导航:首页 > 物理学科 > 物理层过程有哪些

物理层过程有哪些

发布时间:2023-05-25 20:54:02

A. 写出OSI七层封装和解封装的过程

OSI(Open System Interconnection)参考模型把网络分为七层:

1.物理层(Physical Layer)

物理层主要传输原始的比特流,集线器(Hub)是本层的典型设备;

2.数据链路层(Data Link Layer)

数据链路层负责在两个相邻节点间无差错的传送以帧为单位的数据,本层的典型设备是交换机(Switch);

3.网络层(Network Layer)

网络层主要完成的工作是:选择合适的网间宏裤路由和交换节点,网络层将数据层提供的帧组成数据包,包中封装有网络层包头,包头中含有逻辑地址信息(源主机和目标主机的网络地址),典型设备是路由器(Router);

4.传输层(Transport Layer)

传输层为两个端系统(即源主机和目标主机)的回话提供建立,维护和取消传输连接的功能.这一层传输的信息以报文为单位.

5.会话层(Session Layer)

会话层及以上层中数据传送的单位不再另外命名,统称为报文.

会话层管理进程之间的会话过程,即负责建立,管理,终止进程之间的会话.会话层还通过在数据中插入校验点来实现数据的携绝唤同步.

6.表示层(Presentation Layer)

表示层负责对上层数据进行转换,以保证一个主机的应用层的辩凯数据可以被另一个主机的应用层理解.表示层的数据转换包括对数据的加密,解密,压缩,解压和格式转换.

7.应用层(Application Layer)

应用层确定进程之间通信的实际用途;

B. 计算机网络——2.物理层

确定与传输媒体的 接口 的一些特性,解决在各种传输媒体上传输 比特流 的问题
1.机械特性 :接口的形状尺寸大小。
2.电气特性 :在接口电缆上的各条线的电压范围。
3.功能特性 :在某一条线上出现的某个电平电压表示的意义。
4.过程特性 :对于不同功能的各种可能事件的出现顺序。
传输媒体主要可以分为 导引型传输媒体 非导引型传输媒体
导引型传输媒体 :信号沿着固体媒体(铜线或光纤,双绞线)进行传输, 有线传输
非导引型传输媒体 :信号在自由空间传输,常为 无线传输

数据通信系统:包括 源系统 (发送方), 传输系统 (传输网络), 目的系统 (接收方)。
一般来说源系统发出的信号(数字比特流)不适合直接在传输系统上直接传输,需要转化(模拟信号)。
调制 :数字比特流-模拟信号
解调 :模拟信号-数字比特流

数据 ——运送消息的实体。
信号 ——数据的电气化或电磁化的表现。
模拟信号 ——代表消息的参数的取值是 连续 的。
数字信号 ——代表消息的参数的取值是 离散 的。
码元 ——在使用时间域代表不同离散值的基本波形。

信道 :表示向某一个方向传送信息的媒体。
单向通信(单工通信) :只有一个方向的通信,不能反方向。
双向交替通信(半双工通信) :能两个方向通信,但是不能同时。
双向同时通信(全双工通信) :能同时在两个方向进行通信。
基带埋旦稿信号 :来自信源的信号(源系统发送的比特流)。

基带调制 :对基带信号的波形进行变换,使之适应信道。调制后的信号仍是基带信号。基带调制的过程叫做 编码
带通调制 :使用载波进行调制,把基带信号的频率调高,并转换为模拟信号。调制后的信号是 带通信号

1.归零制 :两个相邻信号中间信号记录电流要恢复到 零电平 正脉冲表示1,负脉冲表示0 。在归零制中,相邻两个信号之间这段磁层未被磁化,因此在写入信息之前必须去磁。
2.不归零制 正电平代表1,负电平代表0 ,不用恢复到零电平。难以分辨开始和结束,连续记录0或者1时必须要有时钟同步,容易出现直流分量出错。
3.曼彻斯特编码 :在每一位中间都有一个跳变。 低->高表示0,高->低表示1
4.差分曼彻斯特编码 :在每一位的中心处始终都有跳变。位开始边界有跳变代表0,没有跳变代表弯孝1。 位中间的跳变代表时钟,位前跳变代表数据

调幅( AM ):载波的 振幅 随着基带数字信号而变化。
调频( FM ):载波的 频率 随着基带数字信号而变化。
调相( PM ):载波的 初始相位 随着基带数字信号而变化。

失真 :发送方的数据和接收方的数据并不完全一样。
限制码元在信道上的传输速率的因素:信道能够通过的 频率范围 信噪比

码间串扰 :由于系统特性,导致前后码元的波形畸变。
理想低通信号的最迟做高码元传输速率为 2W ,单位是波特,W是理想低通信道的 带宽 ,理想带通特性信道的最高码元传输速率为W。
信噪比 :信号的平均功率与噪声的平均功率的比值,单位是 dB 值=10log10(S/N)
信噪比对信道的 极限 信息传输速率的影响:速率 C=Wlog2(1+S/N)——香农公式 ,单位为 bit/s
信噪比越大,极限传输速率越高。实际速率比极限速率低不少。还可以用编码的方式来提高速率(让一个码元携带更多的比特量)。

所谓 复用 就是一种将若干个彼此独立的信号合并成一个可以在 同一信道 上同时传输的 复合信号 的方法。
比如,传输的语音信号的频谱一般在300~3400Hz内,为了使若干个这种信号能在 同一信道(相当于共享信道,能够降低成本,提高利用率) 上传输,可以把它们的频谱调制到不同的频段,合并在一起而不致相互影响,并能在接收端彼此分离开来( 分用 )。
信道复用技术就是将一个物理信道按照一定的机制划分多个互不干扰互不影响的逻辑信道。信道复用技术可分为以下几种: 频分复用,时分复用和统计时分复用,波分复用,码分复用

1.频分复用技术FDM(也叫做频分多路复用技术): 条件是传送的信号的带宽是有限的,而 信道的带宽要远远大于信号的带宽 ,然后采用 不同频率 进行调制的方法,是各个信号在信道上错开。频分复用的各路信号是在 时间 上重叠而在 频谱 上不重叠的信号。将整个带宽分为多份,用户分配一定的带宽后通信过程 自始至终都占用 这个频带。另外,为保证各个子信道传输不受干扰,可以设立 隔离带
2.时分复用技术TDM:采用同一物理连接的不同时段来传输不同的信号。 也就是在信道带宽上划分出几个子信道后,A用户在某一段时间使用子信道1,用完之后将子信道1释放让给用户B使用,以此类推。将整个信道传输时间划分成若干个时间片(时隙),这些时间片叫做 时分复用帧 。每一个时分用户在每一个TDM帧中占用 固定时序 的时隙。

