导航:首页 > 物理学科 > 大学物理有哪些思想

大学物理有哪些思想

发布时间:2023-07-22 20:24:21

大学物理都包括哪些内容

1.单位,物理量和矢量
2.直线运动
3.在二维/三维上的运动(圆周运动、抛体运动)
4.牛顿运动定律
5.牛顿定律的运用
6.功和动能
7.势能和能量守恒
8.动量、冲量和碰撞
9.转动与刚体
10.旋转的动力学
11.弹性和平衡
12.流体力学
13.引力
14.周期运动

15.机械波
16.声音和听力

17.温度与热
18.物质的热性质
19.热力学第一定律
20.热力学第二定律

(以上大致为一半)

21.电荷与电场
22.高斯定律
23.电势
24.电容和电介质
25.电流、电阻和电动势
26.直流电路
27.磁场和磁力
28.磁场的来源
29.电磁感应
30.电感
31.交流电
32.电磁波

33.光及光的传播
34.几何光学
35.干涉
36.衍射

37.相对论
38.光子
39.电子
40.量子力学引论
41.原子结构
42.分子和凝聚态
43.原子核
44.粒子和宇宙

❷ 上大学学物理学些什么内容

《大学物理》课程教学大纲
一.课程基本情况
名称:大学物理
授课对象:土木工程、无机非金属材料工程、给水排水工程、工程力学、环境工程、高分子材料与工程、安全工程、环境科学、地理信息系统、计算机科学与技术、电子信息工程、电子信息科学与技术、电气工程及其自动化、交通工程、测绘工程、建筑环境与设备工程
考核方式: 考试
先修课程: 高等数学
后续课程: 力学
开课教研室:物理教研室
二.课程教学目标
1.任务和地位
大学物理课程是高等工业院校各专业学生的一门重要的必修基础课,它的基本理论渗透在自然科学的许多领域,应用于生产技术的各部门,它是自然科学的许多领域和工程技术的基础;它所包含的经典物理、近代物理和物理学在科学技术上应用的初步知识等都是一个高级工程技术人员所必备的。
2.知识要求
通过课堂讲解及讨论,课后布置适当的作业任务,再加上大学物理实验课的辅助作用,使学生能够对课程中的基本概念、基本理论、基本方法有比较全面的、系统的认识和正确的理解,并具有初步的分析、解决物理问题的能力。
3.能力要求
通过大学物理课的学习,一方面可以使学生较系统地掌握必要的物理基础;另一方面使学生初步学习科学的思想方法和研究问题的方法。这些都起着开阔思路、激发探索和创新精神,增强适应能力,为其在今后学习相关的专业基础课程打下良好的基础。学好大学物理课,不仅对学生在校的学习十分重要,而且对学生毕业以后的工作和进一步学习新理论、新知识、新技术,不断更新知识,都将发生深远的影响。
三.教学内容的基本要求和学时分配
1.教学内容及要求
⑴力学部分的基本要求:
①理解质点、刚体、惯性系等概念;了解引入这些概念和模型在科学研究方法上的重要意义。
②掌握位置矢量、位移、速度、加速度等概念及其计算方法;根据给定的用直角坐标表示的质点在平面内运动的运动方程、能灵活熟练地求出在任意时间内质点的位移和任意时刻质点的速度和加速度;对一些涉及简单积分的力学问题,也能根据给定的加速度和初始条件求速度和运动方程等。根据给定的用直角坐标表示的质点作圆周运动的运动方程,能灵活、熟练地求出运动质点的角速度、角加速度、切向加速度、法向加速度和加速度;了解任意平面曲线运动的切向加速度和法向加速度的概念和求法。
