A. 物理学中,除了控制变量法外,还有什么法
物理学中,除了控制变量法外,还有什么法
常见的物理方法
模型法
即将抽象的物理现象用简单易懂的具体模型表示.如用太阳系模型代表原子结构,用简单的线条代表杠杆等.
叠加法
物理学中常常把微小的、不易测量的同一物理量叠加起来,测量后求平均值的方法俗称“叠加法”如用厘米刻度尺一张纸的厚度、铜丝的直径等.
控制变量法
自然界发生的各种现象,往往是错综复杂的.决定某一个现象的产生和变化的因素常常也很多.为了弄清事物变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,然后来比较,研究其他两个变量之间的关系,这种研究问题的科学方法就是“控制变量法”.初中物理实验大多都用到了这种方法,如通过导体的电流I受到导体电阻R和它两端电压U的影响,在研究电流I与电阻R的关系时,需要保持电压U不变;在研究电流I与电压U的关系时,需要保持电阻R不变.
实验+推理法
有一些物理现象,由于受实验条件所限,无法直接验证,需要我们先进行实验,再进行合理推理得出正确结论,这也是一种常用的科学方法.如将一只闹钟放在密封的玻璃罩内,当罩内空气被抽走时,钟声变小,由此推理出:真空不能传声;再如牛顿第一定律推导
转换法
一些看不见,摸不着的物理现象,不好直接认识它,我们常根据它们表现出来的看的见、摸的着的现象来间接认识它们.如根据电流的热效应来认识电流大小,根据磁场对磁体有力的作用来认识磁场等.
等效法
在研究物理问题时,有时为了使问题简化,常用一个物理量来代替其他所有物理量,但不会改变物理效果.如用合力替代各个分力,用总电阻替代各部分电阻,浮力替代液体对物体的各个压力等.
描述法
为了研究问题的方便,我们常用线条等手段来描述各种看不见的现象.如用光线来描述光,用磁感线来描述磁场,用力的图示描述力等.
类比法
在认识一些物理概念时,我们常将它与生活中熟悉且有共同特点的现象进行类比,以帮助我们理解它.如认识电流大小时,用水流进行类比.认识电压时,用水压进行类比.
B. 初中常用的物理方法
用物理规律研究问题时,常需要对它们进行必要的简化,忽略次要因素,以突出主要矛盾。用这种理想化的方法将实际中的事物进行简化,便可得到一系列的物理模型。如:电路图是实物电路的模型;力的示意图或力的图示是实际物体和作用力的模型。
C. 物理学中,经常用的科学方法有哪些如:转换法,控制变量法
研究物理的科学方法有许多,经常用到的有观察法、实验法、比较法、类比法、等效法、转换法、控制变量法、模型法、科学推理法等。研究某些物理知识或物理规律,往往要同时用到几种研究方法。如在研究电阻的大小与哪些因素有关时,我们同时用到了观察法(观察电流表的示数)、转换法(把电阻的大小转换成电流的大小、通过研究电流的大小来得到电阻的大小)、归纳法(将分别得出的电阻与材料、长度、横截面积、温度有关的信息归纳在一起)、和控制变量法(在研究电阻与长度有关时控制了材料、横截面积)等方法。可见,物理的科学方法题无法细致的分类。只能根据题意看题中强调的是哪一过程,来分析解答。下面我们将一些重要的实验方法进行一下分析。一、 控制变量法物理学研究中常用的一种研究方法——控制变量法。所谓控制变量法,就是在研究和解决问题的过程中,对影响事物变化规律的因素或条件加以人为控制,使其中的一些条件按照特定的要求发生变化或不发生变化,最终解决所研究的问题。可以说任何物理实验,都要按照实验目的、原理和方法控制某些条件来研究。如:导体中的电流与导体两端的电压以及导体的电阻都有关系,中学物理实验难以同时研究电流与导体两端的电压和导体的电阻的关系,而是在分别控制导体的电阻与导体两端的电压不变的情况下,研究导体中的电流跟这段导体两端的电压和导体的电阻的关系,分别得出实验结论。通过学生实验,让学生在动脑与动手,理论与实践的结合上找到这“两个关系”,最终得出欧姆定律I=U/R。为了研究导体的电阻大小与哪些因素有关, 控制导体的长度和材料不变,研究导体电阻与横截面积的关系。为了研究滑动摩擦力的大小跟哪些因素有关,保证压力相同时,研究滑动摩擦力与接触面粗糙程度的关系。
利用控制变量法研究物理问题,注重了知识的形成过程,有利于扭转重结论、轻过程的倾向,有助于培养学生的科学素养,使学生学会学习。中学物理课本中,蒸发的快慢与哪些因素的有关;滑动摩擦力的大小与哪些因素有关;液体压强与哪些因素有关;研究浮力大小与哪些因素有关;压力的作用效果与哪些因素有关;滑轮组的机械效率与哪些因素有关;动能、重力势能大小与哪些因素有关;导体的电阻与哪些因素有关;研究电阻一定、电流与电压的关系;研究电压一定、电流和电阻的关系;研究电流做功的多少跟哪些因素有关系;电流的热效应与哪些因素有关;研究电磁铁的磁性强弱跟哪些因素有关系等均应用了这种科学方法。二、转换法一些比较抽象的看不见、摸不着的物质的微观现象,要研究它们的运动等规律,使之转化为学生熟知的看得见、摸得着的宏观现象来认识它们。