4.波分复用技术WDM: 将两种或多种不同波长的光载波信号在发送端经过 复用器汇合 在一起,并耦合到光线路的 同一根光纤 中进行传输,在接收端经过 分波器 将各种波长的光载波分离进行 恢复 。整个过程类似于频分复用技术的共享信道。波分复用其实就是光的频分复用。

1.比特时间,码片
1比特时间就是发送 1比特 需要的时间,如数据率是10Mb/s,则100比特时间就等于10微秒。
每一个比特时间划分为m个短的间隔,称为码片。每个站被指派一个唯一的m bit 的码片序列(例如S站的8 bit 码片序列是00011011)。
如果发送 比特1 ,则发送自己的m bit 码片序列。如果发送 比特0 ,则发送该码片序列的二进制反码。
S站的码片序列:(-1,-1,-1,+1,+1,-1,+1,+1) -1代表0,+1代表1
用户发送的信号先受 基带数字信号 的调试,又受 地址码 的调试。就比如数据发送后受到基带数字信号的调试之后变为10,然后又受到地址码的调试后1就变为了00011011(上面的S站码片序列),0就变成了11100100。
由于每个比特要转换成m个比特的码片序列,因此原本S站的数据率b bit/s要提高到mb bit/s,同时S站所占用的频带宽度也提高到原本数值的m倍。这种方式是扩频通信中的一种。
扩频通信通常有两大类:直接序列扩频DSSS(上述方式);跳频扩频FHSS。
2.码分多址(CDMA)
CDMA的重要特点 :每个站分配的码片序列不仅必须 各不相同 ,并且还必须 相互正交 。在实用系统中使用的是 伪随机码序列
码片的互相 正交 的关系:令向量S表示站S的码片向量,令T表示其他任何站的码片向量。两个不同站的码片序列正交,就是向量S和T的 规格化内积 等于0。

即S T=(S1 T1+S2 T2+......Sm Tm)/m(其实就相当于 两个向量垂直 ,/m对结果其实也没多大关系)
推论 1. 一个码片向量和另一码片反码的向量的规格化内积值为0(如果ST=0,那么ST'也=0)
2. 任何一个码片向量和该码片向量自己的规格化内积都是1,即S S=1
3. 一个码片向量和该码片向量的规格化内积值是-1,即S
S'=-1
CDMA的工作原理:
用一个列子来说明,假设S站的码片序列为(-1,-1,-1,+1,+1,-1,+1,+1),S站的扩频信号为Sx,即若数据比特=1那么S站发送的是码片序列本身Sx=S,若数据比特=0那么S站发送的是码片序列的反码Sx=S’。T站的码片序列为(-1,-1,+1,-1,+1,+1,+1,-1),T站的扩频信号为Tx。因为所有的站都使用相同的频率,因此每一个站都能够收到所有的站发送的扩频信号。所有的站收到的都是叠加的信号 Sx+Tx
当接收站打算收S站发送的信号时,就用S站的码片序列与收到的信号求规格化内积,即S (Sx+Tx)=S Sx+S Tx。前者等于+1或0,后者一定等于0,具体看下面(参考上面的 CDMA的工作原理 ):
当数据比特=1时,Sx=S,那么S
Sx=S S=1;同理 ,当数据比特=0时,Sx=S’,那么S Sx=S S’=0
当数据比特=1时,Tx=S,那么S
Tx=S T=0(参考上面 码片序列的正交关系 );同理 ,当数据比特=0时,Sx=S’,那么S Tx=S*T’=0

C. 物理层要解决哪些问题物理层的主要特点是什么

物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。如果您想要用尽量少的词来记住这个第一层,那就是“信号和介质”。

物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。

给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连接的建立、维持和释放问题。在两个相邻系统之间唯一地标识数据电路。


(3)物理层过程有哪些扩展阅读:

物理层的组成部分

物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。通信用的互连设备指DTE和DCE间的互连设备。DTE即数据终端设备,又称物理设备,如计算机、终端等都包括在内。而DCE则是数据通信设备或电路连接设备,如调制解调器等。

数据传输通常是经过DTE──DCE,再经过DCE──DTE的路径。互连设备指将DTE、DCE连接起来的装置,如各种插头、插座。LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。



D. 计算机网络(2)| 物理层

首先要知道的是,物理层考虑的是怎样才能在连接各种计算机的传输媒体上传输数据比特流,而不是指具体的传输媒体。因为现在的计算机网络中的硬件设备和传输媒体的种类非常的多。而物理层的作用就是要尽可能地屏蔽掉这些不同的差异,从而使得物理层上面的数据链路层感觉不到这些差异,这样就可以让数据链路层“安心”的完成自己的本职工作而不必考虑网络的具体传输媒体和通信手段是什么。

物理层的主要任务描述为确定与传输媒体接口有关的一些特性,即以下几个方面:
(1) 机械特性 :指明接口所用的接线器的形状与尺寸,引脚数目和排列,固定和锁定装置等等
(2) 电气特性 :指明在接口电缆的各条线上出现的电压的范围。
(3) 功能特性 :指明某条线上出现的某一电平的电压表示何种意义。
(4) 过程特性 :指明对于不同功能的各种可能事件的出现顺序。

因为物理连接的方式有很多,所以具体的物理协议的种类也有很多,从而传输媒体的种类也是非常之多,所以在介绍物理层时,我们应该先对“接口与通信”有一定的了解。

一个通信系统可以划分为三大部分,即 源系统 传输系统 目的系统

首先介绍源系统,源系统一般包括以下两个部分:
源点: 源点设备产生要传输的数据,例如从计算机的键盘输入汉字,计算机产生输出的数字比特流。源点又称为 源站 或者 信源
发送器: 通常源点生成的数字比特流要通过发送器编码后才能够在传输系统中进行传输。最典型的发送器就是调制器,现在的很多计算器使用的都是内置的解调器(包括调制器和解调器)。

目的系统一般也包括以下两个部分:
接收器: 接收传输系统传送过来的信号,并把它转换为能够被目的设备处理的信息。典型的接收器就是解调器,
终点: 终点设备从接收器获取传送来的数字比特流,然后把信息输出。终点又称为 目的站 或者 信宿