③掌握牛顿三个定律及其适用条件,理解用矢量(包括投影形式)和微分方程形式写出的牛顿第二定律。了解量纲及引入量纲的物理意义。
④掌握功的概念、能熟练地计算作用在质点上的变力的功;掌握保守力作功的特点及势能、势能差的概念,会计算万有引力势能。
⑤掌握质点的动能定理、动量定理、并能用它们分析和解决质点在一个平面内运动的力学问题。掌握机械能守恒定律、动量守恒定律及它们的适用条件,能用机械能守恒定律、动量守恒定律分析少数质点组成的系统在一个平面内运动的力学问题。了解普适的能量转换和守恒定律。
⑥了解转动惯量的概念;掌握刚体绕定轴转动定律(简称转动定律);在已知转动惯量的条件下,能熟练地应用转动定律分析,计算有关问题。
⑦理解动量矩(角动量)概念;通过质点在平面内运动和刚体绕定轴转动的情况学习和理解动量矩守恒定律及其适用条件。
⑧理解牛顿力学的相对性原理;掌握伽利略坐标、速度变换,能用伽利略变换计算在不同惯性系中质点一维运动的坐标、速度变换问题。
⑵热学部分的基本要求:
①宏观意义上理解平衡状态、平衡过程,可逆过程、不可逆过程等概念;掌握内能、功、热量、热容等概念。
②掌握热力学第一定律,能熟练地应用该定律和理想气体状态方程分析、计算理想气体各等值过程及绝热过程中的功、热量、内能改变量、以及循环过程的效率。了解致冷系数。
③理解热力学第二定律的两种叙述,了解两种叙述的等价性。
④理解几率和统计平均值的概念。从微观统计意义上理解平衡状态、内能、可逆过程和不可逆过程等概念。了解热力学第二定律的统计意义。掌握熵的概念,理解熵增加原理。
⑤掌握理想气体的压强公式和温度公式,理解气体压强、温度的微观统计意义;理解系统宏观性质是微观运动的统计表现;了解从建立模型、进行统计平均处理到阐明宏观量微观质的研究方法。
⑥理解麦克斯韦速率分布定律;理解速率分布函数和速率分布曲线的物理意义;理解气体分子热运动的算术平均速率,方均根速率和最概然速率。
⑦理解气体分子平均能量按自由度均分定理及理想气体的内能公式。会计算理想气体的热容量。
⑧理解气体分子平均碰撞频率及平均自由程。了解真实气体的实验等温线及范德瓦尔斯方程。
⑨了解阿伏伽德罗常数、波耳兹曼常数等数值和单位;了解常温、常压下气体分子数密度、算术平均速率、平均自由程及分子有效直径等的数量级。
⑶电磁学部分的基本要求
①掌握电场强度、电势、磁感应强度的概念。在一些简单的对称情形下,对于连续、均匀分布静电荷或稳恒电流,能计算其周围或对称轴上任何一点的电场强度,电势或磁感应强度;在已知几个简单、典型的场源分布时,能利用迭加原理计算它们的组合体的电场或磁场分布。
②掌握电势与场强积分的关系,理解场强与电势梯度的关系。
③理解静电场的环流定理和高斯定理,了解它们在电磁学中的重要地位;掌握用高斯定理计算场强的条件和方法;能熟练地应用高斯定理计算简单几何形状均匀带电体电场中任意一点的电场强度。会分析、判断和计算简单、规则形状导体或少数导体组成的导体系处于静电平衡时的场强、电势和电荷分布。