这种方法在科学上叫做“转换法”。 如:分子的运动,电流的存在等,如:空气看不见、摸不到,我们可以根据空气流动(风)所产生的作用来认识它;分子看不见、摸不到,不好研究,可以通过研究墨水的扩散现象去认识它;电流看不见、摸不到,判断电路中是否有电流时,我们可以根据电流产生的效应来认识它;磁场看不见、摸不到,我们可以根据它产生的作用来认识它。再如,有一些物理量不容易测得,我们可以根据定义式转换成直接测得的物理量。在由其定义式计算出其值,如电功率(我们无法直接测出电功率只能通过P=UI利用电流表、电压表测出U、I计算得出P)、电阻、密度等。 中学物理课本中,测不规则小石块的体积我们转换成测排开水的体积我们测曲线的长短时转换成细棉线的长度在测量滑动摩擦力时转换成测拉力的大小大气压强的测量(无法直接测出大气压的值,转换成求被大气压压起的水银柱的压强)测硬币的直径时转换成测刻度尺的长度测液体压强(我们将液体的压强转换成我们能看到的液柱高度差的变化)通过电流的效应来判断电流的存在(我们无法直接看到电流),通过磁场的效应来证明磁场的存在(我们无法直接看到磁场),研究物体内能与温度的关系(我们无法直接感知内能的变化,只能转换成测出温度的改变来说明内能的变化);在研究电热与电流、电阻的因素时,我们将电热的多少转换成液柱上升的高度。在我们研究电功与什么因素有关的时候,我们将电功的多少转换成砝码上升的高度。密度、功率、电功率、电阻、压强(大气压强)等物理量都是利用转换法测得的。在我们回答动能与什么因素有关时,我们回答说小球在平面上滑动的越远则动能越大,就是将动能的大小转换成了小球运动的远近。以上列举的这些问题均应用了这种科学方法。例:1、分子运动看不见、摸不着,不好研究,但科学家可以通过研究墨水的扩散现象去认识它,这种方法在科学上叫做“转换法’。下面是小明同学在学习中遇到的四个研究实例,其中采取的方法与刚才研究分子运动的方法相同的是( )
A。利用磁感应线去研究磁场问题
B。电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定
C。研究电流与电压、电阻关系时,先使电阻不变去研究电流与电压的关系:然后再让电压不变去研究电流与电阻的关系
D。研究电流时,将它比做水流
解析:B。三、放大法在有些实验中,实验的现象我们是能看到的,但是不容易观察。我们就将产生的效果进行放大再进行研究。 比如音*的振动很不容易观察,所以我们利用小泡沫球将其现象放大。观察压力对玻璃瓶的作用效果时我们将玻璃瓶密闭,装水,插上一个小玻璃管,将玻璃瓶的形变引起的液面变化放大成小玻璃管液面的变化。四、积累法在测量微小量的时候,我们常常将微小的量积累成一个比较大的量、比如在测量一张纸的厚度的时候,我们先测量100张纸的厚度在将结果除以100,这样使测量的结果更接近真实的值就是采取的积累法。要测量出一张邮票的质量、测量出心跳一下的时间,测量出导线的直径,均可用积累法来完成。五、类比法在我们学习一些十分抽象的,看不见、摸不着的物理量时,由于不易理解我们就拿出一个大家能看见的与之很相似的量来进行对照学习。如电流的形成、电压的作用通过以熟悉的水流的形成,水压使水管中形成了水流进行类比,从而得出电压是形成电流的原因的结论。学生在学习电学知识时,在老师的引导下,联想到:水压迫使水沿着一定的方向流动,使水管中形成了水流;类似的,电压迫使自由电荷做定向移动使电路中形成了电流。抽水机是提供水压的装置;类似的,电源是提供电压的装置。水流通过涡轮时,消耗水能转化为涡轮的动能;类似的,电流通过电灯时,消耗的电能转化为内能。我们学习分子动能的时候与物体的动能进行类比;学习功率时,将功率和速度进行类比。例: 1、某同学在学习电学知识时,在老师的引导下,联想力学实验现象,进行比较并找出了一些相类似的规律,其中不准确的是( ) A。水压使水管中形成水流;类似地,电压使电路中形成电流
B。抽水机是提供水压的装置;类似地,电源是提供电压的装置C。抽水机工作时消耗水能;类似地,电灯发光时消耗电能D。水流通过涡轮时,消耗水能转化为涡轮的动能:类似地,电流通过电灯时,消耗电能转化为内能和光能 解析:C
通过类比,用大家熟悉的水流、水压的直观认识,使得看不见、摸不着的抽象的电流、电压等知识跃然纸面,栩栩如生。六、理想化物理模型:实际现象和过程一般都十分复杂的,涉及到众多的因素,采用模型方法对学习和研究起到了简化和纯化的作用。但简化后的模型一定要表现出原型所反映出的特点、知识。模型法有较大的灵活性。每种模型有限定的运用条件和运用的范围。中学课本中很多知识都应用了这个方法,比如有:液柱、(比如在求液体对竖直的容器底的压强的时候,我们就选了一个液柱作为研究的对象简化,简化后的模型依然保留原来的特点和知识)光线、(在我们学习光线的时候光线是一束的,而且是看不见的,我们使用一条看的见的实线来表示就是将问题简化,利用了理想化模型)液片、(在我们研究连通器的特点,求大气压时我们都在某一位置取了一个液面,研究该液面所受到的压强和压力,也是将问题简化,利用理想化模型法)光沿直线传播;(在我们学习中我们知道真正的空气是各处都不均匀的,比如越往上空气越稀薄,在比如因为空气各处不均匀形成了风,而在光是沿直线传播一节中我们将问题简化,只取一个简单的模型,一条光线在均匀的介质中传播)匀速直线运动;(生活中很少有一个物体真正的做匀速直线运动,在我们研究问题的时候匀速直线运动只是一个模型)磁感线(磁感线是不存在的一条线,但是我们为了便于研究磁场我们人为的引入了一条线,将我们研究的问题简化。)例:1、在我们学习物理知识的过程中,运用物理模型进行研究的是( )
