A. 晶体的定义是什么
晶体(crystal)即是物质的质点(分子、原子、离子)在三维空间作有规律的周期性重复排列所形成的物质。
从宏观上看,晶体都有自己独特的、呈对称性的形状,如食盐呈立方体;冰呈六角棱柱体;明矾呈八面体等。晶体在不同的方向上有不同的物理性质,如机械强度、导热性、热膨胀、导电性等,称为各向异性。
晶体的简介。
晶体内部结构中的质点(原子、离子、分子、原子团)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。组成某种几何多面体的平面称为晶面,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种晶体晶面间夹角是一定的,称为晶面角不变原理。
B. 什么叫晶体
什么叫做晶体:
晶体(crystal)是有明确衍射图案的固体,其原子或分子在空间按一定规律周期重复地排列。晶体中原子或分子的排列具有三维空间的周期性,隔一定的距离重复出现,这种周期性规律是晶体结构中最基本的特征。
晶体的形状:
晶体通常呈现规则的几何形状,就像有人特意加工出来的一样。其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。而玻璃、珍珠、沥青、塑料等非晶体,内部原子的排列则是杂乱无章的。准晶体是发现的一类新物质,其内部排列既不同于晶体,也不同于非晶体。
究竟什么样的物质才能算作晶体呢?首先,除液晶外,晶体一般是固体形态。其次,组成物质的原子、分子或离子具有规律、周期性的排列,这样的物质就是晶体。
但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。用X光对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体。
为了描述晶体的结构,我们把构成晶体的原子当成一个点,再用假想的线段将这些代表原子的各点连接起来,就绘成了像图中所表示的格架式空间结构。这种用来描述原子在晶体中排列的几何空间格架,称为晶格。由于晶体中原子的排列是有规律的,可以从晶格中拿出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞。许多取向相同的晶胞组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一致,常见的单晶如单晶硅、单晶石英。大家最常见到的一般是多晶体。
由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异。例如,晶体有固定的熔点,当温度高到某一温度便立即熔化;而玻璃及其它非晶体则没有固定的熔点,从软化到熔化是一个较大的温度范围。
C. 在物理上,什么是晶体。
有规则形态且有固定的熔点和凝固点的物质,熔化或凝固*过程中*吸热温度不变,如铁,冰,铝等,非晶体有玻璃 松香等
D. 物理学中常见的晶体有哪些
常见的晶体有:金属、石英、云母、明矾、食盐、硫酸铜、糖、味精等.
常见的非晶体有:玻璃、蜂蜡、松香、沥青、橡胶等.
E. 初二物理的晶体有哪些非晶体呢
晶体;海波、冰、食盐、水晶、明矾、各种金属、金刚石、石墨、石英、云母、硫酸铜、糖、味精
我们吃的盐是氯化钠的结晶,味精闷卜是谷氨酸钠神斗的结晶,冬天窗户玻璃上的冰花和天上飘下的雪花,是水的结晶。每家厨房中常见的砂糖、碱是晶体,每个人身上的牙齿、骨骼是晶体,工业中的矿物岩石是晶体,日常见到的各种金属及合金制蚂瞎穗品也属晶体,就连地上的泥土砂石都是晶体。
非晶体;玻璃、蜂蜡、松香、沥青、橡胶、石蜡、琥珀、珍珠。
F. 求列出初中物理中常见的晶体与非晶体
晶体:石英、云母、明矾、食盐、硫酸铜、味精。
非晶体:玻璃、石蜡、松香、沥青、塑料。
晶体拥有固定的熔点,在熔化过程中,温度始终保持不变。单晶体有各向异性的特点。晶体可以使X光发生有规律的衍射。宏观上能否产生X光衍射现象,是实验上判定某物质是不是晶体的主要方法。晶体相对应的晶面角相等,称为晶面角守恒。
(6)物理中晶体指哪些扩展阅读:
晶体与非晶体的区别:
本质区别:
晶体有自范性,非晶体无自范性。
物理性质:
晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。
非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。外形为无规则形状的固体。
晶体有各向异性,非晶体多数是各向同性。晶体有固定的熔点,非晶体无固定的熔点,它的熔化过程中温度随加热不断升高。
微观结构:
晶体和非晶体所以含有不同的物理性质,主要是由于它的微观结构不同。
G. 晶体是什么
晶体是原子、离子或分子按照一定的周期性在空间排列形成在结晶过程中形成具有一定规则的几何外形的固体。晶体通常呈现规则的几何形状,其内部原子的排列十分规整严格。
(1)晶体拥有整齐规则的几何外形。
(2)晶体拥有固定的熔点,在熔化固液共存过程中,温度始终保持不变。
(3)晶体有各向异性的特点。
固态物质有晶体与非晶态物质(无定形固体)之分,而无定形固体不具有上述所有特点。
晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。
非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。如玻璃。外形为无规则形状的固体。
2.晶体结构
晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体。 固体可分为晶体、非晶体和准晶体三大类。