在源系统和目的系统之间的传输系统可以是简单的传输线,也可以是连接睁碧在源系统和目的系统之间的复杂网络系统。

然后我们要来辨别一下下面的常用术语:
消息: 指语音,文字,图像等等。
数据: 指使用特定方式表示的信息,通常是有意义的符号序列。这种信息的表示可用计算机或其他机器处理或者产生。
信号: 指数据的电气或电磁的表现。

根据信号中代表消息的参数的取值方式不同,信号可以分为以下两大类:
(1)模拟信号: 代表消息的握判参数的取值是连续的。
(2)数字信号: 代表消息的参数的取值是离散的。

信道 是用来表示向某一个方向传送消息的媒体,一条通信电路往往包含一条发送信道和一条接收信道。

从通信的双方信息交互的方式来看,可以有段早改以下三种基本方式:
(1)单向通信: 又称为单工通信,即只能有一个方向的通信而没有反方向的交互。无线电广播或有线电广播就是这种类型。
(2)双向交替通信: 又称为半双工通信,即通信双方都可以发送消息,但不能双方同时发送(也不能同时接收)。这种通信方式是一方发送另一方接收。
(3)双向同时通信: 也称为全双工通信,即通信双方都可以同时发送和接收消息。

来自信源的信号称为 基带信号 。像计算机输出的代表各种文字或文件的数据信号都属于基带信号。由于基带信号往往包含有较多的低频成分和直流成分,但是许多信道并不能传输这种低频分量或是直流分量。所以为了解决这一问题,就必须对基带信号进行 调制

调制主要是分为两大类。一类是对基带信号的波形进行变换,使它能够与信道的特征相适应,但是变换后的信号仍然是基带信号,这一类的调制称为 基带调制 ,这一过程也被称为编码。还有一类调制则是需要使用载波进行调制,将基带信号的频率范围搬移到较高的频段,并转换为模拟信号,这样就能更好的在模拟信道中传输,经过载波调制的信号称为带通信号,而使用载波的调制称为 带通调制

不归零制: 正电平代表1,负电平代表0。
归零制: 正脉冲代表1,负脉冲代表0。
曼彻斯特编码: 位周期中心的向上跳变代表0,位周期中心的向下跳变代表1,但是也可以反过来定义。
差分曼彻斯特编码: 在每一位的中心处始终有跳变。位开始边界有跳变代表0,而位开始边界没有跳变代表1。

调幅(AM): 即载波的振幅随着基带数字信号而变化。例如,0或1分别对应于无载波或有载波的输出。
调频(FM): 即载波的频率随着基带数字信号而变化。例如,0或1分别对应于频率的 f1 f2
调相(PM): 即载波的初始相位随着基带数字信号而变化。例如,0或1分别对应于相位0度或180度。
当然,有时为了达到更高的信息传输速率,也必须采用技术上更为复杂但传输效果更好的混合调制方法,例如正交振幅调制等等。

限制信息在信道上的传输速率的因素主要是以下两个。
(1)信道能够通过的范围频率
具体信道所能通过的频率范围总是有限的。信号中的许多高频分量往往不能通过信道,就是因为它的频率超过了信道所能承受的最大频率,因此就会造成失真现象。

(2)信噪比
噪声存在于所有的电子设备和通信信道中。由于噪声是随机产生的,因此它的瞬时值有时会很大,所以噪声会使接收端对码元的判决产生错误。但是噪声的影响是相对的,当信号较强时,噪声的影响就相对较小。所以我们就要了解到 信噪比 的概念。信噪比就是指信号的平均功率和噪声的平均功率之比,单位是分贝:

W是带宽,S是信道内所传信号的平均功率,N为信道内高斯噪声的功率。香农公式指出:信道的带宽或者信噪比越大,则信息的极限传输速率就越高。

传输媒体也称传输介质或传输媒介。传输媒体大致可以分为两大类: 导引型传输媒体和非导引型传输媒体 。下面来具体介绍。

双绞线就是指将两根互相绝缘的铜导线并排放在一起,然后用规则的方法绞合起来。绞合可以减少对相邻导线的电磁干扰。电话系统是使用双绞线最多的地方,从用户电话机到交换机的双绞线称为 用户线

模拟传输和数字传输都会用到双绞线,其通信距离一般是为几到几十公里。

为了提高双绞线的对抗电磁干扰能力,可以在双绞线外面再加一层用金属丝编织而成的屏蔽层,这就是屏蔽双绞线。,简称为 STP

同轴电缆内由导体铜质芯线、绝缘层、网状编织的外导体屏蔽层以及保护塑料外层组成。由于其特有的构造,所以同轴电缆有着良好的抗干扰特性,被广泛用于传输较高速率的数据。目前同轴电缆主要用在有线电视网的信号传输当中。它的带宽是取决于它的质量的。

光纤是光缆通信的传输媒体,由于可见光的频率非常之高,因此一个光纤通信系统的传输带宽远远大于目前其他各种传输媒体的带宽。

当光纤从高折射率的传输媒体到低折射率的传输媒体时,其折射角就会大于入射角。因此如果当入射角足够大时,就会产生全反射,光也就能沿着光纤传输下去。

正是由于上面的原理,所以只要将入射角的角度把握好,就能够产生全反射来进行传输,这也就是光纤传输的原理。

光纤不仅具有通信容量大的特点,还有其他的一些特点:
1.传输损耗小。
2.抗雷电和电磁干扰性能好。
3.无串音干扰,保密性很高。
4.体积小,重量轻。

我们将自由空间称为非导引型传输媒体,简单来说就是指无线传输。无线传输可以使用的频段很广,人们已经利用了好几个波段来进行通信,但是紫外线以及更高的波段现在暂时还是不能用于通信。

短波通信(高频通信)主要是靠电离层的反射来进行传输。但是短波信道的通信质量较差,传输速率较低。

无线电微波通信在数据通信中占有重要的地位。微波在空间中主要是以直线传播。传统的微波通信主要有两种方式,即 地面微波接力通信和卫星通信

要使用某一段无线电频谱进行通信,通常必须得到本国政府有关无线电频谱管理机构的许可证。但是也有一些无线电频段是可以自由使用的。例如ISM,各国的ISM标准可能略有差异。

复用是通信中的基本概念,它是指允许用户使用一个共享信道来进行通信,达到降低成本,提高利用率的效果。

先来介绍 频分复用FDM ,频分复用是指将带宽分为多份,用户在分到一定的频带后,在通信过程中自始至终都占用着这一条频带,也就是说频分复用的用户是在同样的时间占用不同的带宽资源。