A、建立速度概念 B、研究光的直线传播 C、用磁感应线描述磁场 D、分析物体的质量 解析:B、C。七、科学推理法:当你在对观察到的现象进行解释的时候就是在进行推理,或说是在做出推论,例如当你家的狗在叫的时,你可能会推想有人在你家的门外,要做出这一推论,你就需要把现象(狗的叫声)与以往的知识经验,即有陌生人来时狗会叫结合起来。这样才能得出符合逻辑的答案如:在进行牛顿第一定律的实验时,当我们把物体在越光滑的平面运动的就越远的知识结合起来我们就推理出,如果平面绝对光滑物体将永远做匀速直线运动。如:在做真空不能传声的实验时,当我们发现空气越少,传出的声音就越小时,我们就推理出,真空是不能传声的。八、等效替代法:比如在研究合力时,一个力与两个力使弹簧发生的形变是等效的,那么这一个力就替代了两个力所以叫等效替代法,在研究串、并联电路的总电阻时,也用到了这样的方法。在平面镜成像的实验中我们利用两个完全相同的蜡烛,验证物与像的大小相同,因为我们无法真正的测出物与像的大小关系,所以我们利用了一个完全相同的另一根蜡烛来等效替代物体的大小。九、归纳法:是通过样本信息来推断总体信息的技术。要做出正确的归纳,就要从总体中选出的样本,这个样本必须足够大而且具有代表性。在我们买葡萄的时候就用了归纳法,我们往往先尝一尝,如果都很甜,就归纳出所有的葡萄都很甜的,就放心的买上一大串。比如铜能导电,银能导电,锌能导电则归纳出金属能导电。在实验中为了验证一个物理规律或定理,反复的通过实验来验证他的正确性然后归纳、分析整理得出正确的结论。在阿基米德原理中,为了验证F浮=G排,我们分别利用石块和木块做了两次实验,归纳、整理均得出F浮=G排,于是我们验证了阿基米德原理的正确性,使用的正是这种方法。在验证杠杆的平衡条件中,我们反复做了三次实验来验证F1×L1=F2×L2也是利用这种方法。一切发声体都在振动结论的得出(在实验中对多种结论进行分析整理并得出最后结论时),都要用到这一方法。在验证导体的电阻与什么因素有关的时候,经过多次的实验我们得出了导体的电阻与长度,材料,横截面积,温度有关,也是将实验的结论整理到一起后归纳总结得出的。在所有的科学实验和原理的得出中,我们几乎都用到了这种方法。十、比较法(对比法)当你想寻找两件事物的相同和不同之处,就需要用到比较法,可以进行比较的事物和物理量很多,对不同或有联系的两个对象进行比较,我们主要从中寻找它们的不同点和相同点,从而进一步揭示事物的本质属性。如,比较蒸发和沸腾的异同点。如,比较汽油机和柴油机的异同点 如,电动机和热机 如,电压表和电流表的使用利用比较法不仅加深了对它们的理解和区别,使同学们很快地记住它们,还能发现一些有趣的东西。十一、分类法把固体分为晶体和非晶体两类、导体和绝缘体。十二、观察法物理是一门以观察、实验为基础的学科。人们的许多物理知识是通过观察和实验认真地总结和思索得来的。着名的马德堡半球实验,证明了大气压强的存在。在教学中,可以根据教材中的实验,如长度、时间、温度、质量、密度、力、电流、电压等物理量的测量实验中,要求学生认真细致的观察,进行规范的实验操作,得到准确的实验结果,养成良好的实验习惯,培养实验技能。大部分均利用的是观察法。十三、比值定义法:例:密度、压强、功率、电流等概念公式采取的都是这样的方法。十四、多因式乘积法:例:电功、电热、热量等概念公式采取的都是这样的方法。 十五、逆向思维法例:由电生磁想到磁生电以上这些方法,还只是在初中物理的学习中会遇到和使用的一些科学方法,列举出来,希望能够给大家一些帮助。也希望大家都来关注这方面的问题,多了解和掌握一些科学方法,灵活运用,以便于指导我们的学习,工作和生活。配套练习题例1、质量、速度、密度、惯性、功率、比热容、电功率这些物理量可按一定的特征进行分类:(1)表示物质某种特性的物理量有:
(2)表示物体本身属性的物理量有:
(3)表示某方面的“快慢”的物理量有:
答案:[密度、比热容;质量、惯性;速度、功率、电功率]例2、在初中物理学习中涉及了许多科学研究方法,如等效替代、控制变量等,在下列物理研究实例中,
所用方法相同的是 : 。
