导航:首页 > 物理学科 > 物理课堂教学有哪些研究方法

物理课堂教学有哪些研究方法

发布时间:2023-06-04 07:26:38

⑴ 物理研究方法有哪些

物理研究方法:

1、控制变量法:把一个多因素影响某一物理量的问题,通过控制其几个因素不变,只让其中一个因素改变。这种方法在实验数据的表格上的反映为:某两次实验只有一个条件不相同,若两次实验结果不同,则与该条件有关,否则无关。

2、建立模型法:用理想化的方法将实际中的事物进行简化,便可得到一系列的物理模型。

3、转换法:物理学中对于一些看不见、摸不着的现象或不易直接测量的物理量,通常用一些非常直观的现象去认识,或用易测量的物理量间接测量,这种研究问题的方法叫转换法。

4、等效法:指不同的物理现象、模型、过程等在物理意义、作用效果或物理规律方面是相同的。它们之间可以相互替代,而保证结论不变。

5、类比法:由两个对象的某些相同或相似的性质,推断它们在其他性质上也有可能相同或相似的一种推理方法。类比得到的结论不一定正确。要确认其结论的正确性,须经过实验论证。

6、比较法:“比较”是人们常用的思维方法,是找出事物之间的差异点和共同点的思维方法,通过事物间相同特征或相异特征的比较,提示事物的本质区别。

7.推理法:是在观察实验的基础上,忽略次要因素,进行合理的推想,得出结论,达到认识事物本质的目的。如:牛顿第一定律的得出。

⑵ 物理研究方法有哪些

物理研究方法,收集齐全的物理知识,一起来看看:

一、控制变量法:通过固定某几个因素转化为多个单因素影响某一量大小的问题。控制变量法是指在研究几个物理量的关系时,每次只改变一个物理量,保持其他一些物理量不变,探究这一物理量与研究对象之间的关系。这是物理研究最常用的一种方法,几乎贯穿物理学习的始终。

二、等效法:将一个物理量,一种物理装置或一个物理状态(过程),用另一个相应量来替代,得到同样的结论的方法。在保证效果相同的前提下,将陌生复杂的问题变换成熟悉简单的模型进行分析和研究的方法。 例如:研究串、并联电路关系时引入总电阻(等效电阻)的概念。在研究力的关系时引入合力的概念也是运用了等效替代法,即可以用一个力的作用效果代替几个力的作用效果。研究平面镜成像特点时,用镜后未点燃的蜡烛代替镜前点燃蜡烛的像。

三、模型法:以理想化的办法再现原型的本质联系和内在特性的一种简化模型。物理模型法是一种高度抽象的理想客体和形态,便于想象、思考和研究问题。研究物理的过程就是建立物理模型的过程。

四、转换法(间接推断法)把不能观察到的效应(现象)通过自身的积累成为可观测的宏观物或宏观效应。物理学中有的物理现象不便于直接观察和直接测量,通常用一些非常直观的现象去认识或用易测量的物理量进行间接测量,这种研究问题的方法叫转换法。

五、类比法:根据两个对象之间在某些方面的相似或相同,把其中某一对象的有关知识、结论推移到另一个对象中去的一种逻辑方法。简言之,相同或相似的东西放在一起进行比较,以达到 “举一反三”的效果。它是根据两个或两类对象之间在某些方面的相同或相似而推出他们在其他方面也可能相同或相似的一种逻辑思维。

六、比较法:找出研究对象之间的相同点或相异点的一种逻辑方法。

七、归纳法:从一系列个别现象的判断概括出一般性判断的逻辑的方法。

八、观察法。观察法是人们为了认识事物的本质和规律有目的有计划地对自然发生条件下所显现的有关 事物进行考察的一种方法,是人们收集获取感性材料的常用方法之一,是最基本最直接的研究方法。

⑶ 物理的研究方法有哪些

物理学的研究方法有:控制变量法、等效法、模型法、转换法、类比法、比较法、归纳法等方法。

1、控制变量法:物理学中对于多因素(多变量)的问题,常常采用控制因素(变量)的方法,把多因素搏桥的问题变成多个单因素的问题。每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对事物的影响,分别加以研究,最后再综合解决。

2、等效法:等效法是常用的科学思维方法。所谓“等效法”就是在特定的某种意义上,在保证效果相同的前提下,将陌生的、复杂的、难处理的问题转换成熟悉的、容易的、易处理的一种方法。

3、模型法指通过模型来揭示原穗伏型的形态、特征和本质的方法,一般用在物理实验上。

4、类比法:类比法是按同类事物或相似事物的发展规律相一致的原则,对预测目标事物加以对比分析,来推断预测目标事物未来发展趋向与可能水平的一种预测方法。

研究方法:

物理学的方法和科猜银携学态度:提出命题 → 理论解释 → 理论预言 → 实验验证 → 修改理论。

现代物理学是一门理论和实验高度结合的精确科学,它的产生过程如下:

1、物理命题一般是从新的观测事实或实验事实中提炼出来,或从已有原理中推演出来;

2、首先尝试用已知理论对命题作解释、逻辑推理和数学演算。如现有理论不能完美解释,需修改原有模型或提出全新的理论模型;

3、新理论模型必须提出预言,并且预言能够为实验所证实;

4、一切物理理论最终都要以观测或实验事实为准则,当一个理论与实验事实不符时,它就面临着被修改或被推翻。

⑷ 初中物理的16个研究方法!!!

1. 观察法:
观察法是人们为了认识事物的本质和规律有目的有计划的对自然发生条件下所显现的有关事物进行考察的一种方法,是人们收集获取记载和描述感性材料的常用方法之一,是最基本最直接的研究方法。简单的讲观察法就是看仔细地看。但它和一般的看不同,观察是人的眼睛在大脑的指导下进行有意识的组织的感知活动。因此,亦称科学观察。

实例:水的沸腾:在使用温度计前,应该先观察它的量程,认清它的刻度值。实验过程中要注意观察水沸腾前和沸腾时水中气泡上升过程的两种情况,温度计在沸腾前和沸腾时的示数变化;在学习声音的产生时可让学生观察小纸片在扬声器中的运动状态,观察正在发声的音叉插入水中激起水花,观察蟋蟀知了鸣叫是的情况,就会发现发出声音的物体都在振动;除此之外还有光的反射规律;光的折射规律;凸透镜成像;滑动摩察力与哪些因素有关等。
2. 放大法
放大法是物理实验中常遇到一些微小物理量的测量。为提高测量精度,常需要采用合适的放大方法,选用相应的测量装置将被测量进行放大后再进行测量。常用的放大法有累计放大法、形变放大法、光学放大法等。

(1)累计放大法:在被测物理量能够简单重叠的条件下,将它展延若干倍再进行测量的方法,称为累计放大法(叠加放大法)。如测量纸的厚度、金属丝的直径等,常用这种方法进行测量;累计放大法的优点是在不改变测量性质的情况下,将被测量扩展若干倍后再进行测量,从而增加测量结果的有效数字位数,减小测量的相对误差。在使用累计放大法时,应注意两点,一是在扩展过程中被测量不能发生变化;二是在扩展过程中应努力避免引入新的误差因素。

(2)形变放大法:形变是力作用的效果,在力学中形变的基本表现形式为体积、长度、角度的改变。而显示形变的方法可用力学的方法,也可用电学、光学的方法,如:体积的变化:由液柱的长度的变化显示;热膨胀:杠杆放大法显示。

(3)光学放大法:常用的光学放大法有两种,一种是使被测物通过光学装置放大视角形成放大像,便于观察判别,从而提高测量精度。例如放大镜、显微镜、望远镜等。另一种是使用光学装置将待测微小物理量进行间接放大,通过测量放大了的物理量来获得微小物理量。例如测量微小长度和微小角度变化的光杠杆镜尺法,就是一种常用的光学放大法。
3. 控制变量法
控制变量法是指讨论多个物理量的关系时通过控制其几个物理不变,只改变其中一个物理量从而转化为多个单一物理量影响某一个物理量的问题的研究方法。这种方法在实验数据的表格上的反映为某两次试验只有一个条件不同,若两次试验结果不同则与该条件有关。否则无关。反之,若要研究的问题是物理量与某一因素是否有关则应只使该因素不同,而其他因素均应相同。