然后是 时分复用TDM ,它是指将时间划分为一段段等长的时分复用帧(TDM帧)。每一个时分复用的用户在每一个TDM帧中占用固定序号的时隙。而每一个用户所占用的时隙是周期性地出现(其周期就是TDM帧的长度)。时分复用的所有用户是在不同的时间占用同样的频带宽度。

最后是 统计时分复用STDM ,它是有一点类似于TDM的,只是STDM帧不是固定分配时隙,而是按需动态的分配时隙。因此统计时分复用可以提高线路的利用率。

波分复用WDM 就是光的频分复用,也就是使用一根光纤来同时传输多个光载波信号。

码分复用CDM 是另一种共享信道的方法。而人们更常使用码分多址CDMA来称呼它。这种复用方式的具体做法是可以让每一个用户在同样的时间使用同样的频带进行通信,由于各个用户使用经过特殊的不同码型,因此各用户之间不会造成干扰。而且通过这种方式发送的信号具有很强的抗干扰能力,其频谱类似于白噪声,不容易被他人发现。

码分复用的工作原理是将每一个比特时间再划分为m个短的间隔,称之为码片。一般情况下m的值是64或128。

使用CDMA的每一个站被指派一个唯一的m bit码片序列。一个站如果要发送比特1,则发送它自己的m bit码片序列。如果要发送比特0,则发送该码片序列的二进制反码。举例来说:

有时为了方便起见,我们会将码片中的0写为-1,1写为+1。

现假定S站要发送信息的数据率为b bits/s,由于每一个比特要转换成m个比特的码片,因此S站实际上发送的数据率提高到mb bit/s,同时S站所占用的频带宽度也提高到原来数值的m倍。这种方式就是 扩频 的一种。扩频通信通常有两大类,一种是直接序列扩频DSSS,另一种是跳频扩频FHSS。

CDMA系统的重要特点是每个站分配的码片序列不仅必须各不相同,并且还必须互相正交,并且在实用的系统中是使用伪随机码序列。

在早期的电话网当中,从电话局到用户电话机的用户线采用最廉价的双绞线电缆,而长途干线采用的是频分复用FDM的模拟传输方式。由于数字通信与模拟通信相比,无论数传输质量上还是从经济上都有明显的优势,所以现在长途干线大都采用时分复用PCM的数字传输方式。

但是早期的数字传输系统有着许多的缺点,其中最主要的是以下两个:
(1)速率标准不统一: 由于历史的原因,多路复用的速率体系有两个互不兼容的国际标准。所以国际范围的基于光纤高速数据传输就很难实现。
(2)不是同步传输: 在过去各国的数字网主要是采用准同步的方式,所以当数据传输速率很高时,收发双方的时钟同步就成为很大的问题。

所以为了解决这些问题,美国推出了一个数字传输标准,叫做同步光纤网SONET。整个的同步网络的各级时钟都来自一个非常精确的主时钟。同时,SONET为光纤传输系统定义了同步传输的线路速率等级结构:

宽带的接入技术主要包括有线宽带接入和无线宽带接入。在这里先来介绍有线宽带接入。

ADSL技术的全称是非对称数字用户线技术,具体指的是用数字技术对现有的模拟电话用户线进行改造,使它能够承载宽带数字业务。具体来说ADSL技术就是把0-4 kHZ这一段低端频谱留给传统电话使用,而把原来没有被利用的高端频谱留给用户上网使用。

ADSL的 传输距离 取决于数据率和用户线的线径(用户线越细,信号传输时的衰减就越大)。而ADSL所能得到的最高数据传输速率还与实际的用户线上的信噪比密切相关。

ADSL在 数据率 方面由于用户在线的具体条件相差较大,因此ADSL采用自适应调制技术使用户线能够传送尽可能高的数据率。当ADSL启动时,用户线两端的ADSL调制解调器就测试可用的频率、各子信道受到干扰的情况以及在每一个频率上测试信号的传输质量。但是ADSL不能保证固定的数据率,所以对于用户线很差的甚至无法开通ADSL。

基于ADSL的接入网由以下三大部分组成:数字用户线接入复用器,用户线和用户家中的一些设施。

ADSL技术也在发展,现在已经有了更高速率的ADSL标准,称之为 第二代ADSL ,第二代ADSL改进的地方主要是:
1. 通过提高调制效率得到了更高的数据率。
2. 采用了无缝速率自适应技术SRA,可在运营中不中断通信和不产生误码的情况下,自适应的调整数据率。
3. 改善了线路质量评测和故障定位功能。

HFC网是目前覆盖面很广的有线电视网CATV的基础上开发的一种居民宽带接入网,除了可以传送CATV外,还能提供电话、数据和其他宽带交互型业务。

为了提高传输的质量,HFC网将原有线电视网中的同轴电缆主干部分改换为光纤,而光纤从头端连接到光纤结点,在光纤结点光信号被转换为电信号,最后信号被送到每一个用户的家庭。

FTTx是一种实现宽带居民接入网的方案,代表多种宽带接入的方式。这里的x代表不同的光纤接入地点,例如FTTH光纤到户,FTTB光纤到大楼等等。

现在的长距离信号传输大都是采用光纤传输,只有在到了临近用户家中时,才将光纤转换为铜缆。但是一个用户是远用不了一根光纤的通信容量,因此我们在光纤干线和用户之间安装一种转换装置即 光配线网 ,使得许多用户能够共享一根光纤的通信容量。由于光配线网无需使用电源,因此我们将其称为无源光网络。

E. 物理层主要包括哪些内容

物理层的四个特性如下:

①机械特性: 指明接口所用接线器的形状和尺寸、引脚数神猜目和排列、固定和锁定装置等。

②电气特性: 指明在接口电缆的各条线上出现的电压范围。

③功能特性: 指明某瞎锋条线上游神型出现某一电平的电压意义。

④过程特性: 指明对于不同功能的各种可能事件的出现顺序。

物理层的主要任务可描述为:确定与传输媒体的接口有关的一些特性。

物理层的主要特点:

(1)由于在OSI之前,许多物理规程或协议已经制定出来了,而且在数据通信领域中,这些物理规程已被许多商品化的设备所采用,加之,物理层协议涉及的范围广泛,所以至今没有按OSI的抽象模型制定一套新的物理层协议,而是沿用已存在的物理规程,将物理层确定为描述与传输媒体接口的机械,电气,功能和规程特性。

