导航:首页 > 物理学科 > 物理化学xb是什么意思

物理化学xb是什么意思

发布时间:2023-05-11 13:42:19

物理化学中的广度量有哪些

广度量,又称广度性质,或容量性质,指的是其数值与体系的数量成正比,具有加和性,数学上要求是一次齐函数.
常见的有:体积V,质量m,熵S,内能U,焓H,吉布斯函数G,亥姆霍兹函数A,热容C,化学势μ,配分函数q.基本就这些了,不常见的估计你也用不上.

⑵ 物化中xb是什么意思

物化中xb是摩尔分数的意思。

⑶ 什么是系统的偏摩尔量(物理化学)

偏摩尔量 partial molar quantity
体系中任一物质B的偏摩尔量xB的定义式为式中ne为溶液中除B物质的量nB以外所有其它物...偏摩尔量是强度性质,是一个微商的概念。可以理解为B物质处于溶液中时的摩尔量。在温度、压力及除了某一组分(假设是组分A)以外其余组分的物质的量均不变的条件下,广度量X随组分A的物质的量nA变化率XA称为组分A的偏摩尔量。偏摩尔量就是解决体系组成的变化对体系状态影响问题

⑷ 物理化学中bB是什么

在化学和物理中都是常用的符号,只不过代表的含义不同。具体情况如下。

⑸ 物理化学里的偏摩尔量实际意义是什么

不论是什么体系,物质的质量(克)和物质的量(摩尔)总是具有加和性的。但是,体系的其他广度性质则不一定具有简单的加和性。以体积这一广度性质为例,两组分混合前的体积之和(V1+V2)与混合后的实际体积(V)并不相等,即V1+V2≠V。要找出规律,须引入“偏摩尔量”这个新概念。偏摩尔量,在温度、压力及除了组分B以外其余组分的物质的量均不变的条件下,广度量X随组分B的物质的量nB的变化率XB称为组分B的偏摩尔量。偏摩尔量就是解决“体系组成的变化对体系状态影响问题的”。

1、只有广度性质才有对应的偏摩尔量。因为只有广度性质才与体系中物质的量有关。偏摩尔量也是状态函数,是强度性质。

2、只有均相多组分体系才使用偏摩尔量的概念。单组分体系的偏摩尔量等于其摩尔量。

3、对于均相多组分体系,也只有恒温等压,nC不变的条件下,体系的广度性质Z对nB的偏微商才是偏摩尔量。

4、热力学关系式中的广度性质(U、H、G等),用该广度性质的偏摩尔量来代替也成立。

⑹ 高一物理公式 全一些 包括一些符号是什么意思 等 谢谢 物理学得好的童鞋进啊............

一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计辩桐算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度携首坦:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方芹隐向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径�0�3:米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N�6�1m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N�6�1m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N�6�1m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F�0�7{负号表示方向相反,F、F�0�7各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N�6�1s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’�0�7也可以是m1v1+m2v2=m1v1�0�7+m2v2�0�7
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1�0�7=(m1-m2)v1/(m1+m2) v2�0�7=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

物理化学常用符号

1.物理量符号名称(拉丁文)

A
Helmholtz自由能,指数前因子,面积
Mr
物质的相对摩尔质量

a
van der Waals参量,相对活度
m
质量

b
van der Waals参量,碰撞参数
N
系统中的分子数

bB
物质B的质量摩尔浓度,亦有用mB
n
物质的量,反应级数

B
任意物质,溶质
P
相数(亦有用F),概率因子

C
热容,独立组分数
p
压力

C
库仑
Q
热量,电量

c
物质的量浓度,光速
q
吸附量

D
介电常数,解离能,扩散系数
R
标准摩尔气体常量,电组,半径

d
直径
R,R‘ 独立的化学反应数和其它限制条件数
E
能量,电动势,电极电势
r
速率,距离,半径

e-
电子电荷
S
熵,物种数

F
Faraday 常量,力, 自由度数
T
热力学温度

f
自由度
t 时间,摄氏温度
G
Gibbs 函数(自由能),电导
u
离子电迁移率

g
重力加速度
V
体积

H

Vm(B)
物质B的摩尔体积

h
高度,Planck 常量
VB
物质B的偏摩尔体积

I
电流强度,离子强度,光强度
v
物质B的计量系数

J
焦耳
W


j
电流密度
wB
物质B的质量分数

K
平衡常数
xB
物质B的摩尔分数

k
Boltzmann 常量,反应速率系数
yB
物质B在气相中的摩尔分数

L
Avogadro 常量
Z
配位数,碰撞频率

l
长度,距离
z
离子价数,电荷数

M
摩尔质量

2.物理量符号名称(希腊文)

