❶ 什么是张量,和矩阵有什么关系
张量
从代数角度讲,
它是向量的推广。我们知道,
向量可以看成一维的“表格”(即分量按照顺序排成一排),
矩阵是二维的“表格”(分量按照纵横位置排列),
那么n阶张量就是所谓的n维的“表格”。
张量的严格定义是利用线性映射来描述的。与矢量相类似,定义由若干坐标系改变时满足一定坐标转化关系的有序数组成的集合为张量。
从几何角度讲,
它是一个真正的几何量,也就是说,它是一个不随参照系的坐标变换而变化的东西。向量也具有这种特性。
标量可以看作是0阶张量,矢量可以看作1阶张量。张量中有许多特殊的形式,
比如对称张量、反对称张量等等。
-------------------------------------------
矩阵和向量的关系
有什么不同
我觉得就是就是两种不同的空间表示形式
矩阵在运算后得到 就是向量空间
一个n×1的矩阵对应一个n维的向量.
如:
(1,2,3)对应i+2j+3k,
当然也可以拿两个矩阵的乘积表示一个n维向量.
如:
拿横向的矩阵1×n的矩阵(i,j,k)乘以纵向的矩阵n×1的矩阵(1,2,3),
得到一个1×1的矩阵(i+2j+3k),刚好和向量i+2j+3k对应.
❷ 什么是张量,基本思想是什么
张量:一个物理量如果必须用n阶方阵描述,且满足某几种特定的运算规则,则这个方阵描述的物理量称为张量。
基本思想:
张量是一个定义在一些向量空间和一些对偶空间的笛卡儿积上的多线性函数,其坐标是|n|维空间内,有|n|个分量的一种量,
其中每个分量都是坐标的函数,
而在坐标变换时,这些分量也依照某些规则作线性变换。r
称为该张量的秩或阶(与矩阵的秩和阶均无关系)。
❸ 什么是张量
张量:一个物理量如果必须用n阶方阵描述,且满足某几种特定的运算规则(也就是说,这方阵通过这几种运算后得到的结果是规则指出的),则这个方阵描述的物理量称为张量。
举例:矢量就是一个2阶张量,它可以用2阶方阵描述,且满足特定的运算规则(2阶情况下简化为平行四边形定则)。
此外如函数和其梯度(场)、向量场、外微分形势、黎曼度量等都是张量
注释:
1、张量在物理上用的多,但是是一个数学的概念,是微分几何研究的一个方向
2、概念的核心:张量的分量在坐标变换下满足适当的变换律。
❹ 张量的物理含义是什么张量求导的物理含义又是什么
张量:一个物理量如果必须用n阶方阵描述,且满足某几种特定的运算规则(也就是说,这方阵通过这几种运算后得到的结果是规则指出的),则这个方阵描述的物理量称为张量。
举例:矢量就是一个2阶张量,它可以用2阶方阵描述,且满足特定的运算规则(2阶情况下简化为平行四边形定则)。 此外如函数和其梯度(场)、向量场、外微分形势、黎曼度量等都是张量
注释:
1、张量在物理上用的多,但是是一个数学的概念,是微分几何研究的一个方向
2、概念的核心:张量的分量在坐标变换下满足适当的变换律。