(2)由于物理连接的方式很多,传输媒体的种类也很多,因此,具体的物理协议相当复杂。

F. 简述数据在OSI参考模型中的流动过程,并解释数据的封装与解装。

1、应用层为用户的应用程序提供接入网络的接口。

2、表示层将用户数据进行相应的编码亩袭或格式转换。

3、会话层区分通信中的不同上层程序,为每个进程建立单独的链接,并维护和管理通信的过程。

4、传输层为数据的可靠传输提供一种安全可靠的方式。

5、网络层完成数据在网络中的实际传输,确定地址和最佳路径

6、数据链路层使用硬件地址来定位远程主机,传输数据并进行必要的流量控制和差错校验。

7、物理层传输比特流。将链路层的数据用高低不同的电平值表示发送到物理线路上。物理层规定了设备的接口形状、针脚个数、针脚不同电平值的含义。

OSI参考模型采用了分层结构技术

把一个网络系统分成若干层,每一层都去实现不同的功能,每一层的功能都以协议形式正规描述,协议定义了某层同远方一个对等层通信所使用的一套规则和约定。每一层向相邻上层提供一套确定的服务,并且使用与之相邻的下层所提供的服务。

从概念销岁上来讲,每一层都与一个远方对等层通信,但实际上该层所产生的协议信息单元是借助于相邻下层所提供的服务传送的。因此,对等层之间的通信称为虚拟通信。

以上内容参考:网络百亏耐睁科-OSI参考模型

G. 物理层详细资料大全

物理层 (或称物理层,Physical Layer)是计算机网路OSI模型中最低的一层。物理层规定:为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性。简单的说,物理层确保原始的数据可在各种物理媒体上传输。区域网路与广域网皆属第1、2层。

物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。如果您想要用尽量少的词来记住这个第一层,那就是“信号和介质”。

OSI采纳了各种现成的协定,其中有RS-232、RS-449、X.21、V.35、ISDN、以及FDDI、IEEE802.3、IEEE802.4、和IEEE802.5的物理层协定。

基本介绍

主要功能,组成部分,重要内容,重要标准,特性,接口协定,通信硬体,编程方法,DOS通信,PC通信,BIOS,常见的物理层设备,

主要功能

物理层 物理层要解决的主要问题: (1)物理层要尽可能地禁止掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协定和服务。 (2)给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连线的建立、维持和释放问题。 (3)在两个相邻系统之间唯一地标识数据电路。 物理层主要功能:为数据端设备提供传送数据通路、传输数据。 1.为数据端设备提供传送数据的通路,数据通路可以是一个物理媒体,也可以是多个物理媒体连线而成。一次完整的数据传输,包括激活物理连线,传送数据,终止物理连线。所谓激活,就是不管有多少物理媒体参与,都要在通信的两个数据终端设备间连线起来,形成一条通路。 2.传输数据,物理层要形成适合数据传输需要的实体,为数据传送服务。一是要保证数据能在其上正确通过,二是要提供足够的频宽(频宽是指每秒钟内能通过的比特(BIT)数),以减少信道上的拥塞。传输数据的方式能满足点到点,一点到多点,串行或并行,半双工或全双工,同步或异步传输的需要。 3. 完成物理层的一些管理工作。

组成部分

物理层的媒体包括架空明线、平衡电缆、光纤、无线信道等。通信用的互连设备指DTE和DCE间的互连设备。DTE即数据终端设备,又称物理设备,如计算机、终端等都包括在内。而DCE则是数据通信设备或电路连线设备,如数据机等。数据传输通常是经过DTE──DCE,再经过DCE──DTE的路径。互连设备指将DTE、DCE连线起来的装置,如各种插头、插座。LAN中的各种粗、细同轴电缆、T型接、插头,接收器,传送器,中继器等都属物理层的媒体和连线器。 物理层

重要内容

物理层的接口的特性 (1) 机械特性 指明接口所用的接线器的形状和尺寸、引线数目和排列、固定和锁定装置等等。 (2) 电气特性 指明在接口电缆的各条线上出现的电压的范围。 (3) 功能特性 指明某条线上兆笑出现的某一电平的电压表示何意。 (4)规程特性 指明对于不同功能的各种可能事件的出现顺序。 物理层的主要特点: (1)由于在OSI之前,许多物理规程或协定已经制定出来了,而且在数据通信领域中,这些物理规程已被许多商品化的设备所采用,加之,物理层协定涉及的范围广泛,所以至今没有按OSI的抽象模型制定一套新的物理层协定,而是沿用已存在的物理规程,将物理层确定为描述与传输媒体接口的机械,电气,功能和规程特性。 (2)由于物理连线的方式很多,传输媒体的种类也很多,因此,具体的物理协定相当复杂。 信号的传输离不开传输介质,而传输介质两端必然有接口用于传送和接收信号。因此,既然物理层主要关心如何传输信号,物理层的主要任务就是规定各种传输介质和接口与传输信号相关的一些特性。 1.机械特性 也叫物理特性,指明通信实体间硬体连线接口的机械特点,如接口所用接线器的形状和尺寸、引线数目和排列、固定和锁定装置等。这很像平时常见的各种规游滑格的电源插头,其尺寸都有严格的规定。 已被ISO 标准化了的DCE接口的几何尺寸及插孔芯数和排列方式。 DTE(Data Terminal Equipment,数据终端设备,用于传送和接收数据的设备,例如用户的计算机)的连线器常用插针形式,其几何尺寸与.DCE(Data Circuit-terminating Equipment,数据电路终接设备,用来连线DTE与数据通信网路的设备,例如Modem数据机)连线器相配合,插针芯数和排列方式与DCE连线器成镜像对称。 2.电气特性 规定了在物理连线上,导线的电气连线及有关电路的特性,一般包括:接收器和传送器电路特性的说明、信号的识别、最大传输速率的说明、与互连电缆相关的规则、传送器的输出阻抗、接收器的输入阻抗等电气参数等。 3.功能特性 指明物理接口各条信号线的用途(用法),包括:接口线功能的规定方法,接口信号线的功能分类--数据信号线、控制信号线、定时信号线和接地线4类。 4.规程特性 指明利用接口传输比特流的全过程及各项用于传输的事件发生的合法顺序,包括事件的执行顺序和数据传输方式,即在物理连线建立、维持和交换信息时,DTE/DCE双方在各自电路上的动作序列。 以上4个特性实现了物理层在传输数据时,对于信号、接口和传输介质的规定。