实例:在研究导体的电阻跟哪些因素有关时,为了研究方便采用控制变量法。即每次须挑选两根合适的导线,测出它们的电阻,然后比较,最后得出结论。为了研究导体的电阻与导体长度的关系,应选用材料横截面相同的导线,为了研究导体的电阻与导体材料的关系,应选用长度和横截面相同的导线,为了研究导体的电阻与导体横截面的关系,应选用材料和长度相同的导线。研究影响力的作用效果的因素;研究液体蒸发快慢的因素;研究液体内部压强;研究动能势能大小与哪些因素有关;研究琴弦发声的音调与弦粗细、松紧、长短的关系;研究物体吸收的热量与物质的种类质量温度的变化的关系;研究电流与电压电阻的关系;研究电功或电热与哪些因素有关;研究通电导体在磁场中受力与哪些因素有关;研究影响感应电流的方向的因素采用此法。

4. 类比法
所谓类比就是“触类旁通”“举一反三”实际上是一种从特殊到特殊,从一般到一般的推理,它是根据两个或两类对象之间在某些方面的相同或相似而推出他们在其他方面也可能相同或相似的一种逻辑思维。从而可以帮助我们理解较复杂的实验和较难的物理知识。类比是一种推理方法,不同事物在属性、数学形式及其他量描述上有相同或相似的地方就可以来用类比推理。类比法是提出科学假说做出科学预言的重要途径,物理学发展史上的许多假说是运用类比方法创立的,开普勒也曾经说过:“我们珍惜类比推理胜于任何别的东西”。
实例:电压与水压;电流与水流;内能与机械能;原子结构与太阳系;水波与电磁波;通信与鸽子传递信件;功率概念与速度概念的形成。在物理学中运用类比方法可以引导学生自己获取知识,有助于提出假说进行推测,有助于提出问题并设想解决问题的方向。类比可激发学生探索的意向,引导学生进行探索使学生成为自觉积极的活动,发展学生的思维能力。

类比是科学家最常运用的一种思维方法,由这种方法得出的结论虽然不一定可靠,但是,在逻辑中却富有创造性。类比的事例很多这就需要平时多留心不断地总结找到比较恰当的事例做类比。

5. 等效替代法
所谓等效替代法是在保证效果相同的前提下,将陌生复杂的问题变换成熟悉简单的模型进行分析和研究的思维方法,它在物理学中有着广泛的应用。

实例:研究串联并联电路关系时引入总电阻(等效电阻)的概念,在串联电路中把几个电阻串联起来,相当于增加了导体的长度,所以总电阻比任何一个串联电阻都大,把总电阻称为串联电路的等效电阻。在并联电路中把几个电阻并联起来,相当于增加了导体的横截面积,所以总电阻比任何一个并联电阻都小,把总电阻称为并联电路的等效电阻;在电路分析中可以把不易分析的复杂电路简化成为较为简单的等效电路;在研究同一直线上的二力的关系时引入合力的概念也是运用了等效替代法。

6. 比较法
比较法是确定研究对象之间的差异点和共同点的思维过程和方法,各种物理现象和过程都可以通过比较确定它们的差异点和共同点。比较是抽象与概括的前提,通过比较可以建立物理概念总结物理规律。利用比较又可以进行鉴别和测量。因此,比较法是物理现象研究中经常运用的最基本的方法。比较法有三种类型:①异中求同的比较。即比较两个或两个以上的对象而找出其相同点。②同中求异的比较。即指比较两个或两个以上的对象而找出其相异点。③同异综合比较。即比较两个或两个以上的对象的相同点相异点。

实例:象汽车轮船火车飞机它们的发动机各不相同但都是把燃料燃烧时释放的内能转化为机械能装置。而汽油机和柴油机虽然都是内燃机但是从它们的构造、吸入的气体、点火方式、使用范围等方面都有不同。再如蒸发与沸腾的比较两者的相同点都是汽化过程。不同点从发生时液体的温度、发生所在的部位及现象都不同。还可以用比较法来研究质量与体积的关系;重力与质量的关系;重力与压力;电功与电功率等。

7. 转换法
物理学中对于一些看不见摸不着的现象或不易直接测量的物理量,通常用一些非常直观的现象去认识或用易测量的物理量间接测量,这种研究问题的方法叫转换法。初中物理在研究概念规律和实验中多处应用了这种方法。

实例:物体发生形变或运动状态改变可证明一些物体受到力的作用;马德堡半球实验可证明大气压的存在;雾的出现可以证明空气中含有水蒸气;影子的形成可以证明光沿直线传播;月食现象可证明月亮不是光源;奥斯特实验可证明电流周围存在着磁场;指南针指南北可证明地磁场的存在;扩散现象可证明分子做无规则运动;铅块实验可证明分子间存在着引力;运动的物体能对外做功可证明它具有能等。

8. 理想实验
理想实验又叫“假想实验”“抽象的实验”或“思想上实验”,它是人们在思想中塑造的理想过程,是一种逻辑推理思维过程和理论研究重要方法。理想实验虽然叫实验,但它同所说的真实科学实验是有原则区别的,真实科学实验是一种实践活动,而理想实验则是一种思维活动,前者是可以将设计通过物理过程而实现的实验,后者则是在抽象思维中设想出来而实际上无法做到的实验。但是,理想实验并不是脱离实际的主观臆想。首先,理想实验是以实践为基础的,所谓的理想实验就是在真实的科学实验的基础上,抓住主要矛盾忽略次要矛盾对实际过程做出更深入一层的抽象分析。其次,理想实验的推广过程是以一定的逻辑法则为根据的,而这些逻辑法则都是从长期的社会实践中总结出来的并为实践所证实了的。

理想实验在自然科学的理想研究中有着重要的作用。但是,理想实验的方法也有其一定的局限性,理想实验只是一种逻辑推理的思维过程,它的作用只限于逻辑上的证明与反驳,而不能用来作为检验正确与否的标准。相反,由理想实验所得出的任何推论都必然由观察实验的结果来检验。

实例:研究真空是否能够传声;牛顿第一定律等。

9. 建立模型法
建立模型法是一种高度抽象的理想客体和形态用物理模型,用物理模型可以使抽象的假说理论加以形象化,便于想象和思考研究问题。物理学的发展过程可以说就是一个不断建立物理模型和用新的物理模型代替旧的或不完善的物理模型的过程。

实例:研究肉眼观察不到的原子结构时,建立原子核式结构模型;研究光现象时用到光线模型;研究磁现象是用到磁感线模型;力的示意图或力的图示是实际物体和作用力的模型;电路图是实物电路的模型;研究发电机的原理和工作过程用挂图及手摇发电机模型;研究内燃机结构和工作原理用挂图及汽油机柴油模型。

10. 平衡法
平衡,是相对于两个以上物体组成的一个物理组合而言的,在物理变化过程中,组合中各物体的一些物理量在一定条件下保持相等,这时,我们就把这些物体所处的这种状态称之为平衡态,初中物理研究的平衡态问题,归结起来大致有如下三大类:一是在平衡力作用下物体的平衡;二是杠杆的平衡:三是温度不同的物体混合后达到的热平衡,有关这三类问题都必须用平衡原理去解。
实例:你在玩木板小车模型的时候,让小锤自由下落,拉着小车向前走,其中,小车与木板有摩擦,这时测的小车速度是有误差的,所以你现在可以用平衡法来平衡小车的摩擦力,比如把木板垫高。
11. 留迹法
在物理实验中,有些物理现象瞬息即逝,实验者难以在此瞬间对研究对象进行观察和测量。如运动物体所处的位置、轨迹、图像等。但我们可用一定的方法将有关信息记录下来,然后通过测量或观察来进行研究,这种方法就是留迹法。
实例:沙摆描绘单摆的振动曲线;用打点计时器记录物体位置;用频闪照相机拍摄平抛的小球位置;用示波器观察交流信号的波形等。
12. 累积法
把某些难以用常规仪器直接准确测量的物理量用累积的方法,将小量变大量,不仅可以便于测量,而且还可以提高测量的准确程度,减小误差。这种方法称为累积法。
主要累积方法:(1)时间累积法:对时间累积后进行测量求平均值的方法。(2)空间累积法:对空间进行累积后求平均值的方法。
实例:在“用滴水法测重力加速度”的实验中,调节并测量水龙头到盘子的高度差h;让前一滴水滴到盘子听到声音时,后一滴恰离开水龙头;再测出n次水击盘声的总时间tn,则下落h高度用时。又如在“测定金属电阻率”的实验中,若没有螺旋测微器,可把金属丝绕在铅笔上若干圈,由金属线圈的总长度除以圈数来测量金属丝的直径。
13. 外推法:
有些物理量可以局部观察或测量,作为它的极端情况,不易直观观测,如果把这局部观察测量得到的规律外推到极端,可以达到目的。例如在测电源电动势和内电阻的实验中,无法直接测量I=0(断路)时的路端电压(电动势)和短路(U=0)时的电流强度,通过一系列U、I对应值点画出直线并向两方延伸,交U轴点为电动势,交I轴点为短路电流

