‘壹’ 空间物理学的对象
研究对象和分支学科:空间物理学研究的空间范围,是随着直接探测手段的发展在不断扩大的。它的分支学科则按其研究对象大致可以分为中层大气、高层大气、电离层、磁层、日球、宇宙线等。 各个行星都有许多与地球相似之处(如多数都有磁层、大气层和电离层),也有许多不同的地方(重力场和磁场强度,大气组成,离太阳的距离以及自旋速度等)。对它们进行比较研究可以推动有关太阳系起源等基本问题的研究,也可以为地球现象研究提供许多有益的启示,并有可能帮助人们解决一些如“长期气候变化及其预报”等具有重大实际意义的课题。
‘贰’ 空间物理学的特点
空间物理学是一门基础学科,它是由地球物理学、大气物理学和天文学延伸出来的。空间物理学的诞生标志着人类对宇宙的认识进入了一个新的阶段。同时,宇宙空间中存在的在地面无法实现的物理条件和在其中进行的复杂的物理过程,使它成为研究稀薄等离子体和高能物理过程的理想实验室。空间物理学从一开始就与这些基础学科紧密地结合在一起,并且促进了这些学科的发展。
空间物理学是一门观测性很强的学科。认识宇宙世界必须对它进行探测。适合于在 50~200公里高度范围内作短时间探测的探空火箭,适宜于在30~50公里高度上长时间漂浮的高空探测气球,以及遍布地球表面进行连续测量的地面观测台站网。它们互相补充、各有所长。
空间物理的研究是通过广泛的国际合作发展起来的。由于需要在广阔的宇宙空间和全球各地进行大量的观测,单靠一个国家的力量是难以达到的。因此,空间物理方面的大规模国际合作计划几乎接连不断。从国际地球物理年开始,紧接着是国际地球物理协作计划、国际宁静太阳年、国际磁层研究计划以及太阳活动极大年计划和中层大气计划等。这些合作计划所研究的课题都集中在空间物理的核心问题──太阳活动对地球及其周围空间的影响上,而且都是多学科的综合观测研究。
‘叁’ 什么是空间物理学
空间物理学主要利用空间飞行器直接探测和研究宇宙空间中的物理过程的学科。空间科学的一个分支。由地球物理学、大气物理学和天文学延伸而来。
人们最初对高空中所发生的各种物理现象如极光、流星、夜光云等,只能在地面观测。随着科学技术的发展,人们利用气球、火箭等升空工具探测高层大气的成分和密度、高空磁场、高能粒子、等离子体等,逐渐形成高层大气物理学,这是空间物理学形成和发展的基础 。1957年人造地球卫星发射成功,人类首次克服了大气层的障碍,对广漠的宇宙空间进行直接观测,从而进入了空间时代。随着空间科学技术的发展,探测区域由近地空间向外扩展到月球、行星和行星际空间。随着对物理过程的动力学过程的研究,逐渐形成一门独立的学科空间物理学。
‘肆’ 中科院地质与地球物理研究所的空间物理专业是干什么的以后工作是干什么
主要研究太阳系特别是日地空间中的物理现象与规律,研究空间环境及其对人大空间活动和生态环境的影响。空间物理主要研究方向包括太阳大气物理学,日球层(即行星际)物理学、磁层物理学、电离层物理学及电波传播及应用、高层人气(热层和中层)物理学、空间探测实验与技术等。该专业已培养出一大批日地空间物理、空间环境和空间应用等领域内的杰出的科学家和工程技术与管理人才。
就业难,当科学家工程师或当老师吧
‘伍’ 物理空间的概念
时空任何事物都处于一定的时空之中是四维的空间,上面的点是事件。近代物理学认为,时间和空间不是独立的、绝对的,而是相互关联的、可变的,任何一方的变化都包含着对方的变化。因此把时间和空间统称为时空,在概念上更加科学而完整。P.S.上面提到的“空间”一词其实不够确切,时空(四维)与空间(三维)有着相差一个维度的区别,它们也不同于通常所说的希尔伯特空间。把宇宙看作四维时空,有一个很重要的原因在于它恰好可以全面地描述发生在我们能够认知的三维空间中发生的一切事件。 [编辑本段]0时空理论两点之间的距离直线最短吗?