情况中物体的位移大小都小于路程。
5、时刻:时间轴上的一个点。
6、时间:两时刻间的差值。
7、速度:表示物体运动快慢的物理量,运动快则速度大,慢则小。
8、速率:指速度的大小。
9、瞬时速度:物体在某一位置或某一时刻的速度,能精确描述物体运动的快慢。
10、平均速度:物体在某一段时间或位移内的速度,只能粗略地描述物体运动的快慢。求平均速度时,要说明是哪一段时间或位移内的平均速度。公式:v =s/t
11、加速度:表示物体速度变化快慢的物理量,速度变化快则加速度大,慢则小。注意:加速度大小与速度、速度变化量大小无关,只取决于速度的变化率,即单位时间内速度的变化量。
公式:a = (vt - v0)/t
单位:m/s2,读作:米每二次方秒
12、质点:当物体的大小和形状在所研究的问题中作为一种次要因素时,就可以忽略物体的大小和形状,把物体当作只有质量的点,即质点。质点是一种理想化物理模型,物体能否当作质点与物体自身的大小和形状无关,且同一物体在不同的问题中有时可以当作质点,有时却不行。
提高高中物理听课的效率
1、 课前预习 能提高听课的针对性
预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,新的知识有所了解,以减少听课过程中的盲目性和被动性,有助于提高课堂效率。预习后把自己理解了的知识与老师的讲解进行比较、分析即可提高自己思维水平,预习还可以培养自己的自学能力
2、听课过程中要聚精会神、全神贯注,不能开小差
全神贯注就是全身心地投入课堂学习,做到耳到、眼到、心到、口到、手到。若能做到这“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。要保证听课过程中能全神贯注,不开小差。上课前必须注意课间十分钟的休息,不应做过于激烈的 体育运动 或激烈争论或看小说或做作业等,以免上课后还气喘嘘嘘,想入非非,而不能平静下来,甚至大脑开始休眠。所以应做好课前的物质准备和精神准备。
3、特别注意老师讲课的开头和结尾
老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳 总结 ,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要
4、作好笔记
笔记不是记录而是将上述听课中的重点,难点等作出简单扼要的记录,记下讲课的要点以及自己的感受或有 创新思维 的见解。以便复习,消化
5、要认真审题,理解物理情境、物理过程,注重分析问题的思路和解决问题的方法,坚持下去,就一定能举一反三,提高迁移知识和解决问题的能力。
高一上册物理知识点相关 文章 :
★ 高一上册物理知识点总结人教版
★ 高一物理上册知识点
★ 高一物理上学期知识点总结
★ 高一物理知识点整理大全
★ 高一上学期物理实验知识点总结
★ 高一物理必修1知识点
★ 高一物理知识点整理归纳
★ 高一必修一物理知识点总结大全
★ 高一物理必修一知识点总结
★ 高一必修一物理知识点整理
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();❼ 人教版高一物理必修一知识点整理
【 #高一# 导语】现代人总结成功的几大要素:正确的思想、不懈的行动、伟大的性格、娴熟的技能、天赐的机会、宝贵的健康。可见,想取得成功,不仅要吃“苦中苦”,也要相关条件的配合支持,那些光知道吃苦的人,那些吃了不值得吃的苦的人,那些把吃苦当成解决一切问题法宝的人,恐怕只能继续在“苦中苦”的怪圈里徘徊。 考 网为大家整理了《人教版高一物理必修一知识点整理》更多精彩内容,请持续关注本站!