重要标准

物理层的一些标准和协定早在OSI/TC97/C16 分技术委员会成立之前就已制定并在套用了, 物理层 OSI也制定了一些标准并采用了一些已有的成果。下面将一些重要的标准列出,以便读者查阅。 ISO2110:称为"数据通信----25芯DTE/DCE接口连线器和插针分配"。它与EIA(美国电子工业协会)的"RS-232-C"基本兼容。 ISO2593:称为"数据通信----34芯DTE/DCE----接口连线器和插针分配"。 ISO4902:称为"数据通信----37芯DTE/DEC----接口连线器和插针分配"。与EIARS-449兼容。 CCITT V。24:称为"数据终端设备(DTE)和数据电路终接设备之间的接口电路定义表"。其功 能与EIARS-232-C及RS-449兼容于100序列线上。

特性

反映在物理接口协定中的物理接口的4个特性是机械特性、电气特性、功能特性与规程特性。: (1)机械特性, 指明接口所用接线器的形状和尺寸、引线数目和排列、固定和锁定装置等。这很像平时常见的各种规格的电源插头的尺寸都有严格的规定。 物理层 (2)电气特性, 指明在接口电缆的各条线上出现的电压的范围。 物理层的电气特性规定了在物理连线上传输二进制位流时线路上信号电压高低、阻抗匹配情况、传输速率和距离的限制等.早期的电气特性标准定义物理连线边界点上的电气特性,而较新的电气特性标准定义的都是传送器和接收器的电器特性,同时还给出了互连电缆的有关规定.比较起来,较新的标准更有利于传送和接收线路的集成化工作.物理层接口的电气特性主要分为三类:非平衡型,新的非平衡型和新的平衡型。 非平衡型的信号传送器和接收器均采用非平衡方式工作,每个信号用一根导线传输,所有信号共用一根地线.信号的电平是用+5V~+15V,表示二进制"0",用-5V~-15V,表示二进制"1".信号传输速率限于20Kbps以内,电线长度限于15M以内.由于信号线是单线,因此线间干扰大,传输过程中的外界干扰也很大。 在新的非平衡型标准中,传送器采用非平衡方式工作.接收器采用平衡方式工作(即差分接收器).每个信号用一根导线传输.所有信号共用两根地线,即每个方向一根地线.信号的电平使用+4v~+6v表示二进制"0",用-4V~-6V表示二进制"1".当传输距离达到1000M时,信号传输速率在3kbps以下,随着传输速率的提高,传输距离将缩短.在10M以内的近距离情况下,传输速率可达300kbps。由于接收器采用差分方式接收,且每个方向独立使用信号地,因此减少了线间干扰和外界干扰. 物理层 新的平衡型标准规定,传送器和接收器均以差分方式工作,每个信号用两根导线传输,整个接口无需共用信号就可以正常工作,信号的电平由两根导线上信号的差值表示.相对于某一根导线来说,差值在+4V~+6V表示二进制"0",差值在-4V~-6V表示二进制"1".当传输距离达到1000M时,信号传输率在100kbps以下;当在10m以内的近距离传输时,速率可达10Mbps。由于每个信号均使用双线传输,因此线间干扰和外界干扰大大削弱,具有较高的抗共模干扰能力。 (3)功能特性,规定了接口信号的来源、作用以及其他信号之间的关系。即物理接口上各条信号线的功能分配和确切定义。物理接口信号线一般分为数据线、控制线、定时线和地线。 DTE/DCE标准接口的功能特性主要是对各接口信号线作出确切的功能定义,并确定相互间的操作关系。对每根接口信号线的定义通常采用两种方法:一种方法是一线一义法,即每根信号线定义为一种功能,CCITT V24、EIA RS-232-C、EIA RS-449等都采用这种方法;另一种方法是一线多义法,指每根信号线被定义为多种功能,此法有利于减少接口信号线的数目,它被CCITT X。21所采用。 常用连线机械特性 接口信号线按其功能一般可分为接地线、数据线、控制线、定时线等类型。对各信号线的命名通常采用数字、字母组合或英文缩写三种形式,如EIA RS-232-C采用字母组合,EIA RS-449采用英文缩写,而CCITT V。24则以数字命名。在CCITT V。24建议中,对DTE/DCE接口信号线的命名以1开头,所以通常将其称为100系列接口线,而用于DTE/ACE接口信号线命名以2开头,故将它称做200系列接口信号线。 (4)规程特性, 定义了再信号线上进行二进制比特流传输的一组操作过程,包括各信号线的工作顺序和时序,使得比特流传输得以完成。 DTE/DCE标准接口的规程特性规定了DTE/DCE接口各信号线之间的相互关系、动作顺序以及维护测试操作等内容。规程特性反映了在数据通信过程中,通信双方可能发生的各种可能事件。由于这些可能事件出现的先后次序不尽相同,而且又有多种组合,因而规程特性往往比较复杂。描述规程特性一种比较好的方法是利用状态变迁图。因为状态变迁图反映了系统状态的变迁过程,而系统状态迁移正是由当前状态和所发生的事件(指当时所发生的控制信号)所决定的。 不同的物理接口标准在以上4个重要特性上都不尽相同。实际网路中比较广泛使用的是物理接口标准有EIA-232-E、EIA RS-449和CCITT的X。21建议。EIA RS-232C仍是目前最常用的计算机异步通信接口。

接口协定

  1. 电话网路modems-V。92
  2. IRDA物理层
  3. USB物理层
  4. EIARS-232,EIA-422,EIA-423,RS-449,RS-485
  5. Ether physical layerIncluding10BASE-T,10BASE2,10BASE5,100BASE-TX,100BASE-FX。100BASE-T,1000BASE-T,1000BASE-SX还有其他类型
  6. Varieties of802。11Wi-Fi物理层
  7. DSL
  8. ISDN
  9. T1 and otherT-carrierlinks, and E1 and otherE-carrierlinks
  10. SONET/SDH
  11. Optical Transport Neork(OTN)
  12. GSMUm air interface物理层
  13. Bluetooth物理层
  14. ITURecommendations: seeITU-T
  15. IEEE 1394 interface
  16. TransferJet物理层
  17. Etherloop
  18. ARINC 818航空电子数字视频汇流排
  19. G。hn/G。9960物理层
  20. CAN bus(controller area neork)物理层