⑸ 物理课堂教学模式研究的方法有哪些

我以学案教案为载体,强化学生的自学行为,充分发挥学生的主体作用,通过引发、诱导、启迪、导学、导练,把学生由听众席推向表演舞台;让学生在动眼看、动脑思、动耳听、动口说、动手做的过程中,参与知识创新的过程,自我领悟知识的内涵,从而牢牢地掌握知识,学会学习,学会创新。为此采用以下课堂教学模式。
1、新授课

自学质疑 完成学案中的有关问题是学案导学的核心部分。它要求教师将预先编写好的学案,在课前发给学生,让学生明确学习目标,带着问题对课文进行预习。同时,教师在学生自学过程中应进行适当辅导。教师指导学生围绕学习目标阅读相关学习素材进行自主学习,尝试知识建构,基本解决学案中的相关问题,完成基础练习,提出自主学习中的疑难问题。
要求学生:①养成自主学习习惯。根据学案和教师提出的学习要求自主学习,养成独立阅读、思考、完成知识建构和基础练习的学习习惯。②先看书后做题。研读教材时不浮在表面,应理解知识的内在联系,把握知识的内涵,弄清知识点和尝试理解知识点之间的内在联系等。在围绕学案研读教材的基础上,掌握基本概念和原理后再做学案上的问题。③循序渐进完成学案。通过自学能解决学案中一半以上的问题,再通过小组合作学习解决学案中更多的问题,然后带着强烈的展示欲和求知欲进入课堂。建议使用双色笔完成学案,课前自学、合作学习时用黑笔,课堂及课后修改时用红笔。④注重纠错反思。学案上能做和会做的问题要准确规范完成。确因能力要求过高,自己不能做的可以不做,在课堂或课后用红笔完成。在学案上的指定地方把本节课的内容梳理成网络;同时反思自己学习中存在的问题。⑤两次上交学案。一是课前做好的学案,上课前交任课教师审阅,以便教师了解学情;二是将用红色笔改过的学案再一次交任课教师审阅,用以查验学习情况。对课堂上还没有解决的问题由科代表或组长汇总交给任课教师,教师在下节课或在单元小结时解决;也可以在教师辅导答疑时解决。⑥及时整理学案:保存好所有的学案,作为课堂笔记,以备复习时查阅。
互动交流 交流展示学案中学习问题的思维过程和解题方法,教师要善于组织互动交流,促使学生积极思维,让学生通过交流展示共享学习成果。可先小组交流展示,然后进行全班交流展示,最大限度地扩大交流展示的面。
在学生自学的基础上,教师应组织学生讨论学案中的有关问题,对教学中的重点、难点问题应引导学生展开讨论交流,形成共识。而学生在讨论中不能解决或存在的共性问题,教师应及时汇总,以便在精讲释疑时帮助学生解决。
学生行为:上课时学生板书、展示、交流发言、质疑、互动(形式不拘,服从教学实际需要)。①交流展示的同学声音要洪亮,口齿要清晰,教师要倾听并关注同学的反应。不要频繁打断学生发言,要注意倾听与归纳。板书的同学书写要规范,图文要清楚,符号要准确,尽可能精炼表达。注意突出展示清楚解题思路、解题方法。②其他同学要主动质疑和补充,促进课堂互动生成。③按照学生自愿组合、互帮互助、充分发挥个人特长的原则,组成学习小组,每位学生都要积极参与活动。要注意轮换小组代表,注意学生自发交流展示与教师临时指定交流展示人员相结合。其他同学观察展示、思考正误,注意质疑、矫正。
教师行为:观察学生交流展示中讨论和板书的问题答案,倾听学生的发言,进一步把握学情,考虑调整互动探究的问题、精讲点拨的要点等。在对学生交流展示进行评价时,要把“不求人人成功,但求人人进步”作为追求的境界,目的是鼓励学生主动参与,积极参与,要营造民主的氛围,提倡学生创新,着力点定位在学生不断的进步和发展上。
合作探究 教师可通过新奇有趣的实验、生动形象地日常生活事例进行设问,提出本课问题,激发学生的探究欲望。围绕教学目标,教师应根据需要解决的问题,依据学生的实际情况、教师本人的特长、学校的实验设备状况、教学时间等各种因素,把目标中的问题具体化,采用集中、组合讲授、读书、讨论等各种物理教学方法,引导学生进行讨论或探索性实验。教师及时掌握、调控探究的方向,在学生自主学习的、研究探索的基础上,指导学生应用物理学的研究方法,进行总结归纳,得出结论。让学生在提出问题,、研究问题、解决问题的过程中,思维得到发展,能力得到提高。选择具有探究价值的质疑问题,组织学生进行互动探究,教师要为互动探究提供材料支撑和方法指导,要注意面向全体学生,注重因材施教,分层指导,尊重学生人格,鼓励大胆质疑,营造民主、平等、和谐的探究氛围。
互动探究问题的选择。一是选择有助于学生基础知识和基本技能达成的问题进行探究,可以由教师根据教学要求和教学经验进行预设;二是选择学生自学中发现的困惑和疑点进行探究,注意这些困惑和疑点应是本节学习的核心内容或对核心内容的理解不可缺少的。对多个问题进行探究时可分配给不同的学习小组,使每个小组都有明确的探究任务,通过小组各个成员的合作,把自己负责的主要问题探究透彻,在下一步交流互动中让全班共享探究过程和探究结论。
教师要针对教学重点和教学难点进行精讲点拨,要注重剖析知识要点,分析知识点之间的内在联系,突出解决问题的思维方法和思维过程;还要针对学生学习的疑难问题进行点拨,对疑难问题点拨时要注意学习层次,注意点拨的范围,注意把握教学难度等。
师生行为:鼓励个人先独立思考、自主探究,形成一定的自主意识和自主学习能力,在此基础上,组长组织组内认真讨论,逐步形成解决问题方案,并按方案去解决问题。还可讨论形成本组的交流展示方案,为交流作准备。教师在此阶段内应巡视班级各小组的活动,主动参与1个或几个小组的探究活动,关注探究过程中遇到的疑难问题或奇特想法,及时把握学情,一是为下一步的交流掌握第一手材料,二是可适时调控各组的探究进展和探究方向。在班级交流时注意适时点评(有时需要精讲),不能放任,应中肯、恰当评价,使评价既有利于调动积极性,又有利于形成正确的观点和解题思路等。
教师行为:针对课堂上学生的学习活动进行评价、精讲点拨或调控。如,各组完成任务中的精彩表现,不足之处,教师要予以激励性评价和矫正性评价;有些知识与方法,学生难以在现有的认知水平上去认识和体会的,教师要予以精讲点拨、补充。精讲点拨要到位而不越位,要把握好度;要把握时机适时进行,不要频频打断学生的发言;教师语言要简洁、精炼,准确、规范,形象、生动;讲解重点要突出,要有变式讲解;例题要归纳出解决问题的思路;难点突破要有阶梯设计;要给学生留有消化、思考的空间。对难以理解的问题可以迂回一下,设计阶梯性的思考题,引导学生逐步达成学习目标。可以结合多媒体课件适时引导学生突破学生自学不会、探究不出的疑难问题,充分发挥多媒体的辅助功能,同时要注意发挥传统教学手段(如板书、板图、挂图、模型等)在教学中的作用。
矫正反馈 练习的设计应紧扣本节课的教学内容和能力培养目标及学生的认知水平。练习题要求学生当堂完成,让学生通过练习既能消化、巩固知识,又能为教师提供直接的反馈。教师对练习中出现的问题应及时发现,给予指正,做出正确的评价。
矫正反馈要注意突出针对性、及时性、层次性和有效性。对学困生的辅导工作要做到“三优先”,即优先辅导学困生;优先表扬学困生;优先让学困生交流展示。反馈体现在学案收改时、抽查时,在学生交流展示时,在互动探究情况的把握时,在课堂生成问题的解决时,在二次上交学案时等,矫正可随时进行,也可专段时间进行,可在精讲点拨前进行,也可在下节课开始前进行。要完成导学案中的习题,及时巩固学习效果,拓展思维,形成相关技能。迁移应用的题型要多样,要有书面的和操作性、实践类问题。还可设置思考题、必做题、选做题等。要让学生通过一定的迁移应用训练,运用所学知识解决实际问题,加深对所学知识的理解,同时进一步培养学生的阅读理解能力和信息的提取与处理能力。在进行迁移应用训练时,要注重独立性、规范性,要及时反馈、收交和批改。对迁移应用中发现的问题,要及时矫正,及时进行变式练习。

