A. 有哪些数学方法在初中物理中的应用
初中物理的应用方法
研究物理的科学方法有许多,经常用到的有观察法、实验法、比较法、类比法、等效法、转换法、控制变量法、模型法、科学推理法等。研究某些物理知识或物理规律,往往要同时用到几种研究方法。
B. 物理思想方法总结
总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它能够使头脑更加清醒,目标更加明确,快快来写一份总结吧。总结怎么写才不会流于形式呢?以下是我整理的物理思想方法总结,仅供参考,大家一起来看看吧。
一、逆向思维法
逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果.
二、对称法
对称性就是事物在变化时存在的某种不变性.自然界和自然科学中,普遍存在着优美和谐的对称现象.利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径.
三、图象法
图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点.运用物理图象处理物理问题是识图能力和作图能力的综合体现.它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效.
四、假设法
假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立.求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径.在分析弹力或摩擦力的有无及方向时,常利用该法.
五、整体、隔离法
物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件.这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法.
六、图解法
图解法是依据题意作出图形来确定正确答案的方法.它既简单明了、又形象直观,用于定性分析某些物理问题时,可得到事半功倍的效果.特别是在解决物体受三个力(其中一个力大小、方向不变,另一个力方向不变)的平衡问题时,常应用此法.
七、转换法
有些物理问题,由于运动过程复杂或难以进行受力分析,造成解答困难.此种情况应根据运动的相对性或牛顿第三定律转换参考系或研究对象,即所谓的转换法.应用此法,可使问题化难为易、化繁为简,使解答过程一目了然.
八、程序法
所谓程序法,是按时间的先后顺序对题目给出的物理过程进行分析,正确划分出不同的过程,对每一过程,具体分析出其速度、位移、时间的关系,然后利用各过程的具体特点列方程解题.利用程序法解题,关键是正确选择研究对象和物理过程,还要注意两点:一是注意速度关系,即第1个过程的末速度是第二个过程的初速度;二是位移关系,即各段位移之和等于总位移.
九、极端法
有些物理问题,由于物理现象涉及的因素较多,过程变化复杂,同学们往往难以洞察其变化规律并做出迅速判断.但如果把问题推到极端状态下或特殊状态下进行分析,问题会立刻变得明朗直观,这种解题方法我们称之为极限思维法,也称为极端法.
运用极限思维思想解决物理问题,关键是考虑将问题推向什么极端,即应选择好变量,所选择的变量要在变化过程中存在极值或临界值,然后从极端状态出发分析问题的变化规律,从而解决问题.
有些问题直接计算时可能非常繁琐,若取一个符合物理规律的特殊值代入,会快速准确而灵活地做出判断,这种方法尤其适用于选择题.如果选择题各选项具有可参考性或相互排斥性,运用极端法更容易选出正确答案,这更加突出了极端法的优势.加强这方面的训练,有利于同学们发散性思维和创造性思维的培养.
十、极值法
常见的极值问题有两类:一类是直接指明某物理量有极值而要求其极值;另一类则是通过求出某物理量的极值,进而以此作为依据解出与之相关的问题.
物理极值问题的两种典型解法.
(1)解法一是根据问题所给的物理现象涉及的物理概念和规律进行分析,明确题中的物理量是在什么条件下取极值,或在出现极值时有何物理特征,然后根据这些条件或特征去寻找极值,这种方法更为突出了问题的物理本质,这种解法称之为解极值问题的物理方法.
(2)解法二是由物理问题所遵循的物理规律建立方程,然后根据这些方程进行数学推演,在推演中利用数学中已有的有关极值求法的结论而得到所求的极值,这种方法较侧重于数学的推演,这种方法称之为解极值问题的物理—数学方法.
此类极值问题可用多种方法求解:
①算术—几何平均数法,即
a.如果两变数之和为一定值,则当这两个数相等时,它们的乘积取极大值.
b.如果两变数的积为一定值,则当这两个数相等时,它们的和取极小值.
②利用二次函数判别式求极值一元二次方程ax2+bx+c=0(a≠0)的根的判别式,具有以下性质:
Δ=b2-4ac0——方程有两实数解;
Δ=b2-4ac=0——方程有一实数解;
Δ=b2-4ac0——方程无实数解.
利用上述性质,就可以求出能化为ax2+bx+c=0形式的函数的极值.