通信硬体

物理层常见设备有:网卡光纤、CAT-5线(RJ-45接头)、集线器有整波作用、Repeater加强信号、串口、并口等。 通信硬体包括通信适配器(也称通信接口)和数据机(MODEM)以及通信线路。从原理上讲,物理层只解决DTE和DCE之间的比特流传输,尽管作为网路节点设备主要组成部分的通信控制装置,其本身内涵在物理层、数据链路层、甚至更高层,在内容上分界并不很分明,但它所包含的MODEM接口、比特的采样传送、比特的缓冲等功能是确切属于物理层范畴的。为了实现PC机与数据机或其它串行设备通信,首先必须使用电子线路将PC机内的并行数据转成与这些设备相兼容的比特流。除了比特流的传输之外,还必须解决一个字符由多少个比特组成及如何从比特流中提取字符等技术问题,这就需要使用通信适配。通信适配器可以认为是用于完成二进制数据的串、并转换及一其它相关功能的电路。通信适配器按通信规程来划分可分为TTY(Tele Type Writer,电传打字机)、BSC(Birary Synchronous Commuication,二进制同步通信)和HDLC(High-level Data link Control,高级数据链路控制)三种。 IBM PC 异步通信适配器:使用TTY规程的异步通信适配采用RS-232C接口标准。这种通信适配器除可用于PC机在线上通信外,还可以连线各种采用RS-232C接口的外部设备。例如,可连线采用RS-232C接口的鼠标器、数位化仪等输入设备;可连线采用RS-232C接口的印表机、绘图仪及CRT显示器等各种输出设备。可见,异步通信适配器的用途是很广泛的。异步通信规程将每个字符看成一个独立的信息,字符可顺序出现在比特流中,字符与字符间的间隔时间是任意的(即字符间采用异步定时),但字符中的各个比特用固定的时钟频率传输。字符间的异步定时和字符中比特之间的同步定时,是异步传输规程的特征。
  1. 异步传输规程中的每个字符均由四个部分组成:
  2. 1位起始位:以逻辑“0”表示,通信中称“空号”(SPACE)。
  3. 5~8位数据位:即要传输的内容。
  4. 1位奇/偶检验位:用于检错。
  5. 1~2位停止位:以逻辑“1”表示,用以作字符间的间隔。这种传输方式中,每个字符以起始位和停止位加以分隔,故也称“起--止”式传输。串行口将要传送的数据中的每个并行字符,先转换成串行比特串,并在串前加上起始位,串后加上检验位和停止位,然后传送出去。接收端通过检测起始位,检验位和停止位来保证接收字符中比特串的完整性,最后再转换成并行的字符。串行异步通信适配器本身就象一个微型计算机,上述功能均由它透明地完成,不须用户介入。早期的异步通信适配器被做成单独的外挂程式板形成,可直接插在PC机的系统扩充槽内供使用,后来大多将异步通信适配器与其他适配器(如印表机、磁盘驱动器等的适配器)做在一块称作多功能板的外挂程式板上。也有一些高档微机,已将异步通信适配器做在系统主机板上,作为微机系统的一个常规部件。

编程方法

PC机的异步串行通信编程方法内容包括DOS、WINDOWS和BIOS级PC通信、基于异步通信与器的系统的PC通信以及通信编程方法。

DOS通信

PC机一般常有两个异步串行连线端口,分别称作COM1和COM2,它们都符合RS-232C标准。在DOS作业系统中,COM1、COM2被作为I/O设备进行管理,COM1、COM2便是它们的逻辑设备名。据此,DOS便可通过对COM1、COM2操作实现异步串行通信。DOS的MODE命令可用以设定异步串行连线端口的参数,DOS的COPY命令允许将异步串行连线端口作为一个特殊的"档案",进行数据传输。下面举一个利用DOS的MODE、COPY命令,进行双机键盘输入字符传输的例子。 MODE命令的格式如下: MODE 连线端口名:速率,校验方式,数据位数,停止位位数 其中连线端口名为COM1或COM2;传输速率可选110、150、300、600、1200、2400、4800或9600bps;校验方式为E(偶校验)、(奇校验)或N(无校验);数据位数为7或8位;停止位位数为1或2位。通信双方设定的参数应一致,如双方都打入如下命令:MODE COM1:1200,E,7,1则表示双方以COM1为异步通信连线端口以1200bps、偶校、7位数据位、1位停止位的设定参数进行通信。DOS中有一标准控制台COM,实际上作输入时COM即键盘,作输出时COM即显示器。 准备传送的PC机执行如下命令:COPY CON:COOM1:表示将从键盘收到的信息通过COM1串行口传送。 准备接收的PC机执行如下命令:COPY COM1:CON:则表示将接收来自COM1串行口信息,并在显示器上显示。 两台PC机分别执行完上述命令后,在传送方键盘上输入的字符便会在接收方显示器上显示出来。上面介绍的是用DOS的MODE、COPPPY命令实现的最简单的PC通信。在MS-DOS的高版本中(例如MS-DOS V6。0)还提供了一条命令,叫作INTERLNK,实际上它是一个通信程式。使用INTERLNK命令和一根连线两台PC机串行连线端口的电缆,可以使一台PC机从另一台PC机的磁盘驱动器中存取数据并运行程式,无需再使用软碟去拷贝档案。用以键入命令的PC机叫客户机(Client),与客户机相连的PC机叫服务器(Server)。客户机使用服务器的驱动器和印表机,服务器显示两台PC 机的连机状态。 当两台PC机被INTERLNK连线以后,服务器上的驱动器便以扩驱动器的形式映象到客户机上,若两台PC机原来均有A、B、C三个驱动器,则连线后客户机除了自身的三个驱动器外,又多了E、F、G(服务器驱动器映象)三个扩展驱动器,客户机可以象使用自己的驱动器一样使用这些扩展驱动器。使用INTERLNK时,每台PC机上至少要有一个空闲的串行口,还要一根3号线或7号线的零数据机(Null MODEM)串行电缆线,客户机上至少有16K空闲记忆体,服务器上至少有130K空闲记忆体。 在客户机的CONFIG系统配置档案。SYS中添加如下命令:devive=c:dosinterlnk。exe/drives:5 再重新启动客户机,便可装入INTERLNK。这里假设interlnk。exe存于客户机C驱动器的DOS子目录中,/drives:5参数用于映象5个服务器驱动器,预设情况下为3个驱动器。服务器上启动INTERLNK不需要其CONFIG。SYS作任何改动,只需在DOS命令提示符下键入intersvr即可。此时,萤幕底部出现一行状态信息,显示INTERLNK的连线状态。