答案是否认的。0时空理论认为,任何两点之间都必然地存在着一个0(即距离)。其.结论是:两点之间的距离0线最短。宇宙时空是无限的,宇宙是普遍联系的,宇宙速度是有限的(如果承认了宇宙速度的无限性,也就是承认了0时间).这三个观点如果同时成立,必有其内在的难以调和的矛盾.0时空理论的提出主要的就是针对这一矛盾而提出来的. 世界上存在着0时与0空。所谓0时,就是时间等于0的时间。而0空,就是空间等于0的空间。0时与0空是一种特性的时间与空间。可以把整个时空区分为非0时空(即通常所说的时空)与0时空两类。非0时空与0时空相互区分、相互共同、相互斗争、相互联合。0时空与非0时空相联结,二者互相内含、互相依存、互相转化。任何两个时间点的距离都是既等于0又不等于0,任何两个空间点的距离都是既等于0又不等于0。0时空与非0时空必有主次之分.从根本上来讲,非0时空是主要的,0时空是次要的,非0时空是基础,0时空是上层。非0时空正决定0时空,0时空反决定非0时空。 世界上任何事物与任何事物之间都是有联系的。在时间距离和空间距离都为无限大的两个事物之间,如果没有0时与0空,二者就不可能有联系—不但没有直接联系,而且没有间接联系。这样就违背了普遍联系的原则。因为有了0时与0空,所以在时间上和空间上相距都为无限大的两个事物之间存在着联系。整个世界和宇宙通过0时与0空而最高度地联系起来和统一起来。如果没有0时与0空,整个宇宙和世界就会缺乏统一性,如同一盘散沙。0时与0空在中观时空之中作用往往不明显,往往可以忽略,但在极宏观时空与极微观时空之中作用却非常之巨大。因为有了0时与0空,所以任何两个事物之间都是既有直接联系又有间接联系的。 时间的一维性和空间的三维性只适合于非0时空,而不适合于0时空。物从一个空间点经过0空间而跃进到另一个空间点,它所经历的空间距离一方面是0,但另一方面也不是0。它是从这个点跃进到另一个点,而不是从另一个点跃进到这一个点。这种区分是如何实现的?就在于这种0空间包含着非0的一面。物从一个点通过0空间而跃进到另一个空间点,它所经历的时间必是0。但这种时间的另一个方面也又不是0,它是先在这一个点而后在那一个点的,这种先后的区分是如何实现的?就在于这种0时间中包含着非0的一面。所以当我们说两个空间点的距离是0的时候,它必是包含着非0的一面的。当我们说两个时间点的距离是0的时候,它必是包含着非0的一面。物从一个空间点经过0空间而跃进到另一个空间点,这个过程所用的时间只能是0.只要存在着0空间,就必然存在着0时间,二者是不可以分割的.承认0时间就必须承认0空间,承认0空间就必须承认0时间.所谓的0时空是指相对的0时间和相对的0空间.并不存在绝对的0时间和绝对的0空间.0时空与非0时空没有绝对的分割线.在0时间中包含着非0时间,这就是相对0时间。在0空间中包含着非0空间,这就是相对0空间。如果0时间中不包含非0时间,这就是绝对0时间。如果0空间中不包含非0空间,这就是绝对0空间。与相对0时空理论相反对的是存在另一种理论,就是认为存在着绝对的0时空。这种理论的实质是认为存在脱离时空而存在的事物。而辩证法明确地说明了,没有脱离时空而存在的事物。0时空只不过是一种特殊的时空而已。它坚决地反对认为存在脱离时空而存在的事物。任何两个空间点的距离都是一方面是0另一方面又不是0,这两个方面是相互依存的。在这每一个方面的内部,我们仍可以将它区分为是0和非0两个方面的。只不过在是0这一方面,是0是主要的,非0是次要的。而在非0这一方面,非0是主要的,是0是次要的。这里面要着重反对一种观点,就是认为
‘陆’ 空间物理学、大气物理学和天体物理学的区别
空间物理学
space physics
