⑴ 缝衣针的针眼存在什么物理矛盾
即想让线顺利的通过,又要尽量降低针眼的大小,使缝衣服的时候阻力变小。
具体来讲,物理矛盾表现在:
1、系统或关键子系统必须存在,又不能存在;
2、系统或关键子系统具有性能“F”,同时应具有性能“-F”,“F”与“-F”是相反的性能;
3、系统或关键子系统必须处于状态“S”及状态“-S”,“S”与“-S”是不同的状态;
4、系统或关键子系统不能随时间变化,又要随时间变化。
(1)技术矛盾如何转化为物理矛盾扩展阅读:
技术矛盾和物理矛盾都反映的是技术系统的参数属性,就定义而言,技术矛盾是技术系统中两个参数之间存在着相互制约;物理矛盾是技术系统中一个参数无法满足系统内相互排斥的需求。
物理矛盾和技术矛盾是有相互联系的。例如,为了提高子系统Y的效率,需要对子系统Y加热;但是加热会导致其邻接子系统X的降解。这是一对技术矛盾。
同样,这样的问题可以用物理矛盾来描述,即温度要高又要低。温度高可提高Y的效率,但是恶化了X的工况;而温度低无法提高Y的效率,但也不会恶化X的工况。所以,技术矛盾与物理矛盾之间,是可以相互转化的。
⑵ 技术矛盾和物理矛盾的概念,各自怎么解决
技术矛盾:指技术系统中两个参数之间存在相互制约,是在提高技术系统的某一参数时,导致了另一个参数的恶化而产生的矛盾。
解决方法:1.寻找系统矛盾性能之间的妥协方案(为了提高一个性能指标,在另一个性能指标上可以做出的牺牲是多少)
2.寻找消除矛盾的办法(如何做到双赢)。
前一种途径得到的是典型的工程解,后一种途径的结果是创造性的发明解。
物理矛盾:当一个技术系统中对同一个元素具有相反的需求时,就出现了物理矛盾。
解决方法:实现矛盾双方的分离,包括空间分离,时间分离,条件分离,系统级别分离。
(2)技术矛盾如何转化为物理矛盾扩展阅读:
技术矛盾和物理矛盾的联系:
技术矛盾和物理矛盾都反映的是技术系统的参数属性,就定义而言,技术矛盾是技术系统中两个参数之间存在着相互制约;物理矛盾是技术系统中一个参数无法满足系统内相互排斥的需求。
物理矛盾和技术矛盾是有相互联系的。例如,为了提高子系统Y的效率,需要对子系统Y加热;但是加热会导致其邻接子系统X的降解。
这是一对技术矛盾。同样,这样的问题可以用物理矛盾来描述,即温度要高又要低。温度高可提高Y的效率,但是恶化了X的工况;而温度低无法提高Y的效率,但也不会恶化X的工况。
所以,技术矛盾与物理矛盾之间,是可以相互转化的。
⑶ 什么是物理矛盾如何定义物理矛盾
一、物理矛盾
在上节中我们定义了技术矛盾,即如果我们增加叁数A, 或表现有利的变化, 那么叁数 B 就会减少, 或者表现恶化. 现在设想我们有一个叁数C, 基于一些理由,我们想要增加它;同时基于另外的理由,我们又想要减少它. Altshuller 把这种情形叫物理矛盾,即一个叁数有着矛盾的本身.
举例来说, 再一次考虑我们的离心调节器问题. 球的重量应该提高以产生离心的力量,同时为了增加飞机的负载量,球的重量应该是小的. 这就是物理矛盾. 再一次说明,典型的工程方式是将两者进行妥协处理, 但是那种方式不导致发明. 发明战胜矛盾.
二、技术矛盾与物理矛盾的转化及其应用
技术矛盾和物理矛盾看起来是两种完全不同的矛盾,但实际上却存在着许多的联系。
技术矛盾向物理矛盾的转换:
技术矛盾和物理矛盾是可以相互转换的。许多技术矛盾在经过分解和细化后最终都可以转换为物理矛盾,然后用四大分离原理来解决问题。下面就用几个例子说明这种转换方法:
案例一:
要设计一个杯子,使得该杯子可以方便携带同时又有较大的盛水量。
首先看这个案例的技术矛盾:
需要改善的技术参数为:运动物体的体积;NO.7
引起恶化的技术参数为:杯子的适应性(方便携带);NO.35
通过查TRIZ的矛盾矩阵表,可以得到适用的发明原理有:NO.15,NO.29;
现在用另外一个角度来分析问题:
需要改善的技术参数是“运动物体的体积”,它的技术要求是“增加物体的体积或容量”;
而引起恶化的技术参数为“杯子的适应性(方便携带)”,而改善这个技术参数的技术要求同时表达为:“减少物体的体积或容量”。
这样就把上面的技术矛盾转换为这样一对物理矛盾:
“杯子的体积(容量)既要增加又要减少。”
一般而言,技术矛盾的存在隐含物理矛盾的存在。技术矛盾总是涉及到两个基本参数A与B,当参数A得到改善时,参数B变得更差。
如果参数A得到改善时需要子系统C的某种变化;而参数B变得更差时也是子系统C的某种变化;这样原来的技术矛盾A与B就可以变成物理矛盾C!