十一、估算法
物理估算,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对物理量的数量级或物理量的取值范围,进行大致的推算.物理估算是一种重要的方法.有的物理问题,在符合精确度的前提下可以用近似的方法简捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确的计算.在这些情况下,估算就成为一种科学而又有实用价值的特殊方法.
十二、守恒思想
能量守恒、机械能守恒、质量守恒、电荷守恒等守恒定律都集中地反映了自然界所存在的一种本质性的规律——“恒”.学习物理知识是为了探索自然界的物理规律,那么什么是自然界的物理规律?在千变万化的物理现象中,那个保持不变的“东西”才是决定事物变化发展的本质因素.
从另一个角度看,正是由于物质世界存在着大量的守恒现象和守恒规律,才为我们处理物理问题提供了守恒的思想和方法.能量守恒、机械能守恒等守恒定律就是我们处理高中物理问题的主要工具,分析物理现象中能量、机械能的转移和转换是解决物理问题的主要思路.在变化复杂的物理过程中,把握住不变的因素,才是解决问题的关键所在。
1、等效转化思想
这是一种很重要的思想。通过它,把个体看成整体,可以省去不少麻烦,把整体化为个体,分别研究,有时更利于解决问题,这是整体与个体的相互转化;根据物理中的关系,把条件集中于一个地方,更容易针对性地解决问题,也可以把条件分散开来,解决全局问题,这便是集中与分散之间的转化;把一些物理量或元件,模型等效看做其他的东西(例如电容稳定后可以看做断路等等),是等效转化;把不好求的,不好分析的转化为好求,好分析的(例如圆形面积转化为正方形面积等),这边是繁向简的转化;此外,还有平面与空间,变量与常量的转化等等。
2、守恒与变化思想
注意情境中的变与不变。守恒,是指物理情境中不变的量,或是两情境中相同的量(如能量,动量等);变化,是指物理情境中会变化的量,十分容易忽略,想清楚,考虑全它是如何变化的。
3、数学,物理结合思想
利用图形,图像来分析问题,运用数学中的方法来解决物理问题,例如几何关系,函数关系,等量关系(方程),极限思想,临界思想等等。
4、全局与突破,顺、逆推理思想
可以看完所有条件,站在一定的高度,观察全局来解题,找到没有用过的条件,想想它对解题有何用。也可以用顺向,逆向思维,一步一步把问题推出来,或根据公式找出影响问题的因素等。也可以找出题中的关键信息(突破口),从这里入手。
5、异、同思想
比较物理量、条件、模型等的异、同,通过这些,帮助理解,解决问题。
6、特殊值思想
可以规定一些值,用他们表示问题,易于分析,也可直接带入简单的数来分析,还可以找到一些特殊的量入手。(用特殊性找一般性的思路)
一、控制变量法
当我当我们研究某个物理量与多个因素的关系时,每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对事物的影响,分别加以研究,最后再综合解决,这种方法叫控制变量法。这种方法在实验数据的表格上的反映为:某两次实验只有一个条件不相同,若两次实验结果不同,则与该条件有关,否则无关。反之,若要研究的问题是物理量与某一因素是否有关则应只使该因素不同,而其他因素均应相同。它是科学探究中的重要思想方法,广泛地运用在各种科学探索和科学实验研究之中。
当我举一例详谈:在研究导体的电阻跟哪些因素有关时,为了研究方便,采用控制变量法,即每次须挑选两根合适的导线,测出它们的电阻,然后比较,最后得出结论。为了研究导体的电阻与导体长度的关系,应选用材料横截面相同的导线;为了研究导体的电阻与导体材料的关系,应选用长度和横截面相同的导线;为了研究导体的电阻与导体横截面的关系,应选用材料和长度相同的导线。初中物理应用到此法的实验还有很多。如:蒸发的快慢与哪些因素有关;探究滑动摩擦力、浮力的大小与哪些因素有关;动能、重力势能大小与哪些因素有关,等等。物理学中对于多因素(多变量)的问题,都是常常采用控制因素(变量)的方法,把多因素的问题变成多个单因素的问题。
二、等效替代法