⑹ 物理学科中的常用研究方法有哪些

1。等效法:比如两个5欧的电阻串联可以用一个10欧的电阻等效替换。2。模型法:比如讲原子结构时的原子核式结构模型。3。比较法:比如研究杠杆平衡条件的实验中,测出了动力、动力臂、阻力、阻力臂之后,要比较动力与动力臂和阻力与阻力臂的乘积,才能得到杠杆的平衡条件。4。分类法:比如学习导体与绝缘体时,就用到了分类法。5。类比法:比如学习电流时用水流来类比说明。6。控制变量法:比如研究电流与电压和电阻的关系时,就用了此法。7。转换法;比如测密度时依据密度公式将其转换为测质量和测体积。

⑺ 物理有效的教学方法有哪些

物理对于学生来说,是一门重要的学科。同时,这就对教学工作者提出了更高的要求。每一名学生都有丰富的创造力和无穷的潜力,通过科学的教学,将学生的这些能力发掘出来,是学生的财富,也是我们自身价值的实现。以下是我分享给大家的物理教学的方法的资料,希望可以帮到你!

物理教学的方法一、培养学生对物理学的兴趣

兴趣对于学生的学习是至关重要的,它能让学生对新事物有好奇心,充满探索的愿望,更容易接受新的知识。学生在学习的过程中,需要理解和记忆,没有对物理学产生兴趣,当然不会主动去记忆物理学里的知识点。下面是培养学生对物理学兴趣的三点方法:

1、讲好第一节课: 第一节课是学生与教师认识的一节课,也是学生对物理这门学科认识的一节课。在上课之前,要准备充分,在课堂上提出一些有趣的问题,并且进行互动,从而激发学生们的好奇心,对以后的教学会很有帮助。

2、从生活入手: 物理现象在生活中的缩影无所不在。例如:筷子放在水中的折射现象,摩擦起电的现象等等。通过讲解一些生活中常见的物理现象,让学生对这些现象的原理产生探究的兴趣,在这些现象的谜底揭开的时候,学生也对其象留下了深深的印象,对知识的理解也会化难为简。

3、做好演示实验: 仅仅凭在教学过程中的讲解是远远不够的,在引导学生学习物理课程时,做好每一次演示实验,是至关重要的,而且学生对于演示实验很好奇,都会全神贯注的观察,在这种氛围中,将演示的现象和课程的内容讲给学生听,更能够引起学生的兴趣,利于知识的接受。

物理教学的方法二、学生实验的重要性

物理课程的教学对于实验的依赖程度不亚于生物学和化学,教师生动的演示实验,可以激发学生的兴趣,提高学生对知识点的理解和记忆。学生自己动手的实验,在实验中提出问题和假设,然后设计实验来进行验证,通过学生之间的交流,将这些问题解决,这整个过程可以很大程度提高学生对于实际问题的解决能力,对于培养学生的观察能力、动手能力、思考归纳能力,会有很重要的影响。学生实验分为课堂分组实验、课外实验。

1、课堂分组实验:鉴于我们县的设备和资源比较有限,学生在实验课程上,以分组实验为主。 教师的演示实验,虽然能够引起学生的兴趣,让知识变得易于理解和记忆,但是学生仅仅停留在观察阶段,并没有办法参与其中。所以,学生的分组实验,是培养学生动手能力最好的办法,是实验能力培养最重要的办法。学生自己动手,受到的视觉和感觉会很强烈,对于实验过程中的问题思考会更深入,在模拟实验之后,还可以让学生自己提出种种假设,在设计假设后再进行实验,比单单的模拟实验的过程效果更好。教师在课堂实验中,要起到引导的作用,对于学生操作中的错误地方,要及时的予以纠正,避免习惯性错误操作的产生,教师还应该带头设计实验,脱离课本中的模型,让学生充分的发挥想象力,培养学生的创新能力。 教师在课堂实验结束后,要对学生的实验予以正确的评价,适当的鼓励学生,让学生经过动手达成实验目标后,有一定的成就感,增强学习的信心。同时,教师要认真进行总结,要让下一堂实验课的内容更丰富。

2、课外实验: 课堂上的时间毕竟是有限的,物理不同于其他学科的一点,就是可以就地取材,做很多有意义的实验。学生在经过课堂实验后,充满了学习的兴趣,教师可以趁热打铁,改变一些课后作业的布置方式,改为让学生动手完成一些简单的实验。这样做,让学生对课后作业完成起来更主动。 教师与家长的沟通是很重要的,对于学生要求做的课外实验,家长要予以支持,并创造一些条件,帮助学生完成实验。

物理教学的方法三、物理模型的重要性

当学生对遇到的一些物理问题没有办法的时候,往往是不能将物理问题细分为简单的物理模型,寻找不到突破口,导致问题无从下手。 物理学中的许多问题,是有共同点的,通过课堂实验并且进行归纳,可以建立起若干个模型,这就是物理模型。在平时的教学中,将常见的物理模型进行总结,讲解给学生们听。 物理模型是物理学的基本知识单元,物理问题都是由多个物理模型拼凑到一起的,一个物理问题进行分析后,可以拆分成几个彼此独立的模型,从而各个击破。单一的物理模型易于理解,学生也都容易掌握,但是让学生如何能够拆分物理模型,是至关重要的。教师在平日的教学过程中,对典型的问题要花费较多的时间进行讲解,教会学生如何将复杂的问题简单化,将一道难题,拆分成一个个简单的问题。 物理模型的归纳,在于教师平日的积累,很多物理模型已经成型,也有很多物理模型还在探索中,尽量从实际问题将物理模型提炼出来,会让学生解决物理问题的能力大为提高。