所用方法相同的是 : 。(选填序号)。a. 研究液体内部压强与哪些因素有关;b. 在研究磁场时,引入“磁感线”的概念;c. 在研究串、并联电路时,引入“总电阻”的概念;d. 研究光的传播时,引入“光线”的概念;e. 在研究物体受几个力作用的情况时,引入“合力”的概念;f. 用扩散现象证明分子的无规则运动;g. 研究滑动摩擦力与哪些因素有关;h. 通过小磁针指向偏转,判定磁场的存在;i。 研究力的作用效果与力的哪些因素有关。
此为半开放习题:a、g、i控制变量;b、d物理模型;c、e等效替代;f、h转换法
例3、某同学为了粗略测出排球击地时对地面作用力的大小,他想出了一个办法:在地上铺一张纸,把球用水沾湿,然后用球击纸,在纸上留下一个圆形的湿迹,然后再将这张纸铺在台秤上,用力将球按在纸上,直至球与纸上的圆形湿迹完全重合,根据此时台秤的读数,计算出球击地的作用力。此同学实验的理论依据是:。
他在此实验中运用的方法是:。
力可以改变物体的形状;等效替代例4、某同学做“研究影响滑动摩擦力大小的因素”实验。他先用弹簧秤沿水平方向拉着木块在水平放置的平滑木板上做匀速直线运动,并在木板上逐次加砝码,得到实验数据。然后他将一条毛巾铺在木板上,用弹簧秤沿水平方向拉着同一个木块在粗糙的毛巾表面上做匀速直线运动,并重复上述实验过程。问:实验中要求弹簧秤必须沿水平方向拉木块,使其在水平面上做匀速直线运动,根据弹簧秤的示数就可以知道木块所受滑动摩擦力大小,其理论根据是: 。用到的实验方法是: 。答案:拉力与滑动摩擦力为平衡力;转换法例5、为了搞清运动和力的关系,“我们让同一小车从同一斜面上的同一位置向下运动到不同材料的水平面后,观察小车从水平面上运动的距离”的方法来研究,这个是运用了 方法。答案:控制变量法例6、在牛顿第一定律时,运动最典型的一种科学方法是 。答案:推理法例7、测量液体内部压强的压强计是采用了 方法,把压强的变化用连通器两边液面差的变化来表示。答案:转换例8、在研究串联、并联电路或混联电路中,我们可以用一个电阻代替所有电阻,在这个问题的研究中采用的是 方法。答案:等效替代法例9、在我们学过物理知识的过程中,运用物理模型进行研究的是( )A、建立速度的概念 B、研究光的直线传播C、一切发声体都在振动 D、密度概念的建立答案:B A、比值定义法 C、归纳法 D、比值定义法例10、在物理实验中,我们利用转换法测得的物理量有( )A、质量 B、功率 C、电阻 D、密度答案:BCD B、转换成测UI C、转换成测UI D、转换成测m、v例11、下列不属于理想化模型的是( )A、液柱 B、轮轴 C、光线 D、液片答案:B 理想化模型是原型的简化,近似的反应,所以B不是。例12、一元硬币的外观有银色的金属光泽,一位同学认为它是不锈钢制成的,在讨论时,有同学提出:“我们先拿磁铁吸一下”。“测量它的密度”“测量它的电阻率”等建议,第一位同学的意见,属于科学探究法中的( )A、实验操作 B、猜想与假设 C、观察与思考 D、分析与论证答案:A例13、探究物理规律和解决实际问题常用到许多重要的物理思想和方法,下列过程中运用了“等效替代”方法的是 ( )A、测量一张白纸的厚度 B、研究电流与电压、电阻的关系C、曹冲称象 D、牛顿总结出惯性定律答案:A、积累法 B、控制变量法 C、等效替代法 D、理想实验法例14、在学习欧姆定律时,为了研究导体的电流I与导体两端的电压U、导体的R的关系,实验中先保持R一定,研究I与U的关系;再保持U一定,研究I与R的关系,这种方法叫“控制变量法”是物理学研究中常用的一种方法。下面研究过程中应用了控制变量法的是( )A、通过电流做功的多少来判断电能的多少B、研究物体受两个力作用的效果时,引入合力的概念C、在研究磁场时,引入磁感应线D、研究电流产生的热量与电流的关系时保持电阻和时间一定答案:A、等效替代法 B、等效替代法 C、物理模型法 D、控制变量例15、以下研究问题的方法与“用光线表示光”相同的是( )A、把电流比作水流 B、利用三角板和刻度尺测量硬币的直径C、利用磁感线来描述磁场的分布D、利用20欧的总电阻代替串联的15欧和5欧的电阻答案:A、类比 B、转换法 C、模型法 D、等效替代法例16、物理研究中常常用到“控制变量法”“等效替代法”“模型法”“类比法”等方法,下面是初中物理中的几个研究实例:1、 研究一个物体受到几个力的作用时,引入合力的概念2、 用光线表示光的传播方向3、 研究电流时把它与水流相比4、 利用磁感应线来描述磁场上述几个实例中,采用了相同研究方法的是A、13 B、23 C、24 D、14答案:1、等效替代法 2、模型法 3、类比法 4、模型法例17回顾所学过的科学方法,下列不正确的是( )A、将固体分子看成是一些用弹簧连接的小球,这是模型法B、在研究由多个电阻组成的电路时,引入总电阻,这是等效法C、为观察玻璃瓶受力的形变,采取观察瓶塞上玻璃管中液面的变化,这是应用了放大法D、由电生磁想到磁生电,这是应用了控制变量法答案:D 逆向思维法例18下面是物理学习中的几个研究实例1、在研究物体受力问题时,引入合力2、在研究光时,引入“光线”的概念3、在研究多个用电器组成的电路时,引入总电阻4、在研究分子运动时,利用扩散现象来研究上述几个实例中,采取“等效替代”研究问题的是A、13 B、12 C、23 D、34答案:13为等效替代 2模型 4转换法例19下列三项实验:(1)用刻度尺测量细铜丝直径:把细铜丝在铅笔上紧密排绕N圈(N数根据情况确定),然后用刻度尺量出线圈的总长度再除以N;(2)测一个大头针的质量;先测出N个大头针的总质量,再除以N;(3)研究影响摩擦力大小的因素:先保持压力相同,研究摩擦力与接触面粗糙程度的关系;再保持接触面的粗糙程度相同,研究摩擦力与压力大小的关系。