当我所谓等效替代法是指在保证某种效果(特性和关系)相同的前提下,将实际的、复杂的物理问题和物理过程转化为等效的、简单的、易于研究的物理问题和物理过程来研究和处理的方法。它在物理学中有着广泛的应用。
当我在着名的“曹冲称象”故事中,大象的质量太大,在当时的条件下不便于直接测量,可以测量与之效果相同的石块的总质量,从而得出大象的质量;研究串、并联电路关系时引入总电阻(等效电阻)的概念,在串联电路中把几个电阻串联起来,相当于增加了导体的长度,所以总电阻比任何一个串联电阻都大,把总电阻称为串联电路的等效电阻。在并联电路中把几个电阻并联起来,相当于增加了导体的横截面积,所以总电阻比任何一个并联电阻都小,把总电阻称为并联电路的等效电阻;在电路分析中可以把不易分析的复杂电路简化成为较为简单的等效电路;在研究同一直线上的二力的关系时引入合力的概念也是运用了等效替代法。
三、转换法
当我物理学中对于一些看不见摸不着的现象或不易直接测量的物理量,通常用一些非常直观的现象去认识或用易测量的物理量间接测量,这种研究问题的方法叫转换法。初中物理在研究概念规律和实验中多处应用了这种方法。
当我如:雾的出现可以证明空气中含有水蒸气;影子的形成可以证明光沿直线传播;分子看不见、摸不到,不好研究,可以通过研究墨水的扩散现象去认识它;电流看不见、摸不到,判断电路中是否有电流时,我们可以根据电流产生的效应来认识它;磁场看不见、摸不到,我们可以根据它产生的作用来认识它;马德堡半球实验可证明大气压的存在;铅块实验可证明分子间存在着引力;运动的物体能对外做功可证明它具有能等。
四、类比法
当我类比法是一种推理方法,指为了把要表述的物理问题说的清楚明白,人们常常用具体的、有形的人们所熟知的事物来类比要说明那些抽象的、无形的、陌生的事物。通过类比使人们对所要揭示的事物有一个直接的、具体的、形象的认识,找出类似的规律。
当我如研究电流时类比水流,形象直观的比较,很容易被学生理解记忆牢固。水波与声波;通信与鸽子传递信件;功率概念与速度概念的形成,等等。在物理学中运用类比方法可以引导学生自己获取知识,类比可激发学生探索的意向,引导学生进行探索,使学生成为自觉积极的活动,发展学生的思维能力。类比是科学家最常运用的一种思维方法,类比的事例很多,需要平时多留心、不断地总结找到比较恰当的事例做类比。
五、建立模型法
当我所谓“模型法”是指通过建立物理模型来研究和学习物理、分析处理和解决物理问题的一种思维方法。研究光现象时用到光线模型、研究磁现象时用到磁感线模型、研究连通器原理时用到液片模型,杠杆也是一种理想化模型。用物理模型可以使抽象的假说理论加以形象化,便于想象和思考研究问题。物理学的发展过程可以说就是一个不断建立物理模型和用新的'物理模型代替旧的或不完善的物理模型的过程。
六 、理想化实验
当我理想化实验又叫做假想实验,它是人们在思想中塑造的一种理想实验,是逻辑推理的一种特殊形式。它是在观察实验的基础上,忽略次要因素,进行合理的推想,得出结论,达到认识事物本质的目的。它既要以实验事实作基础,但又不能直接由实验得到结论。
当我理想实验在物理学的理论研究中有重要的作用。比如,我们在探究真空能否传声的实验中,逐渐将真空罩内的空气抽出,听到罩内闹钟的声音逐渐变弱,于是我们推理得出将真空罩内的空气抽完(即真空),就听不到闹钟的声音了,从而得出真空不能传声的结论,这里采用的方法就是理想化,因为无论怎样抽气是不可能将真空罩内的空气抽完的。又如:研究牛顿第一定律时用到了理想实验的方法,让滑块从同一斜面的同一高度滑到表面粗糙程度不同的水平木板上,发现水平木板越光滑,滑块滑得越远,在这一可靠事实基础上,推出假若木板绝对光滑(完全没有摩擦),滑块将做匀速直线运动。
七、 放大法
当我在有些实验中,实验的现象我们是能看到的,但是不容易观察。我们就将产生的效果进行放大再进行研究。
当我比如音的振动很不容易观察,所以我们利用小泡沫球将其现象放大;观察压力对玻璃瓶的作用效果时我们将玻璃瓶密闭,装水,插上一个小玻璃管,将玻璃瓶的形变引起的液面变化放大成小玻璃管液面的变化。
八、 图象法