【一】
一、曲线运动
(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。
(2)曲线运动的特点:在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。
(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。
二、运动的合成与分解
1、深刻理解运动的合成与分解
(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。
运动的合成与分解基本关系:
1分运动的独立性;
2运动的等效性(合运动和分运动是等效替代关系,不能并存);
3运动的等时性;
4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。)
(2)互成角度的两个分运动的合运动的判断
合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。
①两个直线运动的合运动仍然是匀速直线运动。
②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。
③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。
④两个初速度不为零的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。
2、怎样确定合运动和分运动
①合运动一定是物体的实际运动
②如果选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。
③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要按照实际效果进行分解。
3、绳端速度的分解
此类有绳索的问题,对速度分解通常有两个原则①按效果正交分解物体运动的实际速度②沿绳方向一个分量,另一个分量垂直于绳。(效果:沿绳方向的收缩速度,垂直于绳方向的转动速度)
4、小船渡河问题
(1)L、Vc一定时,t随sinθ增大而减小;当θ=900时,sinθ=1,所以,当船头与河岸垂直时,渡河时间最短,
(2)渡河的最小位移即河的宽度。为了使渡河位移等于L,必须使船的合速度V的方向与河岸垂直。这是船头应指向河的上游,并与河岸成一定的角度θ。根据三角函数关系有:Vccosθ─Vs=0.
所以θ=arccosVs/Vc,因为0≤cosθ≤1,所以只有在Vc>Vs时,船才有可能垂直于河岸横渡。
(3)如果水流速度大于船上在静水中的航行速度,则不论船的航向如何,总是被水冲向下游。怎样才能使漂下的距离最短呢?设船头Vc与河岸成θ角,合速度V与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角呢?以Vs的矢尖为圆心,以Vc为半径画圆,当V与圆相切时,α角,根据咐歼cosθ=Vc/Vs,船头与河岸镇野的夹角应为:θ=arccosVc/Vs.
【二】
名称:加速度
1.定义:速度的变化量Δv与发生这一变化所用时间Δt的比值。
2.公式:a=Δv/Δt
3.单位:m/s^2(米每二次方秒)
4.加速度是矢量,既有大小又有方向。加速度的大小等于单位时间内速度的增加量;加速度的方向与速度变化量ΔV方向始终相同。特别,在直线运动中,如果速度增加,加速度的方向与速度相同;如果速度减小,加速度的方向与速度御简喊相反。
5.物理意义:表示质点速度变化的快慢的物理量。
举例:假如两辆汽车开始静止,均匀地加速后,达到10m/s的速度,A车花了10s,而B车只用了5s。它们的速度都从0m/s变为10m/s,速度改变了10m/s。所以它们的速度变化量是一样的。但是很明显,B车变化得更快一样。我们用加速度来描述这个现象:B车的加速度(a=Δv/t,其中的Δv是速度变化量)>
加速度计构造的类型
A车的加速度。
显然,当速度变化量一样的时候,花时间较少的B车,加速度更大。也就说B车的启动性能相对A车好一些。因此,加速度是表示速度变化的快慢的物理量。
注意:
1.当物体的加速度保持大小和方向不变时,物体就做匀变速运动。如自由落体运动,平抛运动等。
当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运动。如竖直上抛运动。
当物体的加速度方向与初速度方向在同一直线上时,物体就做直线运
2.加速度可由速度的变化和时间来计算,但决定加速度的因素是物体所受合力F
和物体的质量M。
3.加速度与速度无必然联系,加速度很大时,速度可以很小;速度很大时,加速度也可以很小。例如:炮弹在发射的瞬间,速度为0,加速度非常大;以高速直线匀速行驶的赛车,速度很大,但是由于是匀速行驶,速度的变化量是零,因此它的加速度为零。
4.加速度为零时,物体静止或做匀速直线运动(相对于同一参考系)。任何复杂的运动都可以看作是无数的匀速直线运动和匀加速运动的合成。
5.加速度因参考系(参照物)选取的不同而不同,一般取地面为参考系。
6.当运动的方向与加速度的方向之间的夹角小于90°时,即做加速运动,加速度是正数;反之则为负数。
特别地,当运动的方向与加速度的方向之间的夹角恰好等于90°时,物体既不加速也不减速,而是匀速率的运动。如匀速圆周运动。
7.力是物体产生加速度的原因,物体受到外力的作用就产生加速度,或者说力是物体速度变化的原因。说明
当物体做加速运动(如自由落体运动)时,加速度为正值;当物体做减速运动(如竖直上抛运动)时,加速度为负值。
8.加速度的大小比较只比较其绝对值。物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.