上述三项实验中,实验的思想方法相同的是 ,它们遇到问题的共同特点是 ,解决方法的共同特点是 。答案:12;被测量物体小,不容易测量;采取积累法把不容易测量的物理量积累成较大的值在进行测量例20根据作用效果相同的原理,作用在同一个物体上的两个力,我们可以用一个力的合力来代替它。这种“等效方法”是物理学中常用的研究方法之一,它可使研究的问题简化,以下几种情况中,属于这种“等效方法”的是( )A、在研究磁现象时,用磁感线来描述看不见,摸不着的磁场B、在研究电现象时,用电流产生的效果来研究看不见,摸不着的电流C、两个电阻并联时,可用并联的总电阻来代替两个电阻D、在研究电流的变化规律时,用水压和水流来类比电压和电流答案:A、模型 B、转换 C、等效替代 D、类比例21下面是同学们在物理学习中的几个研究实例:1、在学习汽化现象时,研究蒸发与沸腾的异同点2、根据熔化过程的不同,将固体分为晶体和非晶体两类3、比较电流表与电压表在使用过程中的相同点和不同点4、在研究磁场时,引入磁感线对磁场进行描述上述几个实例中,采用“比较法”为主要科学研究方法的是A、13 B、34 C、23 D、24答案:1、比较法 2、分类法 3、比较法 4、模型法例22在研究平面镜成像的特点时,关键的问题是设法确定象的位置,回想我们实验时的具体做法是 。这样确定像的位置,凭借的是视觉效果的相同,因而可以说是采用了 的科学方法。答案:另拿一支相同的蜡烛在玻璃板后面移动,直到看上去它跟像完全重合;等效替代例23分子运动看不见、摸不着,不好研究,但科学家可以通过研究墨水的扩散现象认识它,这样方法在科学上叫做“转换法” ,下面是小明同学在学习中遇到的四个研究实例,其中采取的方法与研究分子运动的方法相同的是( )A、利用磁感线去研究磁场问题B、电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定。C、研究电流与电压、电阻的关系时,先使电阻不变去研究电流与电压的关系;然后再让电压不变去研究电流与电阻的关系D、研究电流时,将它比做水流答案:A、模型 B、转换法 C、控制变量法 D、类比例24利用作用效果相同的原理来研究问题的方法称为“等效法”。如在研究力对物体的作用时,用一个力代替两个力。以下几种情况中,属于等效法的是( )A、在研究磁场时,用磁感线来描述磁场B、用右手螺旋定则确定通电螺旋管的磁极或电流方向C、用一电阻两端的电压与通过它的电流之比确定电阻的阻值D、在研究并联电路时,用并联电路的总电阻代替两个并联的电阻答案:A、模型法 B、模型法 C、比值定义法 D、等效替代法例25下面是小明同学在物理学习中的几个研究实例:1、在学习汽化现象时,研究蒸发与沸腾的异同点;2、根据熔化的过程不同,将固体分为晶体和非晶体两类3、比较电流表与电压表在使用过程中的相同点与不同点4、在研究磁场时,引入磁感线对磁场进行描述。其中采用的主要科学研究方法是“比较法”的为( )A、13 B、34 C、23 D、24答案 :A
D. 物理方法有哪几种
常见的物理方法有控制变量法、理想模型法、转换法、等效替代法、类比法、比较法、实验推理法、比值定义法、归纳法、估测法。
1、控制变量法:当某一物理量受到几个不同物理量的影响,为了确定各个不同物理量的影响,要控制某些量,使其固定不变,改变某一个量,看所研究的物理量与该物理量之间的关系。如:研究液体的压强与液体密度和深度的关系。
2、理想模型法:在用物理规律研究问题时,常需要对它们进行必要的简化,忽略次要因素,以突出主要矛盾。用这种理想化的方法将实际中的事物进行简化,便可得到一系列的物理模型。
3、转换法:物理学中对于一些看不见、摸不着的现象或不易直接测量的物理量,通常用一些非常直观的现象去认识,或用易测量的物理量间接测量,这种研究问题的方法叫转换法。
4、等效替代法:等效的方法是指面对一个较为复杂的问题,提出一个简单的方案或设想,而使它们的效果完全相同,将问题化难为易,求得解决。
5、类比法:根据两个(或两类)对象之间在某些方面的相同或相似而推出它们在其他方面也可能相同或相似的一种逻辑思维。
6、比较法:通过观察,分析,找出研究对象的相同点和不同点,它是认识事物的一种基本方法。如:比较发电机和电动机工作原理的异同。