具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。固态物质是否为晶体,一般可由X射线衍射法予以鉴定。
晶体内部结构中的质点(原子、离子、分子)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。组成某种几何多面体的平面称为晶面,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种晶体晶面间夹角(晶面角)是一定的,称为晶面角不变原理。
晶体按其内部结构可分为七大晶系和14种晶格类型。晶体都有一定的对称性,有32种对称元素系,对应的对称动作群称做晶体系点群。按照内部质点间作用力性质不同,晶体可分为离子晶体、原子晶体、分子晶体、金属晶体等四大典型晶体,如食盐、金刚石、干冰和各种金属等。同一晶体也有单晶和多晶(或粉晶)的区别。在实际中还存在混合型晶体。说到晶体,还得从结晶谈起。大家知道,所有物质都是由原子或分子构成的。众所周知,物质有三种聚集形态:气体、液体和固体。但是,你知道根据其内部构造特点,固体又可分为几类吗?研究表明,固体可分为晶体、非晶体和准晶体三大类。
H. 常见的晶体有哪些
常见晶体:石英、云母、明矾、食盐、硫酸铜、味精、钻石、金铁铅、硼砂、蔗糖、石膏
常见非晶体:玻璃、沥青、松香、塑料、石蜡、橡胶
晶体(crystal)是由大量微观物质单位(原子、离子、分子等)按一定规则有序排列的结构,因此可以从结构单位的大小来研究判断排列规则和晶体形态 。
非晶体是指结构无序或者近程有序而长程无序的物质,组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体,它没有一定规则的外形。它的物理性质在各个方向上是相同的,叫“各向同性”。
(8)物理中晶体指哪些扩展阅读:
晶体与非晶体之间在一定条件下可以相互转化。例如,把石英晶体熔化并升山迅速冷却,可以得到石英玻璃。将非晶半导体物质在一定温度下热处理,可以得到相应的晶体。可以说,晶态和非晶态是物质在不同条件下存在的两种不同的固体状态,晶态是热力学稳定态。
非晶态固体包括非晶态电介质、非晶态半导判罩体、非晶态金属。它们有特殊的物理、化学性质。例如金属玻璃(非晶态金属)比一般(晶态)金属的强度高、弹性好、硬度和韧性高、抗腐蚀性好、导磁性强、电阻率高等。这使非晶态固体有多方面的应用。它是一个正在发展中的新的研究领域,得到迅速的发展。
晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体。固体可分为晶体、非晶体和准晶体三大类。
I. 物理中晶体是什么、
.1 X射线:通常将波长为10-3nm~10nm的电磁波叫做X射线。用于晶体衍射的X射线波长一般从0.05nm到0.25nm。
2.2 晶体:由结构单元在三维空间呈周期性重复排列而成的固态物质。这里的结构基元指的是原子、分子、离子或它们的集团;在晶体学中,(空间)点阵是用来表达晶体中原子团排列的周期性的工具,是三维空间中,周期重复排列的点的集合。晶体可以用简单的公式表示如下:
晶体 = (空间)点阵 + 结构基元
2.3多晶体: 由许多小晶粒聚集而成的物体称为多晶体或多晶材料。它可以是单相的,也可以是多相的。
2.4 晶胞:晶体中用来反映晶体的周期性、对称性及结构单元的基本构造单元。其形状为一平行六面体。
2.5 晶胞参数;点阵常数:平行六面体形的晶胞可用其三个边的长度a、b、c及它们间的夹角α(b、c边的夹角)、β(a、c边的夹角)、γ(a、b边的夹角)这六个数来表达,这六个数就叫做点阵常数或晶胞参数。
2.6 点阵畸变:存在于点阵内部的不均匀应变。
2.7 晶系:晶体中可能存在的点阵,按其本身的对称性,也即晶胞的对称性可分为七种,称为七个晶系。
2.8 (晶)面间距d:空间点阵可认为是由许多相同的具有一定周期构造的平面点阵平行等距排列而成的平面点阵族构成的。两个相邻平面点阵间的距离就叫做面间距。
2.9 晶面指数(h k l):用来代表一个平面点阵族的,用圆括号括起来的三个互质的整数(h k l)。
2.10多晶衍射法:利用晶体对X射线的衍射效应,获得多晶样品的X射线衍射图的方法。该法给出一套基本数据——d-I 值 (衍射面间距和衍射强度)。根据这些数据可进行物相分析、计算晶胞参数、确定空间点阵以及测定简单金属和化合物的晶体结构。样品通常为块状或粉末状,若是后者,又称为X射线粉末法。
2.11 高温衍射:将试样保持在高于室温的某个温度下进行X射线衍射。
2.12 衍射谱:表现测角角度和衍射强度关系的图谱。
2.13 相对强度I/I1:某衍射峰的相对强度是该衍射峰的面积(或峰高)与该衍射谱中最强衍射峰的面积(或峰高)I1的比值乘上100。此面积(或峰高)为扣除背底后的值,物相定性分析采用相对强度。
2.14 积分强度;累积强度:单位长度衍射线上接收到的累积能量,实验上是该衍射峰的积分计数与背底计数之差。物相定量分析采用积分强度。
2.15 择优取向:多晶聚集体中个小晶粒的取向不是在空间均匀分布,而是相对集中在某些方向的现象。
2.16 物相;相: 物相是具有相同成分及相同物理化学性质的,即具有相同晶体结构的物质均匀部分。
2.17 相变:晶体结构发生变化的现象。
2.18 半高宽: 衍射峰高极大值一半处的衍射峰宽。
2.19 积分宽:用衍射峰面积(积分强度)除以衍射峰高极大值(峰值强度)来表示的衍射线宽度。
2.20 微观应力:存在于晶体内部的残余应力。
2.21 (晶体)缺陷:晶体内部周期性遭破坏的地方。
2.22 分析线:在待测物相、标准物质衍射图中选作定量分析用或作线形分析用的衍射线。
2.23 单位符号:晶体学常用的长度单位是“埃”(Angstrom),符号是“Å”、角度单位是“度”,符号“o”。