向心加速度
向心加速度(匀速圆周运动中的加速度)的计算公式:
a=rω^2=v^2/r
说明:a就是向心加速度,推导过程并不简单,但可以说仍在高
科里奥利加速度
科里奥利加速度
中生理解范围内,这里略去了。r是圆周运动的半径,v是速度(特指线速度)。ω(就是欧姆的小写)是角速度。
这里有:v=ωr.
1.匀速圆周运动并不是真正的匀速运动,因为它的速度方向在不断的变化,所以说匀速圆周运动只是匀速率运动的一种。至于说为什么叫他匀速圆周运动呢?可能是大家说惯了不愿意换了吧。
2.匀速圆周运动的向心加速度总是指向圆心,即不改变速度的大小只是不断地改变着速度的方向。
重力加速度
地球表面附近的物体因受重力产生的加速度叫做重力加速度,也叫自由落体加速度,用g表示。
重力加速度g的方向总是竖直向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。重力加速度的数值随海拔高度增大而减小。当物体距地面高度远远小于地球半径时,g变化不大。而离地面高度较大时,重力加速度g数值显着减小,此时不能认为g为常数
距离面同一高度的重力加速度,也会随着纬度的升高而变大。由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也达到。
由于g随纬度变化不大,因此国际上将在纬度45°的海平面精确测得物体的重力加速度g=9.80665m/s^2;作为重力加速度的标准值。在解决地球表面附近的问题中,通常将g作为常数,在一般计算中可以取g=9.80m/s^2。理论分析及精确实验都表明,随纬度增大,重力加速度g的数值逐渐增大。如:
赤道g=9.780m/s^2
广州g=9.788m/s^2
武汉g=9.794m/s^2
上海g=9.794m/s^2
东京g=9.798m/s^2
北京g=9.801m/s^2
纽约g=9.803m/s^2
莫斯科g=9.816m/s^2
北极地区g=9.832m/s^2
注:月球面的重力加速度约为1.62m/s^2,约为地球重力的六分之一。
匀加速直线动动的公式
1.匀加速直线运动的位移公式:
s=V0t+(at^2)/2=(vt^2-v0^2)/2a=(v0+vt)t/2
2.匀加速直线运动的速度公式:
vt=v0+at
3.匀加速直线运动的平均速度(也是中间时刻的瞬时速度):
v=(v0+vt)/2
其中v0为初速度,vt为t时刻的速度,又称末速度。
4.匀加速度直线运动的几个重要推论:
(1)V末^2-V初^2=2as(以初速度方向为正方向,匀加速直线运动,a取正值;匀减速直线运动,a取负值。)
(2)AB段中间时刻的即时速度:
Vt/2=(v初+v末)/2
(3)AB段位移中点的即时速度:
Vs/2=[(v末^2+v初^2)/2]^(1/2)
(4)初速为零的匀加速直线运动,在1s,2s,3s……ns内的位移之比为1^2:2^2:3^2……:n^2;
(5)在第1s内,第2s内,第3s内……第ns内的位移之比为1:3:5……:(2n-1);
(6)在第1米内,第2米内,第3米内……第n米内的时间之比为1:2^(1/2):3^(1/2):……:n^(1/n)
(7)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:△s=aT^2(a一匀变速直线运动的加速度T一每个时间间隔的时间)。
(8)竖直上抛运动:上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动.