7、实验推理法:是在观察实验的基础上,忽略次要因素,进行合理的推想,得出结论,达到认识事物本质的目的。如:研究物体运动状态与力的关系实验;研究声音的传播实验等。
8、比值定义法:就是用两个基本的物理量的“比”来定义一个新的物理量的方法。其特点是被定义的物理量往往是反映物质的最本质的属性,它不随定义所用的物理量的大小取舍而改变。如:速度、密度、压强、功率、比热容、热值等概念公式采取的都是这样的方法。
9、归纳法:从一般性较小的前提出发,推出一般性较大的结论的推理方法叫归纳法。
10、估测法:根据题目给定的条件或数量关系,可以不精确计算,而经分析、推理或进行简单的心算就能找出答案的一种解题方法。它的最大优点是不需要精确计算,只要对数据进行粗略估计或模糊计算,就能使问题迎刃而解。
物理故事
牛顿一人在家中的果园中,由于边走路边思考问题,无意间撞到园中的苹果树,这时一个苹果正好砸在牛顿的头上。牛顿突然从问题中醒悟过来,捡起了苹果,这时他又陷入一个问题:为什么苹果会落到地上,而不是飘上天空。最终牛顿提出一个举世定律:万有引力。
E. 沪教版,物理中的用的控制变量法和类比法都有哪些
在高中的物理教学和物理研究中常用的物理方法有观察法、实验法、类比法、分析法、图象法、比较法、综合法、控制变量法、图表法、归纳法、转化法等等很多种方法。物理学中对于多因素(多变量)的问题,常常采用控制因素(变量)的方法,把多因素的问题变成多个单因素的问题。每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对事物影响,分别加以研究,最后再综合解决,这种方法叫控制变量法。应用如下:
类比法是物理学研究中的一种重要方法。在物理学的研究和发展中,无论是对单个问题的解决,还是某些新概念的建立,乃至未知领域的探究,都渗透着类比思想与方法。类比法的独特性,使它对科学的发展起到积极推动作用,在物理学的研究的发展中占重要的地位。例如,1935年日本物理学家汤川秀树把核力与电磁力相类比,提出了核子通过核力场,由一方放出粒子,另一方吸收粒子而相互作用,并且估算出这种粒子的质量。1974年,鲍威尔发现了这种粒子的存在,使陷入困境的核力研究又充满了生机。又例如,法国科学家库仑用扭秤测定两带电球间的作用力时,发现两带电球间的作用力的定量关系与牛顿万有引力定律F=G的数学关系相似,他大胆地把静电力的定量关系类比于万有引力公式而得出静电力F=k,后来被许多科学实验所证实,于1785年确定为库仑定律。
F. 初中物理常见的科学方法有哪些
在《初中物理课程标准》中,科学探究既是学生的学习目标,又是重要的教学方式之一.在探究科学规律的过程中,学生通过动手动脑,通过物理学知道“再发现”过程,体验到科学探究的乐趣,学习科学家的科学探究方法,领悟科学的思想和精神,掌握科学学习的策略和科学的思维方法,从而提高他们的科学素质.下面就与大家一起来探讨物理教学中常用的一些科学方法. 一、猜想法 在科学探究的学习过程中,猜想这一步骤有着举足轻重的地位,它是物理智慧中最活跃的成分,对学生猜想能力的培养,也是物理探究过程中的一个重要环节,而且猜想决定了科学探究的方向,因此,在物理教学的过程中,引导学生科学合理地猜想就显得格外重要.首先,猜想要有一定经验和知识作为基础.在进行科学猜想能力方面的教学时,可先针对问题让学生展开想象的翅膀,鼓励学生把所有可能的情况都大胆地说出来,然后让学生根据已有知识和生活经验逐一进行分析,想想生活中有哪些事实支持它,它和已有知识是否一致,排除那些与经验和知识相矛盾的想法,留下的就可能是科学的猜想了,没有一定的知识和经验,猜想恐怕只能是无本之木,无源之水.所以在教学中为了避免学生胡猜乱想,让学生说出猜想的理由、事实依据是很有效的避免课堂混乱的手段,也是培养学生探究能力的方法之一. 二、控制变量法 “控制变量法”是初中物理中常用的探究问题的科学方法.由于影响物理研究对象的因素在许多情况下并不是单一的,而是多种因素相互交错、共同起作用的.所以要想精确地把握研究对象的各种特性,弄清事物变化的原因和规律,必须人为的制造一些条件,便于问题的研究.例如当一个物理量与几个因素有关时,我们一般是分别研究这个物理量与各个因素之间的关系,再进行综合分析得出结论.这样就必须在研究物理量同其中一个因素之间的关系时,将另外几个因素人为地控制起来,使它们保持不变,以便观察和研究该物理量与这个因素之间的关系.这就是“控制变量”的方法.在初中物理教学中有许多概念或规律的探索过程,都要用到控制变量法.例如,在八年级刚接触物理时,有一个探究实验是探究“声音怎样从发声的物体传到远处?”.让一个学生在桌子一端敲击桌面,另一个学生在另一端听声音,一次贴在桌面上听,一次只是贴近桌面.发现两次都可以听到声音,引导学生分析这两次声音分别是通过桌子和空气传来的,从而说明声音要靠介质传播.