⑻ 初中物理学到的物理探究方法有哪些

研究物理的科学方法有许多,经常用到的有观察法、实验法、比较法、类比法、等效法、转换法、控制变量法、模型法、科学推理法等.研究某些物理知识或物理规律,往往要同时用到几种研究方法.如在研究电阻的大小与哪些因素有关时,我们同时用到了观察法(观察电流表的示数)、转换法(把电阻的大小转换成电流的大小、通过研究电流的大小来得到电阻的大小)、归纳法(将分别得出的电阻与材料、长度、横截面积、温度有关的信息归纳在一起)、和控制变量法(在研究电阻与长度有关时控制了材料、横截面积)等方法.可见,物理的科学方法题无法细致的分类.只能根据题意看题中强调的是哪一过程,来分析解答.下面我们将一些重要的实验方法进行一下分析.一、 控制变量法物理学研究中常用的一种研究方法——控制变量法.所谓控制变量法,就是在研究和解决问题的过程中,对影响事物变化规律的因素或条件加以人为控制,使其中的一些条件按照特定的要求发生变化或不发生变化,最终解决所研究的问题.可以说任何物理实验,都要按照实验目的、原理和方法控制某些条件来研究.如:导体中的电流与导体两端的电压以及导体的电阻都有关系,中学物理实验难以同时研究电流与导体两端的电压和导体的电阻的关系,而是在分别控制导体的电阻与导体两端的电压不变的情况下,研究导体中的电流跟这段导体两端的电压和导体的电阻的关系,分别得出实验结论.通过学生实验,让学生在动脑与动手,理论与实践的结合上找到这“两个关系”,最终得出欧姆定律I=U/R.为了研究导体的电阻大小与哪些因素有关, 控制导体的长度和材料不变,研究导体电阻与横截面积的关系.为了研究滑动摩擦力的大小跟哪些因素有关,保证压力相同时,研究滑动摩擦力与接触面粗糙程度的关系.
利用控制变量法研究物理问题,注重了知识的形成过程,有利于扭转重结论、轻过程的倾向,有助于培养学生的科学素养,使学生学会学习.中学物理课本中,蒸发的快慢与哪些因素的有关;滑动摩擦力的大小与哪些因素有关;液体压强与哪些因素有关;研究浮力大小与哪些因素有关;压力的作用效果与哪些因素有关;滑轮组的机械效率与哪些因素有关;动能、重力势能大小与哪些因素有关;导体的电阻与哪些因素有关;研究电阻一定、电流与电压的关系;研究电压一定、电流和电阻的关系;研究电流做功的多少跟哪些因素有关系;电流的热效应与哪些因素有关;研究电磁铁的磁性强弱跟哪些因素有关系等均应用了这种科学方法.二、转换法一些比较抽象的看不见、摸不着的物质的微观现象,要研究它们的运动等规律,使之转化为学生熟知的看得见、摸得着的宏观现象来认识它们.这种方法在科学上叫做“转换法”. 如:分子的运动,电流的存在等,如:空气看不见、摸不到,我们可以根据空气流动(风)所产生的作用来认识它;分子看不见、摸不到,不好研究,可以通过研究墨水的扩散现象去认识它;电流看不见、摸不到,判断电路中是否有电流时,我们可以根据电流产生的效应来认识它;磁场看不见、摸不到,我们可以根据它产生的作用来认识它.再如,有一些物理量不容易测得,我们可以根据定义式转换成直接测得的物理量.在由其定义式计算出其值,如电功率(我们无法直接测出电功率只能通过P=UI利用电流表、电压表测出U、I计算得出P)、电阻、密度等. 中学物理课本中,测不规则小石块的体积我们转换成测排开水的体积我们测曲线的长短时转换成细棉线的长度在测量滑动摩擦力时转换成测拉力的大小大气压强的测量(无法直接测出大气压的值,转换成求被大气压压起的水银柱的压强)测硬币的直径时转换成测刻度尺的长度测液体压强(我们将液体的压强转换成我们能看到的液柱高度差的变化)通过电流的效应来判断电流的存在(我们无法直接看到电流),通过磁场的效应来证明磁场的存在(我们无法直接看到磁场),研究物体内能与温度的关系(我们无法直接感知内能的变化,只能转换成测出温度的改变来说明内能的变化);在研究电热与电流、电阻的因素时,我们将电热的多少转换成液柱上升的高度.在我们研究电功与什么因素有关的时候,我们将电功的多少转换成砝码上升的高度.密度、功率、电功率、电阻、压强(大气压强)等物理量都是利用转换法测得的.在我们回答动能与什么因素有关时,我们回答说小球在平面上滑动的越远则动能越大,就是将动能的大小转换成了小球运动的远近.以上列举的这些问题均应用了这种科学方法.例:1、分子运动看不见、摸不着,不好研究,但科学家可以通过研究墨水的扩散现象去认识它,这种方法在科学上叫做“转换法’.下面是小明同学在学习中遇到的四个研究实例,其中采取的方法与刚才研究分子运动的方法相同的是( )
A.利用磁感应线去研究磁场问题
B.电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定
C.研究电流与电压、电阻关系时,先使电阻不变去研究电流与电压的关系:然后再让电压不变去研究电流与电阻的关系
D.研究电流时,将它比做水流
解析:B.三、放大法在有些实验中,实验的现象我们是能看到的,但是不容易观察.我们就将产生的效果进行放大再进行研究. 比如音*的振动很不容易观察,所以我们利用小泡沫球将其现象放大.观察压力对玻璃瓶的作用效果时我们将玻璃瓶密闭,装水,插上一个小玻璃管,将玻璃瓶的形变引起的液面变化放大成小玻璃管液面的变化.四、积累法在测量微小量的时候,我们常常将微小的量积累成一个比较大的量、比如在测量一张纸的厚度的时候,我们先测量100张纸的厚度在将结果除以100,这样使测量的结果更接近真实的值就是采取的积累法.要测量出一张邮票的质量、测量出心跳一下的时间,测量出导线的直径,均可用积累法来完成.五、类比法在我们学习一些十分抽象的,看不见、摸不着的物理量时,由于不易理解我们就拿出一个大家能看见的与之很相似的量来进行对照学习.如电流的形成、电压的作用通过以熟悉的水流的形成,水压使水管中形成了水流进行类比,从而得出电压是形成电流的原因的结论.学生在学习电学知识时,在老师的引导下,联想到:水压迫使水沿着一定的方向流动,使水管中形成了水流;类似的,电压迫使自由电荷做定向移动使电路中形成了电流.抽水机是提供水压的装置;类似的,电源是提供电压的装置.水流通过涡轮时,消耗水能转化为涡轮的动能;类似的,电流通过电灯时,消耗的电能转化为内能.我们学习分子动能的时候与物体的动能进行类比;学习功率时,将功率和速度进行类比.例: 1、某同学在学习电学知识时,在老师的引导下,联想力学实验现象,进行比较并找出了一些相类似的规律,其中不准确的是( ) A.水压使水管中形成水流;类似地,电压使电路中形成电流
B.抽水机是提供水压的装置;类似地,电源是提供电压的装置C.抽水机工作时消耗水能;类似地,电灯发光时消耗电能D.水流通过涡轮时,消耗水能转化为涡轮的动能:类似地,电流通过电灯时,消耗电能转化为内能和光能 解析:C
通过类比,用大家熟悉的水流、水压的直观认识,使得看不见、摸不着的抽象的电流、电压等知识跃然纸面,栩栩如生.六、理想化物理模型:实际现象和过程一般都十分复杂的,涉及到众多的因素,采用模型方法对学习和研究起到了简化和纯化的作用.但简化后的模型一定要表现出原型所反映出的特点、知识.模型法有较大的灵活性.每种模型有限定的运用条件和运用的范围.中学课本中很多知识都应用了这个方法,比如有:液柱、(比如在求液体对竖直的容器底的压强的时候,我们就选了一个液柱作为研究的对象简化,简化后的模型依然保留原来的特点和知识)光线、(在我们学习光线的时候光线是一束的,而且是看不见的,我们使用一条看的见的实线来表示就是将问题简化,利用了理想化模型)液片、(在我们研究连通器的特点,求大气压时我们都在某一位置取了一个液面,研究该液面所受到的压强和压力,也是将问题简化,利用理想化模型法)光沿直线传播;(在我们学习中我们知道真正的空气是各处都不均匀的,比如越往上空气越稀薄,在比如因为空气各处不均匀形成了风,而在光是沿直线传播一节中我们将问题简化,只取一个简单的模型,一条光线在均匀的介质中传播)匀速直线运动;(生活中很少有一个物体真正的做匀速直线运动,在我们研究问题的时候匀速直线运动只是一个模型)磁感线(磁感线是不存在的一条线,但是我们为了便于研究磁场我们人为的引入了一条线,将我们研究的问题简化.)例:1、在我们学习物理知识的过程中,运用物理模型进行研究的是( )
A、建立速度概念 B、研究光的直线传播 C、用磁感应线描述磁场 D、分析物体的质量 解析:B、C.七、科学推理法:当你在对观察到的现象进行解释的时候就是在进行推理,或说是在做出推论,例如当你家的狗在叫的时,你可能会推想有人在你家的门外,要做出这一推论,你就需要把现象(狗的叫声)与以往的知识经验,即有陌生人来时狗会叫结合起来.这样才能得出符合逻辑的答案如:在进行牛顿第一定律的实验时,当我们把物体在越光滑的平面运动的就越远的知识结合起来我们就推理出,如果平面绝对光滑物体将永远做匀速直线运动.如:在做真空不能传声的实验时,当我们发现空气越少,传出的声音就越小时,我们就推理出,真空是不能传声的.八、等效替代法:比如在研究合力时,一个力与两个力使弹簧发生的形变是等效的,那么这一个力就替代了两个力所以叫等效替代法,在研究串、并联电路的总电阻时,也用到了这样的方法.在平面镜成像的实验中我们利用两个完全相同的蜡烛,验证物与像的大小相同,因为我们无法真正的测出物与像的大小关系,所以我们利用了一个完全相同的另一根蜡烛来等效替代物体的大小.九、归纳法:是通过样本信息来推断总体信息的技术.要做出正确的归纳,就要从总体中选出的样本,这个样本必须足够大而且具有代表性.在我们买葡萄的时候就用了归纳法,我们往往先尝一尝,如果都很甜,就归纳出所有的葡萄都很甜的,就放心的买上一大串.比如铜能导电,银能导电,锌能导电则归纳出金属能导电.在实验中为了验证一个物理规律或定理,反复的通过实验来验证他的正确性然后归纳、分析整理得出正确的结论.在阿基米德原理中,为了验证F浮=G排,我们分别利用石块和木块做了两次实验,归纳、整理均得出F浮=G排,于是我们验证了阿基米德原理的正确性,使用的正是这种方法.在验证杠杆的平衡条件中,我们反复做了三次实验来验证F1×L1=F2×L2也是利用这种方法.一切发声体都在振动结论的得出(在实验中对多种结论进行分析整理并得出最后结论时),都要用到这一方法.在验证导体的电阻与什么因素有关的时候,经过多次的实验我们得出了导体的电阻与长度,材料,横截面积,温度有关,也是将实验的结论整理到一起后归纳总结得出的.在所有的科学实验和原理的得出中,我们几乎都用到了这种方法.十、比较法(对比法)当你想寻找两件事物的相同和不同之处,就需要用到比较法,可以进行比较的事物和物理量很多,对不同或有联系的两个对象进行比较,我们主要从中寻找它们的不同点和相同点,从而进一步揭示事物的本质属性.如,比较蒸发和沸腾的异同点.如,比较汽油机和柴油机的异同点 如,电动机和热机 如,电压表和电流表的使用利用比较法不仅加深了对它们的理解和区别,使同学们很快地记住它们,还能发现一些有趣的东西.十一、分类法把固体分为晶体和非晶体两类、导体和绝缘体.十二、观察法物理是一门以观察、实验为基础的学科.人们的许多物理知识是通过观察和实验认真地总结和思索得来的.着名的马德堡半球实验,证明了大气压强的存在.在教学中,可以根据教材中的实验,如长度、时间、温度、质量、密度、力、电流、电压等物理量的测量实验中,要求学生认真细致的观察,进行规范的实验操作,得到准确的实验结果,养成良好的实验习惯,培养实验技能.大部分均利用的是观察法.十三、比值定义法:例:密度、压强、功率、电流等概念公式采取的都是这样的方法.十四、多因式乘积法:例:电功、电热、热量等概念公式采取的都是这样的方法. 十五、逆向思维法例:由电生磁想到磁生电以上这些方法,还只是在初中物理的学习中会遇到和使用的一些科学方法,列举出来,希望能够给大家一些帮助.也希望大家都来关注这方面的问题,多了解和掌握一些科学方法,灵活运用,以便于指导我们的学习,工作和生活.