④理解稳恒磁场的高斯定理和安培环路定律,了解它们在电磁学中的重要地位;掌握用安培环路定律计算磁感应强度的条件和方法;能熟练地应用安培环路定律计算简单几何形状载流导体磁场中任意一点的磁感应强度。
⑤掌握安培定律和洛仑兹力公式。理解电偶极矩、磁矩的概念。能计算电偶极子,载流平面线圈在电、磁场中所受的力矩。能分析和计算电荷在正交的均匀电磁场(包括纯电场、纯磁场)中的运动。了解霍耳效应及其应用。
⑥了解介质的极化,磁化现象及其微观机理,了解铁磁质的特性。理解介质中的高斯定理和安培环路定律;会用介质中的高斯定理和安培环路定律计算介质中的电位移和磁场强度,并能由已知的电位移和磁场强度求相应的电场强度和磁感应强度。
⑦了解电动势的概念,掌握法拉第电磁感应定律,了解定律中“-”号的物理意义,理解动生电动势和感生电动势。
⑧理解电容、自感系数和互感系数的定义及其物理意义。
⑨理解电磁场的物质性以及电能密度、磁能密度的概念;在一些简单的对称情况下,能计算空间里储存的场能。
⑩理解涡旋电场、位移电流、电流密度的概念;了解麦克斯韦方程组(积分形式)的物理意义。
⑷波动和光学部分的基本要求
①了解普通光源的发光机理,理解获得相干光的方法。
②掌握光程的概念,以及光程差和位相差的关系,能分析杨氏双缝干涉实验、牛顿环实验中干涉条件和分布规律。了解洛埃镜中的半波损失问题。
③了解麦克耳逊干涉仪的工作原理及干涉现象的应用。
④理解惠更斯一菲涅耳原理,掌握用半波带法分析单缝夫琅和费衍射条纹分布的规律,会分析缝宽及波长对衍射条纹分布的影响。了解单缝衍射条纹亮度分布规律。
⑤掌握光栅衍射公式,会分析光栅衍射条纹分布规律和光栅常数及波长对光栅衍射条纹分布的影响,了解光栅衍射条纹和光栅光谱的特点及其在科学技术上和生产中的应用。
⑥了解衍射现象对光学仪器分辨本领的影响。
⑦了解自然光和线偏振光的获得方法和检验方法。
⑸近代部分的基本要求
①理解绝对黑体辐射谱线,了解斯特藩—波尔兹曼和维恩位移定律及它们的应用。
②理解普朗克量子假设,了解普朗克量子假设在近代物理学发展中的重大历史意义。
③掌握康普顿效应问题中光的经典波动理论遇到的困难。
④理解爱因斯坦的光子假设,了解康普顿散射频移公式的基本依据和思想,了解爱因斯坦光子理论在光电效应,康普顿效应研究中取得的成就及其在物理学发展中地位。
⑤理解光的波粒二象性,掌握光波波长与光子动量间的关系。
⑥理解实物粒子具有波粒二象性,掌握描述物质波动性的物理量(波长、频率)和粒子性的物理量(动量、能量)之间的关系。
⑦了解波函数及其统计解释。了解测不准关系,并能用测不准关系对微观世界的某些物理量作估算。
⑧理解一维定态薛谔方程,理解一维无限深陷阱情况下薛定谔方程的解,理解能量量子化。
2.时间分配和进度
⑴质点运动学与动力学 14学时
⑵刚体的定轴转动 8学时
⑶狭义相对论 4学时
⑷温度与气体动理论 6学时
⑸热力学基础 12学时
⑹静电场 16学时
⑺磁场、电磁感应 16学时
⑻振动和波动 10学时
⑼光的干涉、衍射及偏振 14学时
⑽量子物理的基本概念 8学时
3.教学内容的重点、难点。
⑴力学部分
重点:
利用微积分列出运动方程;位移 速度 加速度的矢量表示法;曲线运动。