同时让学生比较两次听到的声音大小,从而认识到声音在固体中比在空气中传播得快,即固体的传声能力强.在这里,老师一定要强调实验中需要控制的变量就是听声音的距离和敲击桌面的力度要相同,使学生体验到控制变量的思想,为以后的探究实验作好方法上的准备.控制变量法是一种最常用的、非常有效的探索客观物理规律的科学方法.通过控制变量法,可以让我们很方便的研究出某个物理量与多个因素之间的定性或定量关系,从而能得出普遍的规律. 三、等效替代法 有一个广为人知的历史故事──曹冲称象.他运用的就是一种等效替代的思想,他是用石头替代了大象,巧妙地测出了大象的重力.当然,这里还用到了“化整为零”的思想.很多伟人也经常会用等效法来使研究问题简化,例如,爱迪生用围成一圈的平面镜的反射光等效多个太阳造成了无影灯,他的助手阿普顿在苦苦计算灯泡的容积时,爱迪生却告诉他只需要把灯泡装满水,测量水的体积即为灯泡的容积.还有阿基米德在洗澡时发现了鉴别王冠真假的方法,从而也导致了一个重要的原理──阿基米德原理的发现.可以说“等效替代”的思想是物理实验成功的最根本、最重要的思路,物理学中的相关定律、定理、公式、原理都是以替代思维成立的基础为出发点的.例如,测量不规则固体的体积,就是利用物体浸没在液体中时,物体体积与物体排开的液体的体积相等的原理,将用替代.在有量筒或量杯时,可采用“排液补差法”或叫“等量空间占据法”测量.没有量筒或量杯时,可用弹簧秤和水,通过测量浮力大小,结合阿基米德原理计算(全部浸没),也可以用天平测排水的质量(全部浸没),再利用密度知识来计算.当无法直接测物体的质量时,就可以用漂浮的方法利用的原理,测出也就知道了,物体的质量也就可求了.这种质量或体积的替代测量方法一般多见于测量物质密度的方法中.还有许多物理量的测量都用到了等效替代法. 四、转换法 所谓“转换法”,主要是指在保证效果相同的前提下,将不可见、不易见的现象转换成可见、易见的现象;将陌生、复杂的问题转换成熟悉、简单的问题;将难以测量或测准的物理量转换为能够测量或测准的物理量的方法.弹簧测力计的原理也隐含了一个间接测量原则.即用可直接量度的量去间接表现那些不便直接观察不便直接测量的量.在这里,弹簧的长度变化是可以直接观察直接测量的,而力的大小是看不到摸不着的,但是力的大小却和弹簧长度的变化有关系,所以我们就可以用弹簧的伸长量来量度力的大小.不仅测力计是这样的,温度计、压强计、气压表(高度计)、电流表、电压表、时钟速度表都是如此,看见的是长度、角度的变化,反映的是温度、液体压强、大气压强(高度)、电流、电压、时间、速度的变化.初中物理中有很多地方都用到了转换法的原理.研究物体升温吸热的多少与哪些因素有关时,可通过观察放入其中的相同电热器加热时间的长短来判断吸热多少.利用扩散现象来研究分子的运动及分子运动的快慢.研究动能或势能大小时通过观察运动的小球推动纸盒移动距离的大小或是木桩被打入地下的深度,来推断动能和势能的大小.研究力、电流、磁场时,由于它们都是看不见摸不着的东西,我们可以利用力所产生的效果、电流产生的各种效应、磁场的基本性质来研究它们.比如可以通过泡沫塑料凹陷的程度来知道压力的作用效果大小,用灯光的亮度来感知电流的大小、用电磁铁吸引大头针的个数来判断其磁性强弱.将光在透明空气中的传播转换为在烟或水雾中的传播来观察光的传播方向.再如,把发声体的微小振动用泡沫塑料球的振动来进行放大,把物体热胀冷缩的微小变化用细管中液柱的高度变化来放大,把物体受力后的微小形变用平面镜反射光线的偏转角度来进行放大等等都是利用了转换法. 五、理想化方法 “理想化方法”.它又分为“理想实验法”和“理想模型法”.例如,我们在研究真空能否传声的时候,将一只小电铃放在密闭的玻璃罩内,接通电路,可清楚的听到铃声,用抽气机逐渐抽去玻璃罩内的空气,听到铃声越来越弱,这说明空气越稀薄,空气的传声能力越弱.实验中无法达到绝对的真空,但可以通过铃声的变化趋势,推测出真空不能传声,这与牛顿第一定律的建立过程是非常类似的.这属于理想实验法.如果教师在教学中注意很好地渗透这一方法,有利于培养学生的科学思想,提高学生的创新能力.在初中教材中,我们熟悉的理想化模型有:杠杆(只要能绕着固定点转动的物体都可以看作是杠杆)、斜面(像盘山公路这样起点为低终点高的弯曲面可以看作是斜面)、轮轴(如门把手、汽车方向盘、脚踏板、扳手这样在使用中某部分转动形成的轨迹是一个圆的机械都可以看作轮轴)、连通器(上端开口、底部连通的容器都可以看作是连通器)、薄透镜、光线、磁感线等等.正是引入了这些理想化的物理模型,才得以使我们面对许多复杂的现实问题,通过简化处理能够比较顺利地予以解决.我们也常常运用理想化方法,对于某些问题可以通过寻找和建立合适的理想化模型来处理,即将研究对象、条件等理想化,以达到化繁为简的目的. 另外常用的科学方法还有类比法、图像法、归纳法、比较法、演绎法、推理法、想象法、逆向思维法、宏观与微观结合法、累积法,以及微分法等等.