PC通信

Microsoft Windows的应用程式Terminal允许用户PC机与其它计算机连线并交换数据,也可仿真为将与之交换数据的远程计算机所要求的终端类型。下面给出一台PC机套用WINDOWS的Terminal从具有连机服务的远程系统读取档案的通信过程。 打开终端——使用设定(Settings)选单设定参数——查阅档案——使用传输(Transfers)选单接收一个档案——与远程计算机脱机——使用phone选单挂起数据机——使用档案(File)选单存储档案——退出终端

BIOS

在PC机的基本输入输出系统(BIOS)中的中断14H提供了异步串行连线端口的服务功能,通过INT 14H提供的四种功能,可访问串行通信连线端口,实现连机通信。INT 14H的串行口功能为。

常见的物理层设备

集线器有整波作用。 Repeater加强信号。 串口 并口

H. 哪些过程是lte的物理层处理过程

通过小区搜索的过程,终端与服务小区实现下行信号时间和频率的同步,并且确定小区的物理层ID。
物理层小区搜索的过程主要涉及两个同步信号,即主、辅同步信号(PSS/SSS)。过程中包括了下行时间和频率的同步、小区物理ID的检测和OFDM信号CP长度的检测(Normal或ExtendedCP)。完成这些操作后,终端就可以开始读取服务小区的广播信道(PBCH)中的系统信息,进行进一步的操作。
这期间,在通过同步信号的检测与服务小区获得同步以后,终端可以利用下行导频信号(CRS)进行更精确的时间与频率同步以及同步的维持。小区搜索过程
通过上行传输时间的调整,终端与服务小区实现上行信号时间的同步,使得不同用户的上行信号同步到达基站。相关过程包括异步随机接入过程中的传输时间调整,以及连接状态下的上行同步保持。
在异步随机接入过程中,作为随机接入的响应消息,基站向终端发送长度为11bit的定时调整命令(TimingAdvanceCommand),终端根据该信息调整上行的发送时间,实现上行同步。
在连接状态下,MAC层的控制信息携带了长度为6bit的定时调整命令,终端将根据该信息对上行的发送时间进行调整,实现上行同步的保持。
定时调整命令的精度是(即15/(15000*2048)),从收到命令到调整后上行发送之间的延时是6ms,即在子帧收到调整命令之后,该信息将终端应用于从子帧开始的上行发送中
针对上行和下行信号的发送特点,LTE物理层定义了相应的功率控制机制。
对于上行信号,终端的功率控制在节电和抑制用户间干扰的方面具有重要意义,所以,相应地采用闭环功率控制的机制,控制终端在上行单载波符号上的发送功率。
对于下行信号,基站合理的功率分配和相互间的协调能够抑制小区间的干扰,提高同频组网的系统性能,所以,相应地采用开环功率分配的机制,控制基站在下行各个子载波上的发送功率。

I. 计算机网络-02-物理层和数据链路层

物理层主要功能是为数据端设备提供传送数据的通路以及传输数据。

信道是往一个方向传送信息的媒体,一条通信电路包含一个接收信道和一个发送信道。

分用-复用技术 允许多个用户使用一个共享信道进行通信,可以降低成本,提高利用率。

数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的功能是向该层用户提供透明的和可靠的数据传送基本服务。

数据链路层有两个功能: 帧编码 和 差错控制 。

物理层只负责传输比特流,为了使传输过程发生差错后只将有限数据进行重发,数据链路层将比特流组合成以太帧作为单位传送。

每个帧除了要传送的数据外,还包括校验码,以使接收方能发现传输中的差错。

假设现在从网络层过来了一个IP数据报,数据链路层会将这个数据报作为帧进行传送。

当然物理层是不管你帧不帧的,它只会将数据链路层传过来的帧以比特流的形式发送给另一台物理设备。

由前面的文章可知: 总时延 = 发送时延 + 排队时延 + 传播时延 + 处理时延

数据链路层的数据帧不是无限大的,数据帧过大或过小都会影响传输的效率,数据链路层使用MTU来限制数据帧长度。

以太网MTU一般为1500字节, 路径MTU由链路中MTU的最小值决定

一个实用的通信系统必须具备发现(即检测)这种差错的能力,并采取某种措施纠正之,使差错被控制在所能允许的尽可能小的范围内,这就是差错控制过程。物理层只管传输比特流,无法控制是否出错,所以差错检测成了数据链路层的主要功能之一。

一般的检测方法有 奇偶校验码 和 CRC循环冗余校验码 。

网络中需要唯一标识物理设备的地址,用于确定数据传输时的发送地址和目的地址。

MAC地址(物理地址、硬件地址)共48位,使用十六进制表示,每一个设备都拥有唯一的MAC地址。

虽然MAC地址是物理硬件地址,但其属于数据链路层的MAC子层。

以太网(Ethernet)是一种使用广泛的局域网技术,它是应用于数据链路层的协议,使用以太网可以完成相邻设备的数据帧传输。

以太网数据报文主要由五个部分组成:

类型主要表示帧数据的类型,例如网络层的IP数据。

定义完数据结构后,就需要进行数据传输。由上文可知,MAC地址唯一标识了设备,那么怎么获得目的设备的MAC地址呢?

MAC地址表记录了与本设备相连的设备的MAC地址。

假设主机A发送了一个以太网数据报文,数据帧到达路由器,路由器取出前6字节(通过报文数据结构可知前6位位目的地址)。

路由器匹配MAC地址表,找到对应的网络接口,路由器往该网络接口发送数据帧。

当路由器的MAC地址表中没有目的地址,此时路由器会将此MAC地址进行广播(发送方A除外),接收局域网中与该路由其相连的其他设备的MAC地址并记录。

由于MAC地址表只能知道当前设备的下一个设备的MAC地址,简而言之就是只能进行相邻物理节点的数据传输。

有关跨设备传输数据的功能是交由网络层处理的,具体见下一章。

J. 手机通常会经历哪些物理层过程

电转光能。手圆腊扮脊机有屏幕啊,就是橘缺滑电能转换成光能啦,还有一部分转化成了声音信号的能量(电能变机械能)。玩手机要发热啊有木有,电能变热能。

阅读全文

与物理层过程有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1047
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1691
西安瑞禧生物科技有限公司怎么样 浏览:947
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1641
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050