主要利用空间飞行器直接探测和研究宇宙空间中的物理过程的学科。空间科学的一个分支。由地球物理学、大气物理学和天文学延伸而来。人们最初对高空中所发生的各种物理现象如极光、流星、夜光云等,只能在地面观测。随着科学技术的发展,人们利用气球、火箭等升空工具探测高层大气的成分和密度、高空磁场、高能粒子、等离子体等,逐渐形成高层大气物理学,这是空间物理学形成和发展的基础 。1957年人造地球卫星发射成功,人类首次克服了大气层的障碍,对广漠的宇宙空间进行直接观测,从而进入了空间时代。随着空间科学技术的发展,探测区域由近地空间向外扩展到月球、行星和行星际空间。随着对物理过程的动力学过程的研究,逐渐形成一门独立的学科空间物理学。
研究对象
空间物理学的研究对象包括 :① 高层大气。一般指60千米以上的地球大气层,是空间物理学最先研究的领域。研究高层大气成分、结构和动力学过程的学科,称高层大气物理学 。② 电离层。地球高层大气的一个电离区域,一般认为高度范围约为60~2000千米。电离层由太阳紫外线、X 射线和高能粒子等的作用而形成 。电离层能影响电波传播方向、速度、相位、振幅和偏振状态等。研究电波在电离层中的传播可解决无线电通讯和无线电测速定位中的问题;反过来也可以由电波在电离层中受到的影响如吸收、反射、折射 、散射 、多普勒效应和法拉第效应等来探测电离层状态。研究电波在电离层中传播的基础理论是磁离子理论。③磁层。20世纪60年代开始对地球磁层进行直接探测并进行详细研究。磁层直接与太阳风、行星际磁场连接。太阳风的影响,是通过磁层传递给电离层和中性大气。因此,磁层对探索、研究太阳大气-行星际介质-磁层-电离层-中性大气耦合过程具有重要意义。卫星和飞船的活动都受到磁层的磁场、辐射带和等离子体的影响。④日球。太阳周围、由太阳风及其所携带的行星际磁场起控制作用的空间区域。日球与星际介质的交界面称日球顶。对日球的探测,主要在黄道面附近区域进行。⑤宇宙线。指来自宇宙空间的高能粒子流。一部分来自银河系,一部分来自太阳。宇宙线在日球内的传播过程中,与太阳风、行星际磁场和磁层等相互作用,使宇宙线成为研究这些区域的重要工具。⑥行星及其卫星。对太阳系各行星及其卫星的大气层、电离层、磁层、重力场和磁场强度与地球所进行的对比研究,可对有关太阳系起源、地球某些现象的研究,起到启发和推动作用。
空间物理探测 空间物理学是一门观测性很强 的学科 。空间物理探测的主要对象有中性粒子、高能带电粒子、等离子体、固体颗粒、低频电磁波和等离子体波、磁场、电场 。通过对这些物理现象的探测,可了解地球大气层、电离层 、磁层和行星际空间的基本结构,从而建立起高层大气模型 、电离层模型、辐射带模型和太阳光谱,发现了行星际磁场的扇形结构,建立了太阳风的模型。在扩大探测范围深度和广度,取得较长时间的变化规律数据后,进一步对空间物理过程的规律进行分析,了解空间物理状态形成和变化的原因 。空间物理探测手段包括在宇宙空间进行直接探测的人造地球卫星、人造行星和行星际探测器,以及适于地球高层大气的高空探测气球和探空火箭,还有遍布地球表面进行连续测量的地面观测台站网。它们各有所长,互相补充。
空间物理探测卫星 在离开地面几百千米或更高的轨道上长期运行,卫星所载的仪器不受大气层的影响,可直接对空间物理环境进行探测,因而成为空间物理探测的主要手段。由于卫星主要探测对象不同,要求探测仪器直接到达广阔空间的各点,以便获得尽可能大的探测范围,因此这类卫星的轨道并不确定,有极轨道,也有低倾角轨道。轨道高度变化范围大,近地点一般在几百千米,远地点可达数千、数万 、十几万千米。由于卫星使用的空间物理探测仪器种类较多 ,对安装位置、探测窗口、温度控制和仪器之间的电磁相容性等要求各不相同,这些都对卫星的形状和结构提出一些特殊的要求,所以空间物理探测卫星外形差别也很大。主要的空间物理探测卫星系列有:探险者号卫星系列、轨道地球物理台系列、国际日地探险者卫星系列、宇宙号卫星系列。中国1981年9月20日用一枚火箭同时发射了3 颗卫星,是中国第一组空间物理探测卫星。