G. 物理主要的科学实验方法有哪些如控制变量法....
一、控制变量法
控制变量法是初中物理实验中常用的探索问题和分析解决问题的科学方法之一。所谓控制变量法是指为了研究物理量同影响它的多个因素中的一个因素的关系,可将除了这个因素以外的其它因素人为地控制起来,使其保持不变,再比较、研究该物理量与该因素之间的关系,得出结论,然后再综合起来得出规律的方法。
这种方法在整个初中物理实验中的应用比较普遍。例如在人教版实验教科书《物理》(八年级上册)第一章第一节关于探究声是怎样传播的实验中,就开始渗透控制变量的思想。因为固体、液体和气体都是传声的介质,我们逐一研究它们分别可以传声时,就必须控制其它两个因素。如果在进行该实验时就给学生恰当地点拨,提出:“把两张课桌紧紧地挨在一起,一个同学轻敲桌面,另一个同学把耳朵贴在另一张桌子上,听到的敲击声为什么就能认为是桌子传来而不是空气传来的?”引导学生去分析比较,就能使学生体验到控制变量的思想。在接着的探究影响音调、响度等因素的实验中,把控制变量的思想对学生给予简要的介绍,就会使学生逐步领悟到控制变量法的实质要领,为以后的探究实验作好方法上的准备。
在初中物理中,探究影响导体电阻大小的因素、电流跟电压电阻的关系、影响电热功率大小的因素、影响电磁铁磁性强弱的因素、影响滑动摩擦力大小的因素、决定压力作用效果的因素等等实验,运用了控制变量法。
二、等效替代法
等效替代法是指在研究某一个物理现象和规律中,因实验本身的特殊限制或因实验器材等限制,不可以或很难直接揭示物理本质,而采取与之相似或有共同特征的等效现象来替代的方法。这种方法若运用恰当,不仅能顺利得出结论,而且容易被学生接受和理解。
三、转换法有的物理量不便于直接测量,有的物理现象不便于直接观察,通过转换为容易测量到与之相等或与之相关联的物理现象,从而获得结论的方法。譬如,在研究电热的功率与电阻关系的实验中,电流通过阻值不等的两根电阻丝产生的热量无法直接观测和比较,而我们通过转换为让煤油吸热,观察煤油温度变化情况,从而推导出那个电阻放热多。教学时不妨设计一问:为什么研究电热的功率与电阻大小的关系时,还用到似乎与实验无关的煤油呢?引发学生的思考和讨论,在小结出该实验中煤油的作用的基础上,进而再问:该实验能否不用煤油而改用其它方式来观察电阻通电后的发热情况?这样促使学生思维得以发散,转换的思维方法得到训练,设计实验的能力也随着提高了。
四、类比法类比法是一种推理方法。为了把要表达的物理问题说清楚明白,往往用具体的、有形的、人们所熟知的事物来类比要说明的那些抽象的、无形的、陌生的事物,通过借助于一个比较熟悉的对象的某些特征,去理解和掌握另一个有相似性的对象的某些特征。如:在研究电压的作用时,借助于看得见而学生比较熟悉的“水压形成水流”的实验作类比,来揭示电压是形成电流的原因。又比如在研究通电螺线管的磁场的实验中,为准确记忆通电螺线管的北极与电流方向的关系,以紧握的右拳头类比为螺线管,四指为线圈并指向电流的方向,则大拇指所指的一端为北极。这样形象直观很容易被学生理解记忆牢固。
五、图象法图象是一个数学概念,用来表示一个量随另一个量的变化关系,很直观。由于物理学中经常要研究一个物理量随另一个物理量的变化情况,因此图象在物理中有着广泛的应用。在实验中,运用图象来处理实验数据,探究内在的物理规律,具有独特之处。如:在探究固体熔化时温度的变化规律和水的沸腾情况的实验中,就是运用图象法来处理数据的。它形象直观地表示了物质温度的变化情况,学生在亲历实验自主得出数据的基础上,通过描点、连线绘出图象就能准确地把握住晶体和非晶体的熔化特点、液体的沸腾特点了。
六、理想化方法
理想化方法是指在物理教学中通过想象建立模型和进行实验的一种科学方法。可分为理想化模型和理想化实验。
理想化模型就是指把复杂的问题简单化,把研究对象的一些次要因素舍去,抓住主要因素,对实际问题进行理想化处理去再现原形的本质的东西,构成理想化的物理模型。这是一种重要的物理研究方法。例如探究杠杆平衡条件的实验,杠杆就是一种理想化的模型。杠杆在使用时,由于受到力的作用,都会引起或多或少的形变,然而在研究中把此时的形变忽略不计,这里我们就把杠杆经过理想化的处理,认为它无形变,视为一个硬棒,从而使学生在研究时不被细枝末节的因素影响,顺利地得出杠杆平衡原理。
H. 物理方法有哪几种
物理方法一般有五种,分为控制变量法、转换法、等效替代法、理想模型法和实验推理法。其中,控制变量法是把一个多因素影响某一物理量的问题,通过控制某几个因素不变,只让其中一个因素改变,从而转化为单一因素影响某一物理量问题的研究方法。
转换法(放大法):对于一些看不见,摸不着的物理现象,或不易直接测量的物理量,用一些非常直观的现象去认识或用容易测量的物理量间接测量的方法。
等效替代法(等效法):在研究物理问题时,有时为了使问题简化,常用一个物理量来代替其他所有物理量,但不会改变物理效果。
I. 物理方法有哪些 物理方法简述
1、物理方法有观察法、实验法、类比法、分析法、图象法、比较法、综合法、控制变量法、图表法、归纳法、转化法等等很多种方法。
2、所谓物理方法就是运用现有的物理知识对物理做深入的学习和研究,找到解决物理问题的基本思路与方法。物理方法有观察法、实验法、类比法、分析法、图象法、比较法、综合法、控制变量法、图表法、归纳法等等很多种方法。