当我图象是一个数学概念,用来表示一个量随另一个量的变化关系,很直观。由于物理学中经常要研究一个物理量随另一个物理量的变化情况,因此图象在物理中有着广泛的应用。在实验中,运用图象来处理实验数据,探究内在的物理规律,具有独特之处。
当我如:在探究固体熔化时温度的变化规律和水的沸腾情况的实验中,就是运用图象法来处理数据的,它形象直观地表示了物质温度的变化情况,学生在实验中自主得出数据的基础上,通过描点、连线绘出图象就能准确地把握住晶体和非晶体的熔化特点、液体的沸腾特点。
九、观察法
当我观察法是人们为了认识事物的本质和规律,有目的有计划的对自然发生条件下所显现的有关事物进行考察的一种方法,是人们收集获取记载和描述感性材料的常用方法之一,是最基本最直接的研究方法。简单的讲,观察法就是看、仔细地看。但它和一般的看不同,观察是人的眼睛在大脑的指导下进行有意识的组织的感知活动,因此,亦称科学观察。
当我比如每接触到一个物理测量器材就应该进行认真观察,观察它的构造,测量范围、分度值,进而了解它的用途。还有在学习声音的产生时,可让学生观察小纸片在扬声器中的运动状态,观察正在发声的音叉插入水中激起水花,观察蟋蟀、知了鸣叫时的情况,就会发现发出声音的物体都在振动;除此之外还有光的反射规律、光的折射规律、凸透镜成像、滑动摩察力与哪些因素有关等。
十、比较法(对比法)
当我当你想寻找两件事物的相同和不同之处,就需要用到比较法,可以进行比较的事物和物理量很多,对不同或有联系的两个对象进行比较,我们主要从中寻找它们的不同点和相同点,从而进一步揭示事物的本质属性。
当我实例:汽车轮船火车飞机它们的发动机各不相同,但都是把燃料燃烧时释放的内能转化为机械能装置。而汽油机和柴油机虽然都是内燃机,但是从它们的构造、吸入的气体、点火方式、使用范围等方面都有不同。利用比较法不仅加深了对它们的理解和区别,使同学们很快地记住它们,还能发现一些有趣的东西。再如蒸发与沸腾的比较,两者的相同点都是汽化过程,不同点是从发生时液体的温度、发生所在的部位及现象都不同。还可以用比较法来研究质量与体积的关系。
C. 计算物理学中常用的数学方法有哪些
计算物理学是一门新兴的边缘学科。利用现代电子计算机的大存储量和快速计算的有利条件,将物理学、力学、天文学和工程中复杂的多因素相互作用过程,通过计算机来模拟。如原子弹的爆炸、火箭的发射,以及代替风洞进行高速飞行的模拟试验等。
理论物理是从一系列的基本物理原理出发,列出数学方程,再用传统的数学分析方法求出解析解,通过这些解析解所得到的结论和实验观测结果进行对比分析,从而解释已知的实验现象并预测未来的发展。
随着计算机技术的飞速发展和计算方法的不断完善,计算物理学在物理学进一步发展中扮演着越来越重要的不可替代的角色,计算物理学越来越经常地与理论物理学和实验物理学一起被并称为现代物理学的三大支柱。很难想象一个21世纪的物理系毕业生,不具备计算物理学的基本知识,不掌握计算物理学的基本方法。
它主要包括在传统物理课题中常用的数值计算方法(如偏微分方程的数值求解方法、计算机模拟方法中的随机模拟方法-蒙特卡罗方法和确定性模拟--分子动力学方法以及神经元网络方法)以及计算机符号处理等内容。
D. 数学知识在物理上的应用有哪些
数学知识在物理上的应用有哪些
重心 是规则图形数学是一门非常重要的基础学科,尤其在理解物理概念、物理规律以及解决物理问题时,数学知识起着重要的工具作用。有些初中学生数学学得比较好,但物理不一定学得好,因为这些学生往往用纯数学的思维方式理解物理概念、规律或求解物理问题,这样就造成了学生在应用数学知识解决物理问题时容易出现错误,解决上述问题的有效途径就是把物理问题转化为数学问题,有效的运用数学知识来解决物理问题。一、用数学式子表达物理概念、物理规律,用字母表达物理量、已知量、未知量。初中学生初学物理时往往对用符号表示物理量之间的关系式不习惯,不会应用这些物理量的符号去表示相应的数字信息,不清楚公式中的符号哪些是已知的,哪个是未知的,导致公式变形出错,乱套公式,物理结果出错。 解决途径:(1)首先引导学生学会“读题 → 标量 → 选公式”的方法。