‘壹’ 高中物理有哪些是理想化模型或是用了理想化方法处理
LZ您好
高中物理自身就是理想的了,因为它是二维平面上研究运动变化规律.
除此而外,显而易见的理想东西还有...
理想光滑平面/导轨什么的:这个就不解释了,初中就在用.高中受力分析的入门,动量定理验证也会用.其实忽略的不仅是地面摩擦力,还有空气阻力什么的.
轻杆,轻绳:这些东西没质量
质点,或者质心:我们忽略物体的大小,形状,突出物体具有质量这个要素,将它浓缩成一个有质量的物质的点.譬如在地面上运动的物体,受到摩擦力,这个摩擦力是在接触面上的,但我们常把它移动到质点上,和重力,支撑力,拉力,加速度...联立解方程.有时对于一个正在运动的事物研究其运动状态(速度,加速度等),也会将其简化为质心,典型如围绕地球转的卫星计算轨道信息
质点有个好基友叫点电荷,会在电磁学出现
刚体:终于,我们遇到了没法化为质心质点的情况,譬如圆盘,计算力矩,那么我们搬出了第二个大杀器---刚体!特别针对固体,假设它在运动中形变很小或忽略不计,我们就当作它是刚体---直到将来我们遇到需要考虑应变或者振动的时候...
自由落体运动:运动中没有空气阻力,重力加速度一律9.8不考虑实验地点在地球上的纬度因素,高中阶段另外不考虑重力加速度随高度改变
弹性体:高中的弹簧基本上只有能自动变回去的弹性形变.没有变不回去的塑性形变,当然或者要么倒过来,会发生形变的物体一定100%都是塑性形变没有弹性的.
单摆:两层含义的理想:一是忽略了小球或者小块对绳子的弹性拉伸,二是摆动的过程中忽略空气阻力
简谐振动:基本不探讨阻尼振动
完全弹性碰撞/完全非弹性碰撞:前者碰撞过程中机械能不损失,完全没有产生碰撞热能;后者2个物体最后能以一样的速度黏在一起运动.
理想气体模型:特别针对热学中的压强不大,温度不低的情况,气体会遵循Pv=nRt(实际上是波意尔,查理,还有盖吕萨克定理的集合,分别是等温,等体积,等压强的模型),严格意义上理想气体还包含化学中提到的阿伏伽德罗定理,只针对理想的纯化学气体适用.
卡诺热机:也较理想热机,遵循热力学第二定律的理想热机
匀强电场或者匀强磁场:顺便忽略粒子的重力,或者不忽略重力粒子会恰好浮在空中.当然运动的情况下摩擦力什么的是不考虑的.
理想电源:没有内阻...当然高中经常有内阻也不碍事,当作串联一个电阻完事
理想导线:没有电阻的导线,顺便没有感抗现象
理想电压表和电流表:一个电阻无穷大,一个电阻无穷小.当然不能忽略的时候把它们看作一个电阻其实也没事
理想电阻:这个和电源导线完全不一样,实际当中电阻率,长度,横截面我们假设都考虑,还有一个温度常常不考虑,事实上一般固体导体电阻随温度升高而升高,溶液导体则随温度升高而降低...管它呢!一律以常温数值为准
理想电感线圈:直流电阻为0,交流电阻无穷大
理想变压器:绕组无电阻,没有漏磁+理想电感线圈
理想透镜:光学物理中透镜没有厚度,没有色差,材质均匀.
点光源:所有的灯泡都是一个点,没有形状
理想光线:激光...统统是激光!
‘贰’ 物理中指的理想状态是什么。
理想状态
理想状态是自然科学里表示理论上可以达到而实际上因为种种原因不能达到的状态。例如牛顿第一定律,它是一个理想状态,但是实际上因为摩擦,它无法真正做出来。理想状态达到的理想效果是不能用实际的实验或操作证明的。它只能用理论或近似实验证明。 上面的资料来自网络。 其实,物理中针对不同问题,为了简化实际问题,而得到符合实际规律的理论结论,提出了针对于该问题的适当假设,例如理想气体状态方程,其就是忽略了分子间的作用力合分子自身的体积,从而得出普遍使用的公式,当然是在一定条件下才能使用,组如此类的还有很多。。。实际就是为了分析方便,至于要精确得出解,要对其进行修正。
‘叁’ 高中物理中哪些属于是理想化模型如题 越具体越好
比如没有大小的质点,没有粗细的“线”,没有厚度的“面”,物理学中所研究的“理想的摆”(单摆),忽略分子本身体积和分子间作用力的“理想气体”,不考虑其大小的“点电荷”等
‘肆’ 高中物理中哪些属于是理想化模型如题越
比较重要的理想模型大概有如下几个:
质点,
弹簧振子,
单摆,
伽利略理想斜面,
理想液体,
理想气体,
点电荷,
薄透镜,
等等。
‘伍’ 高中物理理想模型有哪些
单摆 光线 质点 点电荷 光滑平面 轻质弹簧 理想变压器 点光源 电场线 磁感线
‘陆’ 高中物理中的理想模型有哪些
归纳在一起就是一个万能的小滑块(可以带电、可以有摩擦也可以无摩擦、可大可小、有时可忽略体积质量,可在各种场中运动。。等等)