⑼ 物理常用教学方法

(一)讲授法

教师通过语言,辅以演示通过建立物理情景,描述物理现象,阐述物理规律等,系统的向学生传授物理知识。它是物理教学中最基本、最常用的教学方法。讲授法一般包括讲述、讲解等方法。

讲述法:多用于对物理现象、物理规律、物理过程的描述,对所要掌握的物理知识建立一个清晰的物理情景,便于学生理解和掌握。重在“述”。

讲解法:运用说明、分析、论证、概括等手段讲授物理知识,以揭示物理概念、物理规律的内在联系。重在“解”。
(二)实验法

物理学以实验为基础,大部分原理规律都来自实验,实验方法是物理学习的基本方法。应用实验法,不仅可以使学生加深对概念、规律、原理、现象等知识的理解,还有利于培养他们的探索研究和创造精神,以及严谨的科学态度。

(三)讨论法

这是指在课堂教学中师生围绕一定的问题共同进行讨论的方法。它可以较好的调动学生学习的积极性和主动性,培养学生发现问题、提出问题、分析问题和解决问题的能力。
(四)谈话法

通过师生“问题性对话”活动传递和交流信息,能够集中学生注意力,调动学生积极性,对培养学生语言表达能力和思维能力有一定作用。

谈话法的基本要求详见问答技能。

(五)自学法

学生在教师的指导下,通过自己阅读教材或有关材料主动获取知识。自学不单单要看懂教材,还应该包括通过阅读,可以做实验,计算问题,解释现象和灵活应用知识等

⑽ 初中物理学到的物理探究方法有哪些

初中物理学到的物理探究方法有哪些

初中物理学到的物理探究方法:
1、观察法2、实验法3、比较法4、类比法5、等效法6、转换法7、控制变数法6、模型法8、科学推理法9、影象法。

我记得最重要的一个是:控制变数法。这个高考考过,谢谢

初中物理探究方法

研究物理的科学方法有许多,经常用到的有观察法、实验法、比较法、类比法、等效法、转换法、控制变数法、模型法、科学推理法等。研究某些物理知识或物理规律,往往要同时用到几种研究方法。如在研究电阻的大小与哪些因素有关时,我们同时用到了观察法(观察电流表的示数)、转换法(把电阻的大小转换成电流的大小、通过研究电流的大小来得到电阻的大小)、归纳法(将分别得出的电阻与材料、长度、横截面积、温度有关的资讯归纳在一起)、和控制变数法(在研究电阻与长度有关时控制了材料、横截面积)等方法。可见,物理的科学方法题无法细致的分类。只能根据题意看题中强调的是哪一过程,来分析解答。下面我们将一些重要的实验方法进行一下分析。
一、控制变数法
物理学研究中常用的一种研究方法——控制变数法。所谓控制变数法,就是在研究和解决问题的过程中,对影响事物变化规律的因素或条件加以人为控制,使其中的一些条件按照特定的要求发生变化或不发生变化,最终解决所研究的问题。
可以说任何物理实验,都要按照实验目的、原理和方法控制某些条件来研究。
如:导体中的电流与导体两端的电压以及导体的电阻都有关系,中学物理实验难以同时研究电流与导体两端的电压和导体的电阻的关系,而是在分别控制导体的电阻与导体两端的电压不变的情况下,研究导体中的电流跟这段导体两端的电压和导体的电阻的关系,分别得出实验结论。通过学生实验,让学生在动脑与动手,理论与实践的结合上找到这“两个关系”,最终得出欧姆定律I=U/R。
为了研究导体的电阻大小与哪些因素有关, 控制导体的长度和材料不变,研究导体电阻与横截面积的关系。
为了研究滑动摩擦力的大小跟哪些因素有关,保证压力相同时,研究滑动摩擦力与接触面粗糙程度的关系。
利用控制变数法研究物理问题,注重了知识的形成过程,有利于扭转重结论、轻过程的倾向,有助于培养学生的科学素养,使学生学会学习。
中学物理课本中,蒸发的快慢与哪些因素的有关;滑动摩擦力的大小与哪些因素有关;液体压强与哪些因素有关;研究浮力大小与哪些因素有关;压力的作用效果与哪些因素有关;滑轮组的机械效率与哪些因素有关;动能、重力势能大小与哪些因素有关;导体的电阻与哪些因素有关;研究电阻一定、电流与电压的关系;研究电压一定、电流和电阻的关系;研究电流做功的多少跟哪些因素有关系;电流的热效应与哪些因素有关;研究电磁铁的磁性强弱跟哪些因素有关系;研究影响力的作用效果的因素;研究琴弦发声的音调与弦粗细、松紧、长短的关系;研究物体吸热与物质种类、质量、温度的关系;研究通电导体在磁场中的受力与哪些因素有关;研究影响感应电流的方向因素等均应用了这种科学方法。
二、转换法
一些比较抽象的看不见、摸不着的物质的微观现象,要研究它们的运动等规律,使之转化为学生熟知的看得见、摸得着的巨集观现象来认识它们。这种方法在科学上叫做“转换法”。 如:分子的运动,电流的存在等,
如:空气看不见、摸不到,我们可以根据空气流动(风)所产生的作用来认识它;分子看不见、摸不到,不好研究,可以通过研究墨水的扩散现象去认识它;电流看不见、摸不到,判断电路中是否有电流时,我们可以根据电流产生的效应来认识它;磁场看不见、摸不到,我们可以根据它产生的作用来认识它。
再如,有一些物理量不容易测得,我们可以根据定义式转换成直接测得的物理量。在由其定义式计算出其值,如电功率(我们无法直接测出电功率只能通过P=UI利用电流表、电压表测出U、I计算得出P)、电阻、密度等。
中学物理课本中,
测不规则小石块的体积我们转换成测排开水的体积(这里也有等效思维)
我们测曲线的长短时转换成细棉线的长度
在测量滑动摩擦力时转换成测拉力的大小
大气压强的测量(无法直接测出大气压的值,转换成求被大气压压起的水银柱的压强)测硬币的直径时转换成测刻度尺的长度
测液体压强(我们将液体的压强转换成我们能看到的液柱高度差的变化)
通过电流的效应来判断电流的存在(我们无法直接看到电流),
通过磁场的效应来证明磁场的存在(我们无法直接看到磁场),
研究物体内能与温度的关系(我们无法直接感知内能的变化,只能转换成测出温度的改变来说明内能的变化);
在研究电热与电流、电阻的因素时,我们将电热的多少转换成液柱上升的高度。
在我们研究电功与什么因素有关的时候,我们将电功的多少转换成砝码上升的高度。
密度、功率、电功率、电阻、压强(大气压强)等物理量都是利用转换法测得的。
物体发生形变或运动状态改变可证明此物受到力的作用;苹果落地可证明重力存在;马得堡半球实验可证明大气压的存在;雾的出现可证明空气中含有水蒸气;影的形成可以证明光沿直线传播;月食现象可证明月亮不是光源;奥斯特实验可证明电流周围有磁场;指南针指南北可证明地磁场的存在;手机能打电话可证明电磁波的存在;扩散现象可证明分子做无规则运动;铅块实验可证明分子间引力的存在;运动的物体能对外做功可证明它具有能。
在我们回答动能与什么因素有关时,我们回答说小球在平面上滑动的越远则动能越大,就是将动能的大小转换成了小球运动的远近。以上列举的这些问题均应用了这种科学方法。
例:1、分子运动看不见、摸不着,不好研究,但科学家可以通过研究墨水的扩散现象去认识它,这种方法在科学上叫做“转换法’。下面是小明同学在学习中遇到的四个研究例项,其中采取的方法与刚才研究分子运动的方法相同的是( )
A.利用磁感应线去研究磁场问题
B.电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定
C.研究电流与电压、电阻关系时,先使电阻不变去研究电流与电压的关系:然后再让电压不变去研究电流与电阻的关系
D.研究电流时,将它比做水流
三、放大法