即学生边读题,边在相应的数字下面标上相应的物理量的符号,这样做的目的就是明确了已知量和未知量,再根据物理问题情境选择恰当的公式来求解。(2)解题时强调运用“三步法”,即“公式 → 带入数据 (数字+单位) → 结果(数字+单位)”。要让学生明确物理公式是解决物理问题的重要依据,所以要先写出公式,再带入相应的数字和单位,然后运用数学知识进行计算得结果。(3)物理量用规定的符号来表示,学生往往不能把字母和它表示的物理量联系在一起。如学生在数学中未知数都可以用X、Y表示,有时学生在解决物理问题时,不管是求哪个物理量,他们都用X、Y表示,这样不便于理解物理含义。在分析题时让他们在物理量的旁边写出表示这个物理量的符号,再看求哪个量就用他在这个物理量旁边标出的字母来表示。 通过不断强化及练习,学生学会了运用数学能力来求解物理问题,使学生对符号的认识由不熟悉到能够灵活运用。二、用方程表达物理关系、解决物理问题。学生往往在数学中会列方程解方程,但不会求解物理关系式。 解决途径: 教师应教会学生将物理关系式与数学方程概念有机的结合起来,让学生理解物理关系式实际上是将方程概念赋予了具体实际的内容。在建立物理情境的基础上,利用数学方法求解物理问题。 例如:用弹簧测力计提着体积为10cm3的铁块浸没水中,不触底,此时用弹簧测力计的示数多大? 引导学生分析:求弹簧测力计的示数多大,实际是求铁块在水中受到向上的拉力多大。(1)受力分析,画出受力示意图,如图:重力、浮力、拉力。(2)引导学生分析能求哪些量:如:F浮= ρ水 gV铁,G=ρ铁 gV铁(3)建立力的平衡式 F拉 + F浮=G (4)代入求解 F拉 =G + F浮 可以看出物理中力的平衡式实际上就是数学中的方程式,教师再引导学生利用数学方程思想来求解物理问题。通过例题分析、训练,学生逐步增强数理结合的意识,能将物理问题自觉地灵活地转化为受物理规律制约及显示物理规律、物理情境的数学问题。三、用分式的性质等量代换的思想进行单位换算。初学物理的学生在单位换算方面成为学习物理知识的障碍。 解决途径: 首先让学生理解物理中的单位换算,实际上是数学中的等量代换思想的体现,其次让学生理解记忆基本换算关系。例如:速度的单位换算,引导学生运用数学方法:(1)分子分母分别换算法 例如:20m/s = 20 = 72km/h(2)利用速度进率法:1 m/s = 3.6 km/h20m/s = 20 3.6 km/h = 72km/h 通过分析比较,让学生理解单位换算的方法和技巧,今后能灵活自如的进行单位换算,不要让单位换算成为学生学习物理的障碍。四、区分物理平均与数学平均。 学生对物理中的平均概念的理解往往停留在数学的平均思想上,不注意条件,不注意适用范围,导致结果出错。 解决途径: 教师要引导学生理解物理中的平均与数学中的平均概念的区别,要特别注意公式的适用条件和适用范围。 例如:求平均速度问题,原则上应该是,S代表总路程,t代表通过路程S所用的总时间。(1)一个物体做直线运动,前一半路程的速度为 1,后一半路程的速度为 2,求全程的平均速度。隐含的条件是 S1 = S2 = S 但是有一些学生不理解物理上平均速度的含义,直接利用数学上的平均思想解题得出的错误结论 。(2)一个物体做直线运动,前一半时间速度为 1,后一半时间速度为 2,求全程的平均速度。隐含的条件是 t1=t2 = t 又如:伏安法测电阻,多次测量利用数学的加权法求平均电阻值有实际意义。而电功率的平均值没有实际意义。 可见应用数学知识分析物理问题时要特别注意物理学科的特殊性,注意概念的物理含义和规律成立的条件,因此我们在物理教学中要强化物理意义、物理内涵,公式形成过程的指导以及物理规律成立的条件,以使学生在扎实的物理基础上恰当、灵活地应用数学知识解决物理问题。五、利用函数图像理解物理意义。 物理规律、物理量之间的关系可以用图像表达出来。但是有的学生不能将函数图像与物理知识联系起来,造成解决物理题的困难。 解决途径:首先让学生明确,横纵坐标表示什么物理量,再分析这个图像表示的物理意义。 例如:一个正比例函数图像,斜率表示密度ρ=m/v,即m与v成正比,也就是说同种物质,质量增大多少倍,体积也增大多少倍,比值不便,这个比值就是密度。这样有利于学生理解密度是物质的一种特性。 总之,运用数学知识解决物理问题的有效途径,就是把数学知识、数学思维方法迁移到学习物理上来。因此教师在教学中应强化数理知识的结合,利用多渠道的有效途径,促进数学知识的迁移,学生才能更好的利用数学知识来解决物理问题。的几何中心有些求力臂的可能会用到勾股定理还有就是一般性的计算了