牛顿三定律的内容;牛顿三定律的应用。
动量定理、动能定理、动量守恒定律和能量守恒定律。
转动惯量、角动量、转动动能等概念的理解;转动定律、角动量定理、转动的动能定理。
难点:
利用微积分列出运动方程。
牛顿三定律的应用;对惯性系的理解,力学相对性原理。
保守力的理解;动量定理、动能定理、动量守恒定律和能量守恒定律的应用条件。
转动定律、角动量定理、动能定理的推导;角动量定理的应用。
⑵气体动理论和热力学部分
重点:
热力学第一定律、热力学第二定律 ;各种变化过程中理想气体的物态方程。
能量均分定理、三种统计速度、平均自由程。
难点:
应用理想气体的物态方程解题;各种变化过程中理想气体物态方程的推导和理解。
能量均分定理、麦克斯韦气体分子速率分布律。
⑶电磁学部分
重点:
高斯定理的理解和应用;静电场的环路定理。
高斯定理有介质时电场中的应用;电场的能量。
毕奥萨伐尔定律的应用;安培环路定理的应用;磁场中的高斯定理。
电磁感应定律;动生电动势 感生电动势 自感电动势和互感电动势;全电流环路定理;麦克斯韦方程组。
难点:
对电场的理解;高斯定理的应用。
有介质的高斯定理。
毕奥萨伐尔定律的应用;安培环路定理的应用。
动生电动势,感生电动势,自感电动势和互感电动势的区别。
麦克斯韦方程组。
⑷波动和光学部分
重点:
简谐运动的运动方程;简谐运动的合成。
平面简谐波的波函数应用;波的干涉。
杨氏双缝干涉试验;薄膜干涉;单缝衍射;光栅衍射;光的偏振。
难点:
简谐运动的合成。
平面简谐波的波函数应用;波的叠加原理。
几种干涉仪的区别;单缝衍射和光栅衍射的区别;光的偏振原理。
⑸量子物理基础
重点:
光的粒子性的理解、光电效应。
粒子的波动性、德布罗意假设。
薛定鄂方程。
难点:
光的波、粒二象性理解。
运用薛定鄂方程求解波函数。
4.本课程与其它课程的联系与分工
大学物理课程是高等工业院校各专业学生的一门重要的必修基础课,高等数学作为其先修课程,通过大学物理课程的学习,使学生能够初步的掌握运用数学知识解决物理问题,并为其在今后的学习和工作中运用数学方法解决实际工程问题打下良好的基础。通过物理课程的学习,使学生掌握分析、解决物理问题的方法,为其学习相关专业课程(力学等)做好准备。
5.建议使用教材和参考书目
建议使用教材:
《大学基础物理学》张三慧编,清华大学出版社,2003年8月。
教学参考书目:
《普通物理》(第4版)程守洙、江之永编,人民教育出版社,1982年12月。
《大学物理学》(第1版)吴百诗主编,西安交通大学出版社,1994年12月
《物理学》(第4版)东南大学等七所工科院校编,高等教育出版,1999年11月。
四.大纲说明
1、在整个教学过程中采用教师课堂教学(主要以板书教学为主,穿插利用投影仪教学)和学生课后自学相结合的形式。对需要掌握的重要原理和定律及计算方法要讲深讲透,对需要理解和了解的内容采取精讲和自学的学习方式。
2、习题课随教学进展情况灵活掌握;作业量由所有任课教师商讨后分章节布置给学生,并且作到及时的批改,及时反馈给学生。
3、本课程为考试课,平时成绩10%,考试成绩90%。考试采取书面笔试(闭卷)的方式,考试试卷内容尽量作到覆盖面广、难度适中、试题量恰当。