加速度-加速运动与减速运动
物体运动时,如果加速度不为零,则处于加速状态。若加速度大于零,则为正加速;若加速度小于零,则为负加速(即速度减至0后反向加速)。(提示:物理中的符号不同于数学中的符号,在+、-号只代表是的标量,在物理中+、-号部分代表单纯的标量,还有部分还代表的像方向啦什么的矢量)
V=v末—v初
加速度公式:a=△V/△t
加速度-曲线加速运动
在加速度保持不变的时候,物体也有可能做曲线运动。比如,当你把一个物体沿水平方向用力抛出时,你会发现,这个物体离开桌面以后,在空中划过一条曲线,落在了地上。
物体在出手以后,受到的只有竖直向下的重力,因此加速度的方向和大小都不改变。但是物体由于惯性还在水平方向上以出手速度运动。这时,物体的速度方向与加速度方向就不在同一直线上了。物体就会往力的方向偏转,划过一条往地面方向偏转的曲线。
但是这个时候,由于重力大小不变,因此加速度大小也不变。物体仍然做的是匀加速运动,但不过是匀加速曲线运动。
加速度-小问题——加速度单位的来历
根据我们高中的课本描述,有加速度a=(Δv)/(Δt)=(v1-v2)/t,因为速度(v)的单位是m/s,时间(t)的单位是s,于是将m/s与s相除,得到的就是它的单位:m/s^2.
❽ 人教版高一物理知识点总结
人教版的高中物理是非常难的,学生想要学好物理,就需要从高一的时候认真听讲,一节课都不能落,高中物理是有联系的,下面是我为大家整理的人教版高一物理知识点总结,希望对大家学习有一定的帮助。
1.人教版高一物理的x—t图象(即位移图象)
(1)纵截距表示物体的初始位置。
(2)倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。
(3)斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。
2.人教版高一物理的v—t图象(速度图象)
(1)纵截距表示物体的初速度。
(2)倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。
(3)纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。
(4)斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的方向。
(5)面积表示位移。横轴早掘卜上方的面积表示正位移,横轴下方的面积表示负位移。
1.基本公式:速度时间公式:v=v0 + at;位移平均速度公式:x=t =(v0+v)/2.t;位移时间公式:x=v0t + a t2/2;位移速度公式2a x= v2-v02;匀变速直线运动的特点:a是恒量,而且a与v0同一直线上。
2.推论:(1)任意两个连续相等的时间里的位移之差是一个恒量,即ΔS=aT2=恒量。
注意:此式是匀变速直线运动的判别式
推广公式:连续的第m个T内的位移和连续第n个T内的位移差为:Sm-Sn=(m-n) aT2
(2)某段时间内的平均速度,等于该段时间的中间时刻的瞬时速度,即=vt/2=(v0+vt)/2;
(3)某段位移中点的瞬时速度vS/2等于初速度v0和末速度v平方和一半的平方根,即vx/2=。
注意:可以证明,无论匀加速还是匀减速,都有
(4)初速度为零的匀加速直线运动。
1.力是物体对物体的作用:力不能脱离物体而独立存在;物体间的作用是相互的。
2.力的三要素:力的大小、方向、作用点。
3.力作用于物体产生的两个作用效果,使受力物体发生形变或使受力物体的运动状态发生改变。
4.力的分类:①按照力的性质命名:重力、弹力、摩擦力等;②按照力的作用效果命名:拉力、推力、压力、支持力、动力、阻力、浮力、向心力等。
5.重力:(1)重力是由于地球的吸引而使物体受到的力:①地球上的物体受到重力,施力物体是地球;②重力的方向总是竖直向下的。
(2)重心:物体的各个部分都受重力的作用,但从效果上看,我们可以认为各部分所受重力的作用都集中于一点,这个点就是物体所受重力的作用点,叫做物体的重心:① 质量均匀分布的有规则形状的均匀物体,它的重心在几何中心上;② 一般物体的散陆重心不一定在几何中心上,可以在物体内,也可以在物体外。一般采用悬挂法;③重力的大小:G=mg
6.弹力:(1)发生弹性形变的物体,会对跟它接触的物体产生力的作用,这种力叫做弹力。
(2)产生弹力必须具备两个条件:①两物体直接接触;②两物体的接触处发生弹性形变。
(3)弹力的方向:物体之间的正压力一定垂陆穗直于它们的接触面。绳对物体的拉力方向总是沿着绳而指向绳收缩的方向,在分析拉力方向时应先确定受力物体。
(4)弹力的大小:弹力的大小与弹性形变的大小有关,弹性形变越大,弹力越大。弹簧弹力:F = Kx (x为伸长量或压缩量,K为劲度系数)
(5)相互接触的物体是否存在弹力的判断方法:如果物体间存在微小形变,不易觉察,这时可用假设法进行判定.