E. 数学在物理学中的应用
在物理学中,物理量之间的关系,物理变化
规律,除了用文字叙述,用方程,方程组,不等
式,比例式、三角函数、三角方程等,还可以用
相应的图象来描述。数学不仅可作为计算公式贯
穿其中,广泛用于推导公式,表达关系,描述规
律,而且它本身的逻辑作用和抽象作用来辅助物
理概念和规律的形成。掌握物理学中的数学方法,
是学好物理学的关键之一。本文仅就极值问题、
正负号问题,数学图象等在力学、热学、电学中
的应用作简单论述。
一、物理学中的正、负号
数学中的正与负反映了数的大小,但在物理
学中,正和负反映的物理意义大不相同。
1、矢量中的正和负反映了方向。在同一直线
上,一般先规定某方向为正方向,与其同向的矢
量为正值,反之为负值,这样把矢量运算化为标
量运算。例如,在直线运动中,若选初速度为V0
的方向为正方向,则加速度为负值时物体做减速
运动。又如在竖直上抛运动中,以抛点为原点,
上方位移为正,下方位移为负,向上的速度为正,
向下的速度为负,这样即可把往返运动当作一直
向上的运动处理。
例1、在离地10 米高度以5 米/秒竖直向上
抛出一物,不记阻力,问经几秒此物落地?
[析解]以抛点为原点, 向上为正,所以
V0=5m/s�0�5,s=-10m, 代入位移式S=V0·t+1/2at�0�5 有
-10=5t-5t�0�5求出t=2 秒。
2、正和负可以反映物体能量的增加减。大当
能量增加量为正值时,说明能量在增加;当能量
增加量为负值时,说明能量在减少。例如,由动
能定律可知:当合外力对物体做正功时,物体动
能增加;当合外力对物体做负功时,物体动能减
少。又如在热学中我们将吸热和对气体做功记为
正直,相反将放热和对外做功记为负值。
3、在势能大小的表示中,正和负表示势能与
标准点相比的大小。例如我们以桌面为势能的零
点,那么桌面以上的各点势能均为正,而桌面以
下的各处势能均为负值,在这种情况下正和负表
示大小。
4、在光学中,正和负表示虚和实。凸透镜的
焦距为正,透镜的焦距为负;实像的像距为正值,
虚像的像距则为负值。
二、用数学方法定义物理量
物理量分为基本量和导出量两种,从定义形
式来看,都可以用数学形式来表示。大量的可以
用以下几种数学方法定义。
1、量比定义法:就是用两个物理量的“比”
来定义一个新的物理量的方法。例如反映物质属
性或特性的密度(ρ=m/v),电场强度(E=F/q),
反映物体属性或特征的导体的电阻(R=u/I),运
动速度(v=s/t),功率(P=w/t)等。
2、乘积定义法:即用两个以上的物理量的乘
积来定义一个新的物理量的方法。例如,功( w
= F·S cosθ ),动量(p=mv), 动能 ( Ek =mv�0�5/2)
等。
3、公式变形定义法:即用已有的公式变形来
定义一个新的物理量是方法。例如,根据电阻定
律(R=ρl/s),胡克定律(f=κx),摩擦定律(f=μN),
自感电动势(ε=LΔI/Δt),得到电阻率ρ,倔强系
数K,摩擦系数μ,自感系数L。
4、和差定义法:即用物理量的和差来定义一
个新的物理量。例如,动能的增量(ΔEk= Ek2
–Ek1 ),动量的增量(ΔP= P2-P1)等。
三、极值在物理学中的应用
在物理学中经常遇到极值和最值问题,有时
用到一元二次方程的关系,有时则是三角函数的
极值等。此类题解题特点:在物理机理的基础上,
其解题关键要依赖数学手段和方法,借助于数学
技巧和技能。
例2、甲乙两辆汽车同方向行使,当t=0 时,
两车恰好相齐,它们位移随时间t 的变化规律分
别为:S 甲=10t;S 乙=2t+t�0�5,试问在什么时刻,甲车
在前时,两车相距最远?