❸ 大学物理主要学什么

大学物理,是大学理工科类的一门基础课程,通过课程的学习,使学生熟悉自然界物质的结构,性质,相互作用及其运动的基本规律,为后继专业基础与专业课程的学习及进一步获取有关知识奠定必要的物理基础。但工科专业以力学基础和电磁学为主要授课。

全书共13章,涉及力学、热学、电磁学、振动和波、波动光学、狭义相对论和量子物理基础等. 每章包括基本内容之外,还包括阅读材料、复习与小结、练习题. 内容深浅适当,讲解正确清晰,叙述引人入胜,例题指导详尽,全书联系实际,特别是注意介绍物理知识和物理思想在实际中的应用. 本书有电子教材和学习辅导书等配套资料。

(3)大学物理有哪些思想扩展阅读

物理学专业培养掌握物理学的基本理论与方法,具有良好的数学基础和实验技能,能在物理学或相关的科学技术领域中从事科研、教学、技术和相关的管理工作的高级专门人才。

该专业学生主要学习物质运动的基本规律,接受运用物理知识和方法进行科学研究和技术开发训练,获得基础研究或应用基础研究的初步训练,具备良好的科学素养和一定的科学研究与应用开发能力。

❹ 物理思想方法有哪些

物理思想方法
§1.图形/图象图解法
图形/图象图解法就是将物理现象或过程用图形/图象表征出后,再据图形表征的特点或图象斜率、截距、面积所表述的物理意义来求解的方法。尤其是图象法对于一些定性问题的求解独到好处。
§2 极限思维方法
极限思维方法是将问题推向极端状态的过程中,着眼一些物理量在连续变化过程中的变化趋势及一般规律在极限值下的表现或者说极限值下一般规律的表现,从而对问题进行分析和推理的一种思维办法。
§3 平均思想方法
物理学中,有些物理量是某个物理量对另一物理量的积累,若某个物理量是变化的,则在求解积累量时,可把变化的这个物理量在整个积累过程看作是恒定的一个值---------平均值,从而通过求积的方法来求积累量。这种方法叫平均思想方法。
物理学中典型的平均值有:平均速度、平均加速度、平均功率、平均力、平均电流等。对于线性变化情况,平均值=(初值+终值)/2。由于平均值只与初值和终值有关,不涉及中间过程,所以在求解问题时有很大的妙用.
§4 等效转换(化)法
等效法,就是在保证效果相同的前提下,将一个复杂的物理问题转换成较简单问题的思维方法。其基本特征为等效替代。
物理学中等效法的应用较多。合力与分力;合运动与分运动;总电阻与分电阻;交流电的有效值等。除这些等效等效概念之外,还有等效电路、等效电源、等效模型、等效过程等。
§5 猜想与假设法
猜想与假设法,是在研究对象的物理过程不明了或物理状态不清楚的情况下,根据猜想,假设出一种过程或一种状态,再据题设所给条件通过分析计算结果与实际情况比较作出判断的一种方法,或是人为地改变原题所给条件,产生出与原题相悖的结论,从而使原题得以更清晰方便地求解的一种方法。
§6 整体法和隔离法
整体法是在确定研究对象或研究过程时,把多个物体看作为一个整体或多个过程看作整个过程的方法;隔离法是把单个物体作为研究对象或只研究一个孤立过程的方法.
整体法与隔离法,二者认识问题的触角截然不同.整体法,是大的方面或者是从整的方面来认识问题,宏观上来揭示事物的本质和规律.而隔离法则是从小的方面来认识问题,然后再通过各个问题的关系来联系,从而揭示出事物的本质和规律。因而在解题方面,整体法不需事无巨细地去分析研究,显的简捷巧妙,但在初涉者来说在理解上有一定难度;隔离法逐个过程、逐个物体来研究,虽在求解上繁点,但对初涉者来说,在理解上较容易。熟知隔离法者应提升到整体法上。最佳状态是能对二者应用自如。
§7 临界问题分析法
临界问题,是指一种物理过程转变为另一种物理过程,或一种物理状态转变为另一种物理状态时,处于两种过程或两种状态的分界处的问题,叫临界问题。处于临界状的物理量的值叫临界值。
物理量处于临界值时:
①物理现象的变化面临突变性。
②对于连续变化问题,物理量的变化出现拐点,呈现出两性,即能同时反映出两种过程和两种现象的特点。
解决临界问题,关键是找出临界条件。一般有两种基本方法:①以定理、定律为依据,首先求出所研究问题的一般规律和一般解,然后分析、讨论其特殊规律和特殊解②直接分析、讨论临界状态和相应的临界值,求解出研究问题的规律和解。
§8 对称法
物理问题中有一些物理过程或是物理图形是具有对称性的。利用物理问题的这一特点求解,可使问题简单化。要认识到一个物理过程,一旦对称,则相当一部分物理量(如时间、速度、位移、加速度等)是对称的。
§9 寻找守恒量法
守恒,说穿意思是研究数量时总量不变的一种现象。物理学中的守恒,是指在物理变化过程或物质的转化迁移过程中一些物理量的总量不变的现象或事实。
守恒,已是物理学中最基本的规律(有动量守恒、能量守恒、电荷守恒、质量守恒),也是一种解决物理问题的基本思想方法。并且应用起来简练、快捷。
从运算角度来说,守恒是加减法运算,总和不变。
从物理角度来讲,那就与所述量表征的意义有关,重在理解了。理解所述量及所述量守恒事实的内在实质和外在表现。
如动量,描述的是物体的运动量,大小为mV,方向为速度的方向。动量守恒,就是物体作用前总的运动量是动的时,且方向是向某一方向的,那作用后,总的运动量还是动的,方向还是向着这一方向。
§10 构建物理模型法
物理学很大程度上,可以说是一门模型课.无论是所研究的实际物体,还是物理过程或是物理情境,大都是理想化模型.
如 实体模型有:质点、点电荷、点光源、轻绳轻杆、弹簧振子、平行玻璃砖、……
物理过程有:匀速运动、匀变速、简谐运动、共振、弹性碰撞、圆周运动……
物理情境有:人船模型、子弹打木块、平抛、临界问题……
求解物理问题,很重要的一点就是迅速把所研究的问题归宿到学过的物理模型上来,即所谓的建模。尤其是对新情境问题,这一点就显得更突出。