7.摩擦力:(1)滑动摩擦力:①FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G;②为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力FN无关.
(2)静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。
大小范围: O<F静 fm (fm为最大静摩擦力,与正压力有关)< p>
说明:①摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角;②摩擦力可以作正功,也可以作负功,还可以不作功;③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反;④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
8.力的合成与分解:(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力。
(2)共点力的合成:①共点力:几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力;②力的合成方法:求几个已知力的合力叫做力的合成;③平行四边形定则:两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。
求F 、 的合力公式( 为F1、F2的夹角);④注意:a.力的合成和分解都均遵从平行四边行法则;b.两个力的合力范围: F1-F2 F F1 +F2 ;c. 合力可以大于分力、也可以小于分力、也可以等于分力;d.两个分力成直角时,用勾股定理或三角函数。
9.共点力作用下物体的平衡:(1)共点力作用下物体的平衡状态:①一个物体如果保持静止或者做匀速直线运动,我们就说这个物体处于平衡状态;②物体保持静止状态或做匀速直线运动时,其速度(包括大小和方向)不变,其加速度为零,这是共点力作用下物体处于平衡状态的运动学特征。
(2)共点力作用下物体的平衡条件:共点力作用下物体的平衡条件是合力为零,亦即F合=0
①二力平衡:这两个共点力必然大小相等,方向相反,作用在同一条直线上。
②三力平衡:这三个共点力必然在同一平面内,且其中任何两个力的合力与第三个力大小相等,方向相反,作用在同一条直线上,即任何两个力的合力必与第三个力平衡
③若物体在三个以上的共点力作用下处于平衡状态,通常可采用正交分解,必有:
F合x= F1x+ F2x + ………+ Fnx =0
F合y= F1y+ F2y + ………+ Fny =0 (按接触面分解或按运动方向分解)
10.力学单位制(1)物理公式在确定物理量数量关系的同时,也确定了物理量的单位关系。基本单位就是根据物理量运算中的实际需要而选定的少数几个物理量单位;根据物理公式和基本单位确立的其它物理量的单位叫做导出单位。
(2)在物理力学中,选定长度、质量和时间的单位作为基本单位,与其它的导出单位一起组成了力学单位制。选用不同的基本单位,可以组成不同的力学单位制,其中最常用的基本单位是长度为米(m),质量为千克(kg),时间为秒(s),由此还可得到其它的导出单位,它们一起组成了力学的国际单位制。
11.牛顿运动三定律。
❾ 高一上学期物理知识点有哪些
物理是许多同学的短板,那么高一上学期物理知识点有哪些呢?下面是由我为大家整理的“高一上学期物理知识点有哪些”,仅供参考,欢迎大家阅读。
质点、参考系和坐标系
物体与质点:
1、质点:当物体的大小和形状对所研究的问题而言影响不大或没有影响时,为研究问题方便,可忽略其大小和形状,把物体看做一个有质量的点,这个点叫做质点。