[析解]两车相距的距离为:
ΔS= S 甲- S 乙=10t -(2t+t�0�5)=-t�0�5+8t
据二次函数的性质有:当x=-b/2a 时,ΔS 有
最大值, ΔSmax=(4ac-b�0�5)/4a, 即当t=4s 时,
ΔSmax=16m
[注]物理量的变化规律在很多场合下可以用
二次函数y=ax�0�5+bx+c 来表示,根据二次函数的性
质:x=-b/2a 时,y 有极值,极值y=(4ac-b�0�5)/4a,当
a>0 时有极小值,当a<0 时有极大值。
例3、把q0 分配给两个相距为r 的质点,使
之成为两个带电体q1 和q2,则当电量如何分配
时,两个电体之间的库仑作用力最大?
[ 析解] 两个带电体之间的库仑力为
F=kq1q2/r�0�5根据题意q1+q2=q0 为一定值,因此当
q1=q2=q0/2 时,q1q2 有最大值,也就是F 有最大
值。所以电量平均分配给两个质点时,它们之间
的库仑作用力最大,最大值Fmax=Kq0�0�5/4r�0�5.
四、图象在物理学中的应用
利用图象可以直观地反映物理量之间相互依
赖的关系,形象地表述物理规律。应用图象解题,
常常使一些复杂的问题变得简单明了,对提高我
们分析问题、解决问题的能力大有益处。
综上所述,在物理学中应用数学的求解方法
是多种多样的,同一物理过程可以用两种或两种
以上的方法求解,关键在于把物理意义和数学方
法巧妙的揉合为一体,才能收到较好的效果。由
于事物的多样性、复杂性及物理与数学两门基础
学科之间的相互渗透与交叉。故在学习中应注意
利用有关的数学知识解决物理问题,以培养自己
正确分析物理过程和运用数学工具解决物理问题
的能力。
与教师之间交叉活动的自由空间,允许窃
窃私语,允许寻求教师、同学帮助。因为我们
常会发现这样一些情况:有的同学想象力很丰
富,但动手能力较差;有的同学制作精细,但
思路狭窄,如果让这两者有机结合,取长补短,
则是最佳的组合了。即使两者水平相当,在合
作中也能得到启发,所谓“三人行,必有我师”。
同时有些活动题材、内容,需要搜集大量的材
料,可组织以小组为单位完成。如“插花”、“版
面设计”、“画脸”等创作,可以以小组为单位合
作收集材料:你准备花泥我准备鲜花,我们一
起来完成一束艺术插花;尝试四个人合作设计
一块别致的版面;相互给对方装饰一个有趣的
脸面等。在愉快的合作氛围中,在友情浓郁的
氛围中,消除表现的顾虑,快乐主动参与学习
的过程,给学生带来愉悦的审美情趣,使每个
学生都体会到集体的智慧胜过于个人,从而培
养学生团结互助、合作的好品德。这样一来,
作业的时间相对缩短,作业的质量却提高了,
何乐而不为?
没有教师心灵的参与,课堂就会像没有雨
水的春日,燥寒而缺少滋润;没有教育实践的
参与,教育研究就会像行将干涸的一潭秋水,
沉闷而无活力。把美术教育的艺术与生命艺术
合二为一,将是我们21 世纪每个美术教师的毕
生追求。