❺ 大学里面的物理专业主要学什么

大学里面的物理专业主要学习:物理学的基本理论与方法。

物理学专业培养掌握物理学的基本理论与方法,具有良好的数学基础和实验技能,能在物理学或相关的科学技术领域中从事科研、教学、技术和相关的管理工作的高级专门人才。

该专业学生主要学习物质运动的基本规律,接受运用物理知识和方法进行科学研究和技术开发训练,获得基础研究或应用基础研究的初步训练,具备良好的科学素养和一定的科学研究与应用开发能力。

注重于研究物质、能量、空间、时间,尤其是它们各自的性质与彼此之间的相互关系。物理学是关于大自然规律的知识;更广义地说,物理学探索分析大自然所发生的现象,以了解其规则。

(5)大学物理有哪些思想扩展阅读:

物理专业重要分支有:

一、热力学

热力学(thermodynamics)是从宏观角度研究物质的热运动性质及其规律的学科。属于物理学的分支,它与统计物理学分别构成了热学理论的宏观和微观两个方面。热力学还与统计学一起研究,即热力学与统计学科。

二、量子力学

量子力学是物理学理论,是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论。它与相对论一起构成现代物理学的理论基础。量子力学不仅是现代物理学的基础理论之一,而且在化学等学科和许多近代技术中得到广泛应用。

三、固体物理学

固体物理学,是研究固体的物理性质、微观结构、固体中各种粒子运动形态和规律及它们相互关系的学科。属物理学的重要分支,其涉及到力学、热学、声学、电学、磁学和光学等各方面的内容。固体的应用极为广泛,各个时代都有自己特色的固体材料、器件和有关制品。

参考资料来源:网络—物理学专业

❻ 大学物理学什么

大学物理是大学理工科的一门基础课。通过本课程的学习,学生可以熟悉自然物质运动的结构、性质、相互作用和基本规律,从而为后续的专业基础和专业课程的研究奠定必要的物质基础,并进一步获得相关知识。然而,工科专业主要教授基础力学和电磁学。

通过本课程的学习,学生将逐步掌握物理研究的思路和方法。在获取知识的同时,学生将具备建立物理模型的能力、定性分析、估计和定量计算的能力、独立获取知识的能力以及理论与实践相结合的能力。拓宽思路,激发探索创新精神,增强适应能力,提高整体科技素质。通过本课程的学习,使学生掌握科学的学习方法,形成良好的学习习惯,形成辩证唯物主义的世界观和方法论。

第一章刚体的定轴转动

[目的要求]

了解转动惯量,掌握刚体绕定轴转动定理;了解力矩的功和转动动能,动量和动量守恒定律。能熟练地用它分析计算与刚体定轴转动有关的力学问题。

[教学内容]

1.刚体的转动惯量和刚体绕固定轴的转动定理;

2.刚体的力矩功和转动动能

3.刚体的动量矩和动量矩守恒定律

第二章气体分子运动理论

[目的要求]

1.掌握理想气体状态方程。了解气体的状态参数、平衡态和理想气体的内能概念。2.了解理想气体压力和温度的统计解释。

理解能量自由度的均分原理;了解麦克斯韦速率分布规律;了解玻尔兹曼分布定律、平均碰撞频率和自由程概念。

[教学内容]