比如:我们使用的空调,我们需要有制冷的功能以提供舒适的环境,但制冷的噪音却严重影响我们的舒适环境。
通过分析我们发现:制冷的功能是需要制冷机的存在,但制冷机的存在却带来严重的噪音,所以我们又不希望制冷机的存在
⑷ 关键问题被转化为物理矛盾之后,可以用哪些方法解决
TRIZ理论中,如果一个关键问题被转化为物理矛盾可以尝试用以下分离矛盾需求、满足矛盾需求、绕过矛盾需求方法来解决。
【原题】
TRIZ理论中,如果一个关键问题被转化为物理矛盾可以尝试用以下()方法来解决。
A、分离矛盾需求。
B、满足矛盾需求。
C、绕过矛盾需求。
D、缩小矛盾需求。
【答案】ABC。
物理冲突的描述:
根据出发点不同,物理冲突有多种描述形式,其中最概括或最本质的描述是:
1、一个子系统有害功能的降低导致子系统中有用功能的降低;
2、子系统一种有用功能的增强导致子系统中有害功能的增强。
这个描述说明了物理冲突和技术冲突的根本区别,即“物理矛盾是单参数,而技术矛盾是双参数”。与技术冲突不同,物理冲突由同一个参数的两个相反方向组成,它无法从矛盾矩阵中得到理解。
⑸ 物理矛盾实例和解决方法
我们首先来看阿奇舒勒的矛盾矩阵。
阿奇舒勒矛盾矩阵由39个通用工程参数和40个创新原理构成,矛盾矩阵第一列表示改进的参数,第一行表示恶化的参数,共有39*39个小格子,每一个小格子代表一个工程矛盾(具体说明),非对角线上小格子所表达的矛盾为技术矛盾。该矛盾由对应小格子里所提供的创新原理解决(具体说明)。
需要说明:
1、不同的矛盾提供原理数不一样(1、
2、
3、4),尽可能应用所提供的创新原理解决问题,否则你定义的矛盾有问题;
2、如果非对角线上小格子里面没有数字,表明该矛盾在实际工程中不存在;
3、对角线上小格子里面没有数字,并不表示不存在矛盾,而是另一类矛盾。
我们知道,技术矛盾是两个参数之间形成的矛盾,即当一个参数改进时,引起另一个参数的恶化;当我们用同样的方式描述对角线上小格子所表达的矛盾时,应该是“当一个参数改进时,又引起该参数的恶化”,也就是说,对角线上小格子对应的正反两个参数是一个参数,说明这些参数自身产生了矛盾,这样的矛盾称物理矛盾。例如,笔记本携带时应该小点,使用时应该大点,对笔记本的尺寸相反的要求就构成了物理矛盾。本章研究物理矛盾及其解决方法。
幻灯片2
§1 物理矛盾的定义
•物理矛盾的定义:
•当一个技术系统中对同一个参数具有相互
排斥(相反的或是不同的)需求时,所产生的
矛盾称为物理矛盾。
对于技术系统的元素,物理矛盾有以下三种情况:
第一种情况,这个元素是通用工程参数,不同的设计条件对它提出了完全相反的要求,例如:对于建筑领域,墙体的设计应该有足够的厚度以使其坚固,同时墙体又要尽量薄以使建筑进程加快并且总重比较轻。建筑结构的材料密度应接近零以使其轻便,同时材料密度也应该足够高以使其具有一定的承重能力。另外还有:温度既要高又要低;尺寸既要长又要短;材质既要软又要硬等等。
第二种情况,这个元素是通用工程参数,不同的工况条件对它有着不同(并非完全相反)的要求,例如:灯泡的功率既要是25瓦,又要是100瓦;一个工件的形状,既要是直的,又要是弯的等等。
第三种情况,这个元素是非工程参数,不同的工况条件对它有着不同的要求,例如:冰箱的门既要经常打开,又要经常保持关闭;道路上既要有十字路口,又要没有十字路口。
⑹ 物理矛盾包含以下哪几个方面的含义
物理矛盾包含以下哪几个方面的含义?
物理矛盾
物理矛盾是当一个技术系统的工程参数具有相反的需求,就出现了物理矛盾。比如说,要求系统的某个参数既要出现又不存在,或既要高又要低,或既要大又要小等等。相对于技术矛盾,物理矛盾是一种更尖锐的矛盾,创新中需要加以解决。
表现
具体来讲,物理矛盾表现在:
1)系统或关键子系统必须存在,又不能存在;
2)系统或关键子系统具有性能“F”,同时应具有性能“-F”,“F”与“-F”是相反的性能;3)系统或关键子系统必须处于状态“S”及状态“-S”,“S”与“-S”是不同的状态;
4)系统或关键子系统不能随时间变化,又要随时间变化。
从功能实现的角度,物理矛盾可表现在:
1)为了实现关键功能,系统或子系统需要具有有用的一个功能,但为了避免出现有害的另一个功能,系统或子系统又不能具有上述有用功能;
2)关键子系统的特性必须是取大值,以取得有用功能,但又必须是小值以避免出现有害功能;
3)系统或关键子系统必须出现以获得一个有用功能,但系统或子系统又不能出现,以避免出现有害功能。
物理矛盾可以根据系统所存在的具体问题,选择具体的描述方式来进行表达。总结归纳物理学中的常用参数,主要有3大类:几何类、材料及能量类、功能类。