2、物体可以看成质点的条件
条件:①研究的物体上个点的运动情况完全一致。
②物体的线度必须远远的大于它通过的距离。
(1)物体的形状大小以及物体上各部分运动的差异对所研究的问题的影响可以忽略不计时就可以把物体当作质点
(2)平动的物体可以视为质点
平动的物体上各个点的运动情况都完全相同的物体,这样,物体上任一点的运动情况与整个物体的运动情况相同,可用一个质点来代替整个物体。
小贴士:质点没有大小和形状因为它仅仅是一个点,但是质点一定有质量,因为它代表了一个物体,是一个实际物体的理想化的模型。质点的质量就是它所代表的物体的质量。
参考系:
1、参考系的定义:描述物体的运动时,用来做参考的另外的物体。
2、对参考系的理解:
(1)物体是运动还是静止,都是相对于参考系而言的,例如,肩并肩一起走的两个人,彼此就是相对静止的,而相对于路边山斗的建筑物,他们却是运动的。
(2)同一运动选择不同的参考系,观察结果可能不同。例如司机开着车行驶在高速公路上以车为参考系,司机是静止的,以路面为参考系,司机是运动的。
(3)比较物体的运动,应该选择同一参考系。
(4)参考系可以是运动的物体,也可以是静止的物体。
小贴士:只有选择了参考系,说某个物体是运动还是静止,物体怎样运动才变得有意义参考系的选择是研究运动的前提是一项基本技能。
坐标系:
1、坐标系物理意义:在参考系上建立适当的坐标系,从而,定量地描述物体的位置及位置变化。
2、坐标系分类:
(1)一维坐标系(直线坐标系):适用于描述质点做直线运动,研究沿一条直线运动的物体时,要沿着运动直线建立直线坐标系,即以物体运动所沿的直线为x轴,在直线上规定原点、正方向和单位长度。例如,汽车在平直公路上行驶,其位置可用离车站(坐标原点)的距离(坐标)来确定。
(2)二维坐标系(平面直角坐标系)适用于质点在平面内做曲线运动。例如,运动员推铅球以铅球离手时的位置为坐标原点,沿铅球初速方向建立x轴,竖直向下建立y轴,铅球的坐标为铅球离开手后的水平距离和竖直距离。
(3)三维坐标系(空间直角坐标系):适用于物体在三维空间的运动。例如,篮球在空中的运动。
归纳整理:质点、参考系和坐标系是运动学乃至整个力学的最基本最重要的概念。质点是为了研究问题的方便而引入的理想化模型。质点的运 动是相对的。为了描述运动而假定为不动的`物体为参考系。坐标系则是参考系中各个点的定量表示。本节重点内容是对质点概念的理解以及研究问题时如何选取参考系。
时间和位移
时间和时刻:
①时刻的定义:时刻是指某一瞬时,是时间轴上的一点,相对于位置、瞬时速度、等状态量,一般说的“2秒末”,“速度2m/s”都是指时刻。
②时间的定义:时间是指两个时刻之间的间缺唯戚隔,是时间轴上的一段,通常说的“几秒内”,伏陵“第几秒”都是指的时间。
位移和路程:
①位移的定义:位移表示质点在空间的位置变化,是矢量。位移用又向线段表示,位移的大小等于又向线段的长度,位移的方向由初始位置指向末位置。
②路程的定义:路程是物体在空间运动轨迹的长度,是一个标量。在确定的两点间路程不是确定的,它与物体的具体运动过程有关。
位移与路程的关系:位移和路程是在一段时间内发生的,是过程量,两者都和参考系的选取有关系。一般情况下位移的大小并不等于路程的大小。只有当物体做单方向的直线运动是两者才相等。
运动快慢的描述--速度
速度的定义:速度是描述物体运动快慢的物理量。
瞬时速度、平均速率与平均速度:
瞬时速度:运动的物体经过某一位置或是某一时刻的速度,其大小叫速率。
平均速度:物体在某段时间的位移与时间的比值,能够粗略的描述物体运动的快慢。
平均速度是矢量,平均速度的大小和物体运动的阶段有关系。定义式:v=s/t适用于所有的运动形式。
平均速率:物体在某段时间内的路程与时间之比。平均速率是标量。定义式:v=s/t.