在有些实验中,实验的现象我们是能看到的,但是不容易观察。我们就将产生的效果进行放大再进行研究。 比如音叉的振动很不容易观察,所以我们利用小泡沫球将其现象放大。观察压力对玻璃瓶的作用效果时我们将玻璃瓶密闭,装水,插上一个小玻璃管,将玻璃瓶的形变引起的液面变化放大成小玻璃管液面的变化。严格说放大法也属于转换法.
四、积累法
在测量微小量的时候,我们常常将微小的量积累成一个比较大的量、比如在测量一张纸的厚度的时候,我们先测量100张纸的厚度在将结果除以100,这样使测量的结果更接近真实的值就是采取的积累法。
要测量出一张邮票的质量、测量出心跳一下的时间,测量出导线的直径,均可用积累法来完成。严格地说积累法也属于转换法。
五、类比法
在我们学习一些十分抽象的,看不见、摸不着的物理量时,由于不易理解我们就拿出一个大家能看见的与之很相似的量来进行对照学习。如电流的形成、电压的作用通过以熟悉的水流的形成,水压使水管中形成了水流进行类比,从而得出电压是形成电流的原因的结论。学生在学习电学知识时,在老师的引导下,联想到:水压迫使水沿着一定的方向流动,使水管中形成了水流;类似的,电压迫使自由电荷做定向移动使电路中形成了电流。抽水机是提供水压的装置;类似的,电源是提供电压的装置。水流通过涡轮时,消耗水能转化为涡轮的动能;类似的,电流通过电灯时,消耗的电能转化为内能。
我们学习分子动能的时候与物体的动能进行类比;学习功率时,将功率和速度进行类比。
例: 1、某同学在学习电学知识时,在老师的引导下,联想力学实验现象,进行比较并找出了一些相类似的规律,其中不准确的是( )
A.水压使水管中形成水流;类似地,电压使电路中形成电流
B.抽水机是提供水压的装置;类似地,电源是提供电压的装置
C.抽水机工作时消耗水能;类似地,电灯发光时消耗电能
D.水流通过涡轮时,消耗水能转化为涡轮的动能:类似地,电流通过电灯时,消耗电能转化为内能和光能
通过类比,用大家熟悉的水流、水压的直观认识,使得看不见、摸不着的抽象的电流、电压等知识跃然纸面,栩栩如生。
六、理想化物理模型:
实际现象和过程一般都十分复杂的,涉及到众多的因素,采用模型方法对学习和研究起到了简化和纯化的作用。但简化后的模型一定要表现出原型所反映出的特点、知识。模型法有较大的灵活性。每种模型有限定的运用条件和运用的范围。
中学课本中很多知识都应用了这个方法,比如有:
液柱、(比如在求液体对竖直的容器底的压强的时候,我们就选了一个液柱作为研究的物件简化,简化后的模型依然保留原来的特点和知识)
光线、(在我们学习光线的时候光线是一束的,而且是看不见的,我们使用一条看的见的实线来表示就是将问题简化,利用了理想化模型)
液片、(在我们研究连通器的特点,求大气压时我们都在某一位置取了一个液面,研究该液面所受到的压强和压力,也是将问题简化,利用理想化模型法)
光沿直线传播;(在我们学习中我们知道真正的空气是各处都不均匀的,比如越往上空气越稀薄,在比如因为空气各处不均匀形成了风,而在光是沿直线传播一节中我们将问题简化,只取一个简单的模型,一条光线在均匀的介质中传播)
匀速直线运动;(生活中很少有一个物体真正的做匀速直线运动,在我们研究问题的时候匀速直线运动只是一个模型)
磁感线(磁感线是不存在的一条线,但是我们为了便于研究磁场我们人为的引入了一条线,将我们研究的问题简化。)
光滑平面(研究力学时常用到光滑平面,即物体表面没有摩擦,但是真正没有摩擦的表面是没有的.为了问题的简化就把很小的摩擦不考虑就假设物体表面光滑)
例:1、在我们学习物理知识的过程中,运用物理模型进行研究的是( )多项选择
A、建立速度概念 B、研究光的直线传播
C、用磁感应线描述磁场 D、分析物体的质量
七、科学推理法:
当你在对观察到的现象进行解释的时候就是在进行推理,或说是在做出推论,例如当你家的狗在叫的时,你可能会推想有人在你家的门外,要做出这一推论,你就需要把现象(狗的叫声)与以往的知识经验,即有陌生人来时狗会叫结合起来。这样才能得出符合逻辑的答案
如:在进行牛顿第一定律的实验时,当我们把物体在越光滑的平面运动的就越远的知识结合起来我们就推理出,如果平面绝对光滑物体将永远做匀速直线运动。
如:在做真空不能传声的实验时,当我们发现空气越少,传出的声音就越小时,我们就推理出,真空是不能传声的。
八、等效替代法:
比如在研究合力时,一个力与两个力使弹簧发生的形变是等效的,那么这一个力就替代了两个力所以叫等效替代法,在研究串、并联电路的总电阻时,也用到了这样的方法。在平面镜成像的实验中我们利用两个完全相同的蜡烛,验证物与像的大小相同,因为我们无法真正的测出物与像的大小关系,所以我们利用了一个完全相同的另一根蜡烛来等效替代物体的大小。
九、归纳法:
是通过样本资讯来推断总体资讯的技术。要做出正确的归纳,就要从总体中选出的样本,这个样本必须足够大而且具有代表性。在我们买葡萄的时候就用了归纳法,我们往往先尝一尝,如果都很甜,就归纳出所有的葡萄都很甜的,就放心的买上一大串。
比如铜能导电,银能导电,锌能导电则归纳出金属能导电。在实验中为了验证一个物理规律或定理,反复的通过实验来验证他的正确性然后归纳、分析整理得出正确的结论。
在阿基米德原理中,为了验证F浮=G排,我们分别利用石块和木块做了两次实验,归纳、整理均得出F浮=G排,于是我们验证了阿基米德原理的正确性,使用的正是这种方法。
在验证杠杆的平衡条件中,我们反复做了三次实验来验证F1×L1=F2×L2也是利用这种方法。
一切发声体都在振动结论的得出(在实验中对多种结论进行分析整理并得出最后结论时),都要用到这一方法。
在验证导体的电阻与什么因素有关的时候,经过多次的实验我们得出了导体的电阻与长度,材料,横截面积,温度有关,也是将实验的结论整理到一起后归纳总结得出的。
在所有的科学实验和原理的得出中,我们几乎都用到了这种方法。运用归纳法得出的结论更具有普遍性。运用这种思维方法时实验一定要改变条件多做几次,否则得出的结论可能是特殊结论,而不具备普遍性。
十、比较法(对比法)
当你想寻找两件事物的相同和不同之处,就需要用到比较法,可以进行比较的事物和物理量很多,对不同或有联络的两个物件进行比较,我们主要从中寻找它们的不同点和相同点,从而进一步揭示事物的本质属性。
如,比较蒸发和沸腾的异同点。如,比较汽油机和柴油机的异同点
如,电动机和热机。如,压表和电流表的使用
利用比较法不仅加深了对它们的理解和区别,使同学们很快地记住它们,还能发现一些有趣的东西。
十一、分类法
把固体分为晶体和非晶体两类、导体和绝缘体。
十二、观察法
物理是一门以观察、实验为基础的学科。人们的许多物理知识是通过观察和实验认真地总结和思索得来的。着名的马德堡半球实验,证明了大气压强的存在。在教学中,可以根据教材中的实验,如长度、时间、温度、质量、密度、力、电流、电压等物理量的测量实验中,要求学生认真细致的观察,进行规范的实验操作,得到准确的实验结果,养成良好的实验习惯,培养实验技能。大部分均利用的是观察法。
十三、比值定义法:
例:密度、压强、功率、电流等概念公式采取的都是这样的方法。
十四、多因式乘积法:
例:电功、电热、热量等概念公式采取的都是这样的方法。
十五、逆向思维法
例:由电生磁想到磁生电
以上这些方法,还只是在初中物理的学习中会遇到和使用的一些科学方法,列举出来,希望能够给大家一些帮助。也希望大家都来关注这方面的问题,多了解和掌握一些科学方法,灵活运用,以便于指导我们的学习,工作和生活。