大气物理学
大气物理学是研究大气的物理现象、物理过程及其演变规律的大气科学的分支学科。它主要研究大气中的声象,光象、电象、辐射过程、云和降水物理、近地面层大气物理、平流层和中层大气物理等。它既是大气科学的基础理论部分,又是环境科学的一个部分。
人们对大气中的许多物理现象,如虹、晕、华、雷、闪电等早巳注意,并进行过研究,但内容分散在物理、化学、天文、无线电等学科之中,把它们纳入大气物理学一个学科,则是近三、四十年中的事情。
20世纪40年代以来,随着人类在大气中活动范围的迅速扩展,大气物理学的研究领域不断扩大。如为了改进大气中的电波通信、光波通信、提高导弹制导水平,就需要了解它们所赖以传播的大气介质及相互作用,因此就要研究大气的声、光、电和无线电气象;又如,为避免晴空湍流引起飞机堕毁的事故,就要研究大气湍流。
由于工业生产排入大气中的大量气溶胶和污染物通过扩散造成大气污染,有些通过沉降或降水形成酸雨等,又被送到地面,导致土地河流污染、造成对植物和人类的严重影响。既要发展生产,又必须使大气不超过其对污染物质的稀释能力,这就要详细研究大气边界层的物理特性。
生产活动和人类的其他活动,影响着自然环境。如大气中二氧化碳含量逐年增加,影响着大气辐射程和气候变化规律。这些又影响农业生产,特别是粮食生产。粮食问题导致对气候变化的关注,进而促进了对大气辐射问题的研究。
工农业用水逐年增加,就必须充分利用大气中丰富的水分,这就要开发大气中的水资源;此外,为避免或减轻天气灾害,又推动着人工影响天气试验研究的广泛开展,从而促进了云和降水物理学的研究。
20世纪60年代以来,遥感技术飞速地发展起来,辐射传输是遥感的基础,由此推动着大气辐射学的研究;人造卫星、电子计算机的发展,新技术(如激光、雷达、微波)的应用,给大气物理研究提供了有力的探测工具,获得了更多的探测资料,从而大大加速大气物理学发展的进程。
大气物理学主要包括大气边界层物理学、云和降水物理学、雷达气象学、无线电气象学、大气声学、大气光学和大气辐射学、大气电学、平流层和中层大气物理学。它们都各有自己的特点:
大气声学、大气光学,大气电学和无线电气象学,是研究大气中声、光、电的现象和声波、电磁波在大气中传播的特性;雷达气象学研究用气象雷达探测大气的原理和方法,及其在天气分析预报、云和降水物理中的应用;大气辐射学研究辐射在地球大气系统内的传输转换过程和辐射平衡;云和降水物理学研究云和降水的形成、发展和消散的过程;大气边界层物理研究受地面影响较大的大气低层的温度、湿度、风等要素的水平和铅直分布,大气湍流和扩散,水汽和热量传输等;平流层和中层大气物理学研究对流层顶(10公里左右)到80~90公里大气层中发生的物理过程。大气过程常是多因素综合作用的结果,故大气物理诸方面常常相互联系,如大气电学同云和降水物理学都研究雷暴。既各有侧重,又紧密相关。
大气物理学和大气科学其他分支有紧密的联系,如大气物理过程受到天气背景的制约,同时大气物理研究和探测的结果,又广泛用于天气分析和预报,所以它和天气学关系密切;云动力学是大气物理学和大气动力学结合的产物;大气物理学的许多内容涉及对气候变化的研究;大气物理学是大气探测和应用气象学的基础,而这两个学科的发展,又丰富了大气物理学的内容。例如大气物理为气象雷达观测提供原理依据,而雷达的气象信息则为研究大气物理过程提供了丰富的资料。
科学技术的许多新成就,推动大气物理学向前发展,又不断向大气物理学提出新的要求,人类在大气中活动频繁,有意和无意地影响大气,使大气状态变得更加复杂。如何进一步认识大气的精细结构,深入了解大气三维空间的演变,有效地利用、妥善地保护和不断地改造大气,是大气物理学长期的重大任务。