a
热膨胀系数,转化率,解离度
Q 特征温度
b
冷冻系数
G
表面吸附超量

g
Cp,m / CV,m之值,活度因子,表面张力
d
非状态函数的微小变化量,距离,厚度

e
能量,介电常数
D
状态函数的变化量

z
动电电势
mJ
Joule 系数

h
热机效率,超电势,黏度
mJ-T
Joule-Thomson 系数

q
覆盖率,角度
u
速度

k
电导率
x
反应进度

l
波长
P
渗透压,表面压力

Lm
摩尔电导率
r
电阻率,密度,体积质量

m
化学势,折合质量
t
弛豫时间,时间间隔

3. 其它符号和上下标(正体)

g
气态(gas)
e 外部(external),环境,亦有用amb
l
液态(liquid)
vap
蒸发(vaporation)

s
固态(solid),秒(second)
±
离子平均

mol
摩尔(molar)

活化络合物或过渡状态

r
转动(rotation),化学反应(reaction)
id
理想(ideal)

sat
饱和(saturation)
re
实际(real)

sln
溶液(solution)
P
连乘号

sol
溶解
S
加和号

sub
升华(sublimation)
exp
指数函数(exponential)

trs
晶型转变(transformation)
def
定义(definition)

mix
混合(mixture)
<>
平均值

dil
稀释(dilution

⑺ 物化xb怎么变成yb

1、首先物化xb想要变成yb需要进猛孙行计算,TyBp=(xB-yB)。
2、其次yBgBT,pyB(xB(SgB-SlB)握桥+yA(SgA-SlA))。
3、最后TyBp=0,由枝皮链此得出xB=yB。

⑻ 物化杠杆规则

杠杆规则是由物料衡算得出的系统中各部分物质的数量之间的关系。用杠杆规则来解决化学中百分比浓度、溶解度和相平衡的有关计算,比较直观,列式又简单,很容易掌握。

设系统中某组分的分子分数为x,如将系统分为分子分数各为x1、x2的两部分,则它们的摩尔数n1与n2间,必定遵守下列关系:n1/n2=(x2-x)/(x-x1),此关系犹如以x为支点,以x2-x与x-x1为臂长的杠杆的计算公式,故名。如用重量分数,则得重量比。

(8)物理化学xb是什么意思扩展阅读

利用规则-属性

相图中计算处于平衡状态的两相相对数目的规则。设XA和XB表示平衡相中某组分的组分(如摩尔分数),xT表示该组分在体系中的总组分。根据杠杆定律,a和B相的na和NB(摩尔)之比为

Na:NB=(xB-Xt):(XT-XA)。

⑼ 物理化学里的偏摩尔量和化学势到底怎么区别

偏摩尔量是指在温度、压力及除了组分B以外其余组分的物质的量均不变的条件下,广度量X随组分B的物质的量nB变化率XB称为组分B的偏摩尔量。
例1:水的偏摩尔体积,其物理意义是在【T、P】下,往无限大的体系(此体系不一定是由水组成)中加入1mol水,体系体积的变化量;或往有限的体系中加入微量的水(之所以限制微量,是为了保证体系nC不变)而引起该体系体积的变化。
例2:氯化钠的偏摩尔吉布斯自由能,物理意义是往体系中加入微量氯化钠而引起该体系吉布斯自由能的变化量。
化学势又称偏摩尔势能,就是吉布斯自由能的偏摩尔量,所以化学势也是一种偏摩尔量。