初中物理的实验探究方法有哪些,怎样区分呢?

实验方法还有转换法、放大法、归纳推理法等
研究问题的方法还有类比法、理想模型法等。
如焦耳定律实验中将产生热量的多少转换为没有的温度

初中物理学的学习方法有哪些

物理:
主要是对概念和公式的理解。对于概念,一定要好好把握,多做选择题对你对概念的理解把握有好处。但你做题时一定要认真对待每一题,弄懂每个选项。计算题就是准确的运用公式了。所以要对公式的意义特别了解。多练习,其中的题其实雷同很多。
总之,是个积累的过程,你了解的越多,学习就越好,所以多记忆,选择自己的方法。
祝学习成功!

初中物理学中的类比法有哪些

类比法 在认识一些物理概念时,我们常将它与生活中熟悉且有共同特点的现象进行类比,以帮助我们理解它。如认识电流大小时,用水流进行类比。认识电压时,用水压进行类比。

有什么物理学的探究方法?

这有很多啊!
初中物理教材中,潜存着许多物理学的研究方法,如“研究电流产生的热量与什么因素有关”“研究决定电阻大小的因素”中的控制变数法;“研究电压”中的类比法;“研究物体不受力,将会怎样”中的推理法;“研究力的概念”中的归纳法。另外,实验、观察、假说、比较、尝试、模型、理想化、抓主要因素等,也都是物理常用的研究方法。
在高中物理课程中,科学探究既是学生的学习目标,又是一种重要的教学方式。作为目标,基础教育阶段的科学探究是一种精心设计的,为培养学生的科学探究能力服务的教学活动。作为一种重要的教学方式,要求学生经历与科学家进行科学探究相似的过程,深入理解、掌握物理学的知识与技能,体验科学探究的乐趣,学习科学家的科学探究方法,领悟科学的思想和精神。
验证性实验与探究性实验有什么不同?
传统的物理课程通常通过验证性实验促进学生对物理学的理解,培养学生的物理实验能力。现在,高中物理新课程强调培养学生科学探究及物理实验的能力,强调通过探究性教学促进学生对物理学的理解。验证性实验与探究性实验作为两种不同的教学模式,主要有以下几点不同。
验证性实验是一种步骤驱使的教学活动,探究性实验是一种问题驱使的教学活动。通常,验证性实验的实验器材、实验方案通常由教科书、实验手册或教师给定、提供,在实验过程中,学生按事先制定的步骤进行实验,收集资料。学生在实验过程中“按部就班”地操作,其智力活动水平相对不高。从教学设计的角度看,验证性实验更强调行为与规则的统一。而探究性实验需要学生自己设计并进行实验,寻求答案、发现规律。例如,探究怎样使水“火箭”飞得更高或更远,学生将会面临变数的选择,变数的控制以及设计、制作或选定实验器材等诸多问题。不同的变数对应着不同的实验方案,也对应着不同的问题解决技巧。学生智力活动的水平相对较高,更强调独立的思考与行为。
验证性实验以检验已知概念或关系为主要目标,探究性实验以发现新概念或关系为重点。在验证性实验中,学生活动的中心是验证教学中已经讲述过的概念、关系或规律,例如验证牛顿第二定律。实验的结果是已知的,实验的目的是通过具体实验,促进学生进一步理解这一比较抽象的物理规律。从活动过程学生的思维特征看,验证性实验更多地体现出从抽象到具体的思维过程。在探究性实验中,学生活动中心探究未知的问题,并从中发现新的概念、关系或规律。例如,探究“火箭”装水的多少与飞行高度的关系,学生需要通过具体的实验结果,得出装多少水“火箭”能飞得最高的结论或总结出“火箭”装水的多少与飞行高度的关系。在探究性活动过程中,学生的思维更多地体现出从具体到抽象的过程。
验证性实验有助于促进学生掌握陈述性知识,探究性实验有助于促进学生掌握程式性知识。在验证性实验中,实验目的通常是促进学生对科学概念、规律这样的程式性知识的掌握与理解。与验证性实验不同,探究性实验学生则需要自己识别、区别、控制与探究问题有关的变数,并制订实验方案、选择实验器材、收集实验资料,并通过分析与论证得出结论。在这里,结论的正确与否更多地依赖于实验的过程与方法是否正确、可靠,而不是来自于书本知识。因此,探究性实验更能发展学生怎样做实验这样的程式性知识。
验证性实验的结论具有较大的确定性,探究性实验的结论具有较大的不确定性。验证性实验从实验原理到设计,从变数的选择到控制,从器材的制作到选择等都经过教材的编写者、实验器材的开发者以及教师等人员的精心设计、制作与准备,以确保学生的实验结果与所需验证的规律达到较好的一致性。验证性实验通常很少让学生面对并处理错误的、不确定的问题和概念。探究性实验则不同,探究的过程本身就是一个面临不确定结果的探索过程,也许探究活动的开始环节,如学生的猜想与假设,就决定实验不可能得到预期的结果。因此,探究性实验允许学生从错误和失败中学习,甚至将问题或错误视为一种有意义的教学资源,培养学生对科学的深入理解。

初中物理学生有哪些能力

初中物理学过哪些力

有什么启示可以引入流量?
必须能驱散黑暗中的阴霾,迎来光明。

痰可我30岁了,什么都不懂.
姑且不看三个人未来的命运如何,单是看到第三个人工作的态度就十分令人钦佩。肚克

阅读全文

与物理课堂教学有哪些研究方法相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:702
乙酸乙酯化学式怎么算 浏览:1370
沈阳初中的数学是什么版本的 浏览:1315
华为手机家人共享如何查看地理位置 浏览:1008
一氧化碳还原氧化铝化学方程式怎么配平 浏览:845
数学c什么意思是什么意思是什么 浏览:1367
中考初中地理如何补 浏览:1257
360浏览器历史在哪里下载迅雷下载 浏览:669
数学奥数卡怎么办 浏览:1347
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1020
大学物理实验干什么用的到 浏览:1446
二年级上册数学框框怎么填 浏览:1657
西安瑞禧生物科技有限公司怎么样 浏览:821
武大的分析化学怎么样 浏览:1210
ige电化学发光偏高怎么办 浏览:1299
学而思初中英语和语文怎么样 浏览:1603
下列哪个水飞蓟素化学结构 浏览:1386
化学理学哪些专业好 浏览:1450
数学中的棱的意思是什么 浏览:1015