注意:平均速度和平均速率往往是不相等的,只有物体做无往复的直线运动时两者才相等。
归纳整理:物体的运动有快慢之分。不同的物体运动的快慢程度可以用速度来描述。本节重点围绕与速度相关的平均速度、平均速率、瞬时速度、瞬时速率等概念及相关的公式和应用。
实验:用打点计时器测速度
打点计时器的分类:电磁打点计时器和电火花计时器。
1、电磁打点计时器:电磁打点计时器是一种记录运动物体在一定时间间隔内位移的仪器。它使用交流电源,工作电压在10V以下,当电源的频率为50Hz时,它每隔0.02S打一个点。
电磁打点计时器的构造如图所示。
2、电火花计时器:电火花计时器使用交流电源,工作电压是220V。
电火花计时器的构造如图所示。主要由脉冲输出开关,正负脉冲输出插座、墨粉纸盘、纸盘轴等构成。
3、计时原理:
电火花计时装置中有一将正弦式交变电流转化为脉冲式交变电流的装置当计时器接通220V交流电源时,按下脉冲输出开关,计时器发出的脉冲电流经接正极的放电针和接负极的墨粉纸盘轴产生火花放电。利用火花放电在纸带上打出点迹,当电源的频率为50Hz时,它每隔0.02S打一个点。
用打点计时器测量瞬时速度:
处理这类问题可采用两种方法:一是与某点相邻的点间距离所对应的时间很短。只有0.02S,故只要测出某点与其相邻点间的距离x,再利用v=x/t求出平均速度,就可用这个平均速度来代表某点的瞬时速度;二是利用某点左侧的位移与时间(0.02S)的比值求出速度v1,再利用某点右侧的一段位移与时间(0.02S)的比值求出速度v2,利用Va=(v1+v2)/2就可得出a点更准确的瞬时速度。
曲线运动
1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2.物体做直线或曲线运动的条件:
(已知当物体受到合外力F作用下,在F方向上便产生加速度a);
(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;
(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。
3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
4.平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。
分运动:
(1)在水平方向上由于不受力,将做匀速直线运动;
(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。
5.以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下.
6.①水平分速度:②竖直分速度:③t秒末的合速度。
④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示。
7.匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
8.描述匀速圆周运动快慢的物理量。
(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上。
9.匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。
(2)角速度:ω=φ/t(φ指转过的角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的。
(3)周期T,频率:f=1/T。
(4)线速度、角速度及周期之间的关系:
10.向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
11.向心加速度:描述线速度变化快慢,方向与向心力的方向相同,
12.注意:
(1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
13.离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。
万有引力定律及其应用
1.万有引力定律:引力常量G=6.67×N•m2/kg2;
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点);
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)。
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时);
(2)重力=万有引力;
地面物体的重力加速度:mg=Gg=G≈9.8m/s2;
高空物体的重力加速度:mg=Gg=G<9.8m/s2;
4.第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆周运动的卫星中线速度是最大的。
由mg=mv2/R或由==7.9km/s;
5.开普勒三大定律;
6.利用万有引力定律计算天体质量;
7.通过万有引力定律和向心力公式计算环绕速度;
8.大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)。
❿ 高一物理教科书内容
高一物理教科书内漏轿容如下:
第一章:运动的描述。质点,参考系和坐标系、时间和位移、运动快慢的描述,速度、实验:用打点计时器测速度、速度变化快慢的描述,加速度。第二章:匀变速直线运动的研究、实验:研究小车速度随时间变化的规律、匀变速直线运动的速度与时间的关返迟肆系、匀变速直线运动的位移与时间的关系、自由落体运动、伽利略对自由落体运动的研究。第三章:相互作用、重力、基本相互作用、弹力、摩擦力、力的合成、力的分解。第四章:牛顿第一定律、实验:研究加速度与力、质量的关系、牛顿第二定律、力学单位制、牛顿第三定律、用旦激牛顿定律解决问题一、用牛顿定律解决问题二。