其它大气科学分支学科
大气科学、气候学、物候学、古气候学、年轮气候学、大气化学、动力气象学、大气物理学、大气边界层物理、云和降水物理学、云和降水微物理学、云动力学、雷达气象学、无线电气象学、大气辐射学、大气光学、大气电学、平流层大气物理学、大气声学、天气学、热带气象学、极地气象学、卫星气象学、生物气象学、农业气象学、森林气象学、医疗气象学、水文气象学、建筑气象学、航海气象学、航空气象学、军事气象学、空气污染气象学
理论天体物理学
利用理论物理方法研究天体的物理性质和过程的一门学科。1859年,基尔霍夫根据热力学规律解释太阳光谱的夫琅和费线,断言在太阳上存在着某些和地球上一样的化学元素,这表明,可以利用理论物理的普遍规律从天文实测结果中分析出天体的内在性质,是为理论天体物理学的开端。理论天体物理学的发展紧密地依赖于理论物理学的进步,几乎理论物理学每一项重要突破,都会大大推动理论天体物理学的前进。二十世纪二十年代初量子理论的建立,使深入分析恒星的光谱成为可能,并由此建立了恒星大气的系统理论。三十年代原子核物理学的发展,使恒星能源的疑问获得满意的解决,从而使恒星内部结构理论迅速发展;并且依据赫罗图的实测结果,确立了恒星演化的科学理论。1917年爱因斯坦用广义相对论分析宇宙的结构,创立了相对论宇宙学。1929年哈勃发现了河外星系的谱线红移与距离间的关系,以后人们利用广义相对论的引力理论来分析有关河外天体的观测资料,探索大尺度上的物质结构和运动,这就形成了现代宇宙学。近二十年来,在理论天体物理这一领域,可以看到理论物理与天体物理更广泛更深入的结合,其中以相对论天体物理学、等离子体天体物理学、高能天体物理学等
从理论物理学的分支与天体物理学问题的联系,可以看出目前理论天体物理的概貌。
辐射理论 研究类星体、射电源、星系核等天体的辐射,以及X射线源、γ射线源和星际分子的发射机制。
原子核理论 研究恒星的结构和演化,元素的起源和核合成(见元素合成理论),以及宇宙线问题。
引力理论 探讨致密星的结构和稳定性,黑洞问题,以及宇宙学的运动学和动力学。
等离子体理论 分析射电源的结构、超新星遗迹、电离氢区、脉冲星、行星磁层、行星际物质、星际物质和星系际物质等。
基本粒子理论 研究超新星爆发、天体中的中微子过程(见中微子天文学)、超密态物质的成分和物态等。
固态(或凝聚态)理论 研究星际尘埃、致密星中的相变及其他固态过程。
理论天体物理的基本方法是把地球上实验室范围中发现的规律应用于研究宇宙天体。这种方法不仅对于说明和解释已知的天体现象是有力的,而且还可以预言某些尚未观测到的天体现象或天体。例如,在1932年发现中子之后不久,朗道、奥本海默等就根据星体平衡和稳定的理论预言可能存在稳定的致密中子星。尽管这种预言中的天体与当时已知的所有天体差别极大(异乎寻常的高密度等),可是在三十多年后的1967年,预言终于被证实。另一方面,许多物理学概念首先是由研究天体现象得到的,后来又是依靠天体现象加以检验的。例如,首先是天体物理学家注意到充满宇宙间的电离物质具有一系列特性,这对建立等离子体物理学这门学科起了极大的推动作用。又如,热核聚变概念是在研究恒星能源时首次提出的。禁线也是受到天体光谱研究的刺激才得到深入探讨的。
由于地面条件的限制,某些物理规律的验证只有通过宇宙天体这个实验室才能进行。有关广义相对论的一系列关键性的观测检验,都是靠研究天体现象来完成的。水星近日点进动问题、光线偏转以及雷达回波的延迟是几个早期的例子。理论天体物理学既是理论物理学用于天体问题的一门“应用”学科,又是用天体现象探索基本物理规律的“基础”学科。无论从天文学角度来看,或是从物理学角度来看,理论天体物理学都是富有生命力的。