理想气体状态路径和理想气体压力;能量平均分配原则自由度;麦克斯韦速度分布律;玻尔兹曼分布律;平均碰撞频率和自由路径

第三章热力学

[目的要求]

1.掌握热力学第一定律及其相关概念(内能、功、能)。能熟练运用热力学第一定律计算理想气体等效过程和绝热过程的内能、功和能。

2.理解气体摩尔热容的概念。

3.可以计算理想气体的准静态循环过程,如卡诺循环的效率。

4.理解热力学第二定律的两个表达式。了解可逆和不可逆过程、熵和热力学第二定律的统计意义。

[教学内容]

1.热力学平衡态和气体状态方程;

2.气体分子的统计分布规律;

3.输气工艺;

4.热力学第一定律在理想气体等效过程和绝热过程中的应用;

5.热力学第二定律,可逆和不可逆过程和熵;

6.固体和液体的性质;

7.相变

❼ 物理思想有哪些内容

答:一、物理的内涵

1、物理注重于研究物质、能量、空间、时间,尤其是它们各自的性质与彼此之间的相互关系。

2、物理学是关于大自然规律的知识;更广义地说,物理学探索分析大自然所发生的现象,以了解其规则。

二、物理的六大性质

1.真理性:物理学的理论和实验揭示了自然界的奥秘,反映出物质运动的客观规律。

2.和谐统一性:神秘的太空中天体的运动,在开普勒三定律的描绘下尺裂塌,显出多么的和谐有序。

3.简洁性:物理规律的数学语言,体现了物理的简洁明快性。如:牛顿第二定律,爱因斯坦的质能方程,法拉第电磁感应定律。

4.对称性:对称一般指物体形状的对称性,深层次的对称表现为事物发展变化或客观规律的对称性。

5.预测性:正确的物理理论,不仅能解释当时已发现的物理现象,更能预测当时无法探测到的物理现象。

6.精巧性:物理实验具有精陵圆巧源辩性,设计方法的巧妙,使得物理现象更加明显。


❽ 大学物理求电场强度的几种方法,并阐述所包含的物理思想。

2.库仑定律:F=kQ1*Q2/r^2
(在真空中)
{F:点电荷间的作用力(N),k:静电力常量k=9.0×10^9N·m^2/C^2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式,场强是本身的性质与电场力和电量无关)
{E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2
{r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d
{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=q*E
{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=q*UAB=Eq*d
{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:
EA=q*φA
{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA
{带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-q*UAB
(电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式)
{C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd
(S:两极板正对面积,d:两极板间的垂直距离,ε:介电常数)
常见电容器
14.带电粒子在电场中的加速(Vo=0):W=ΔEK

qU=mVt2/2,
Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平抛
垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
运动
平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记;
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=10^6μF=10^12pF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽
/
示波管、示波器及其应用
/
等势面/尖端放电等。
(9)电场强度E=U/d=4πkQ/εS,并且做功W=U*q

阅读全文

与大学物理有哪些思想相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:723
乙酸乙酯化学式怎么算 浏览:1388
沈阳初中的数学是什么版本的 浏览:1334
华为手机家人共享如何查看地理位置 浏览:1026
一氧化碳还原氧化铝化学方程式怎么配平 浏览:866
数学c什么意思是什么意思是什么 浏览:1390
中考初中地理如何补 浏览:1278
360浏览器历史在哪里下载迅雷下载 浏览:684
数学奥数卡怎么办 浏览:1368
如何回答地理是什么 浏览:1004
win7如何删除电脑文件浏览历史 浏览:1037
大学物理实验干什么用的到 浏览:1466
二年级上册数学框框怎么填 浏览:1681
西安瑞禧生物科技有限公司怎么样 浏览:911
武大的分析化学怎么样 浏览:1230
ige电化学发光偏高怎么办 浏览:1319
学而思初中英语和语文怎么样 浏览:1627
下列哪个水飞蓟素化学结构 浏览:1408
化学理学哪些专业好 浏览:1471
数学中的棱的意思是什么 浏览:1036