⑽ 亨利定律的定义

亨利定律Henry's law,物理化学的基本定律之一,是英国的Henry(亨利)在1803年研究气体在液体中的溶解度规律时发现的,可表述为:“在等温等压下,某种挥发性溶质(一般为气体)在溶液中的溶解度与液面上该溶质的平衡压力成正比。”其公式为:
Pg=Hx
式中:H为Henry常数,x为气体摩尔分数溶解度,Pg为气体的分压。H能够很好的表示气体的溶解量,但是Henry定律只适用于溶解度很小的体系,严格而言,Henry定律只是一种近似规律,不能用于压力较高的体系。在这个意义上,Henry常数只是温度的函数,与压力无关。
详细内容
在稀溶液中挥发性溶质的实验中,实验表明,只有当气体在液体中的溶解度不很高时该定律才是正确的,此时的气体实际上是稀溶液中的挥发性溶质,气体压力则是溶质的蒸气压。所以亨利定律还可表述为:在一定温度下,稀薄溶液中溶质的蒸气分压与溶液浓度成正比。
一般来说,气体在溶剂中的溶解度很小,所形成的溶液属于稀溶液范围。气体B在溶剂A中溶液的组成无论是由B的摩尔分数xB,质量摩尔浓度bB,浓度cB等表示时,均与气体溶质B的压力近似成正比。用公式表示时亨利定律可以有多种形式。如:
PB=Kx,B·xB
PB=Kb,B·bB
PB=Kc,B·cB
式中pB是稀薄溶液中溶质的蒸气分压;xB是溶质的物质的量分数; k为亨利常数,其值与温度,溶质和溶剂的本性有关,亨利系数基本不受压力影响。由于亨利定律中溶液组成标度的不同,亨利系数的单位不同,一定温度下同一溶质在同一溶剂中的数值也不一样,上式中的xB(溶质B的摩尔分数)、bB(质量摩尔浓度)或cB(物质的量浓度)等表示时k值将随之变化。Kx,Kb,Kc的单位分别为Pa,Pa·mol^-1·㎏,Pa·mo^l-1·dm^3。
只有溶质在气相中和液相中的分子状态相同时,亨利定律才能适用。若溶质分子在溶液中有离解、缔合等,则上式中的xB(或mB、cB等)应是指与气相中分子状态相同的那一部分的含量;在总压力不大时,若多种气体同时溶于同一个液体中,亨利定律可分别适用于其中的任一种气体;一般来说,溶液越稀,亨利定律愈准确,在xB→0时溶质能严格服从定律。
实例
温度不同,亨利系数不同,温度升高,挥发性溶质的挥发能力增强,亨利系数增大。换而言之,同样分压下温度升高,气体的溶解度减小。
若有几种气体同时溶于同一溶剂中形成稀溶液时,每种气体的平衡分压与其溶解度关系分别适用亨利定律。空气中的N2和O2在水中的溶解就是这样的例子。表1 给出25℃下几种气体在水中和在苯中的亨利系数。

阅读全文

与物理化学xb是什么意思相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:703
乙酸乙酯化学式怎么算 浏览:1371
沈阳初中的数学是什么版本的 浏览:1316
华为手机家人共享如何查看地理位置 浏览:1009
一氧化碳还原氧化铝化学方程式怎么配平 浏览:846
数学c什么意思是什么意思是什么 浏览:1368
中考初中地理如何补 浏览:1259
360浏览器历史在哪里下载迅雷下载 浏览:670
数学奥数卡怎么办 浏览:1348
如何回答地理是什么 浏览:988
win7如何删除电脑文件浏览历史 浏览:1021
大学物理实验干什么用的到 浏览:1447
二年级上册数学框框怎么填 浏览:1658
西安瑞禧生物科技有限公司怎么样 浏览:824
武大的分析化学怎么样 浏览:1212
ige电化学发光偏高怎么办 浏览:1300
学而思初中英语和语文怎么样 浏览:1605
下列哪个水飞蓟素化学结构 浏览:1387
化学理学哪些专业好 浏览:1451
数学中的棱的意思是什么 浏览:1016