㈠ 物理的音调是指什么
声音的高低叫做音调声音的三个主要的主观属性(即音量、音调、音色)之一。表示人的听觉分辨一个声音的调子高低的程度,音调又称音的高度。音调主要由声音的频率决定,同时也与声音强度有关。
㈡ 语音的物理属性包括哪些方面
语音的物理属性(性质)包括:音高,音强,音长,音色四要素。
1、音高:音高指各种不同高低的声音,即音的高度,音的基本特征的一种。音的高低是由发音体的振动频率决定的,两者成正比关系:频率振动次数多则音”高“,反之则”低“。
声音的高低。由音波振动的频率来决定。频率高则音高;低则音低。音高是构成语音的要素之一。汉语里音高变化有区别词义的作用,如“妈”、“麻”、“马”、“骂”四个字的声调不同,即音高的不同。
音乐声学术语。指听觉赖以分辨乐音高低的特性。
2、音强:又称音量,即音的强弱(响亮)程度。音的基本特性的一种。音的强弱是由发音时发音体振动幅度(简称振幅)的大小决定的,两者成正比关系,振幅越大则音越”强“,反之则越”弱“。
3、音长音长是指声音的长短,它决定于发音体振动时间的久暂。发音体振动持续久,声音就长,反:之则短。
4、音色:音色指音的感觉特性。频率的高低决定声音的音调,振幅的大小决定声音的响度但不同的物体发出的声音我们还是可以通过音色分辨不同发生体的材料、结构不同,发出声音的音色也就不同。
音色是声音的特色,根据不同的音色,即使在同一音高和同一声音强度的情况下,也能区分出是不同乐器或人声发出的。同样的音量和音配上不同的音色就好比同样色度和明度配上不同的色相的感觉一样。
音色的不同取决于不同的泛音,每一种乐器、不同的人以及所有能发声的物体发出的声音,除了一个基音外,还有许多不同频率的泛音伴随,正是这些泛音决定了其不同的音色,使人能辨别出是不同的乐器甚至不同的人发出的声音。每一个人即使说话也有不同的音色,因此可以根据其声音辨别出是不同的人。
(2)物理意义上的音是什么扩展阅读:
此外:语音是语言的物质外壳,是人类发音器官发出来的具有一定意义的声音。语音具有物理、生理、社会三方面的性质,社会属性是语言的本质属性。 语音的单位:音节、音素、音位。
1、音节是语音结构的基本单位,人能够自然感到的最小的语音片段。注意:一般一个汉字代表一个音节。 如:国、花、你、我。
特例:儿化音,用两个汉字代表一个音节。 如:“花儿”表示一个音节
2、音素是从音色角度划分出来的最小语音单位,是不可再分的最小的语音单位。注意:一般一个字母表示一个音素。如:m、a、n。特例:zh、ch、sh、ng、er。
3、音素分为元音和辅音。 元音:发音时,气流振动声带,在口腔、咽头不受阻碍而形成的音叫元音。元音音素:(元音)a、o、e、i、u、 ü 。辅音:气流在口腔或咽头受到阻碍而形成的音叫辅音。
4、辅音音素:(子音)b、p、m、f、d、t、n、 l、g、k、h、 j、q、x、zh、ch、sh、r、z、c、s、ng。
5、元音和辅音的区别:气流是否受阻(辅音受阻)、紧张均衡与否(元音紧张均衡) 、气流强弱(辅音气流强) 、声带是否震动(元音都震动,辅音m、n、 l、r、ng震动)
6、声母、韵母、声调: 声母指音节开首的辅音,如果音节开首没有辅音,习惯上称为零声母。韵母指音节中声母后面的部分。 声调指整个音节的高低升降变化,即音节中具有区别意义作用的音高变化。
7、音位是语音系统中能够区别意义的最小的语音单位,也是按语音的辨义作用归纳出的音类。
㈢ 在乐音体系中,音的四大物理性质是什么
在乐音体系中,音有四种物理性质:音高,音长,音强,音色。
音的高低取决于声波振动的频率。
音的长短取决于声波振动延续的时间。
音的强弱取决于声波振动的幅度。
音色取决于声波振动的成分。
㈣ 在物理中:什么叫音调什么叫响度什么叫音色
音调是指声音的高低与振动的频率有关,响度是指声音的大小与振幅有关,音色是指声音的品质与发声体的材料有关。
音调-物理学把声音的高低称为音调,音调的高低与发声物体有关,物体振动越快,音调就越高,用频率表示,单位是赫兹(HZ),声音的高低,影响音调高低的因素是发声体振动频率的高低。
响度指的是声音的大小(即音量的大小),影响响度大小的因素是发声体振动的幅度(即振幅)和距离发声体的远近。
音色-反映声音的品质与特色,不同物体发出不同的声音,其音色是不同的(曾经称为音频)。
(4)物理意义上的音是什么扩展阅读:
音调的高低还与发声体的结构有关,因为发声体的结构影响了声音的频率。
大体上,2000赫兹以下的低频纯音的音调随响度的增加而下降,3000 赫兹以上高频纯音的音调随响度的增加而上升。
对音调可以进行定量的判断。音调的单位称为美(mel):取频率1000赫兹、声压级为40 分贝的纯音的音调作标准,称为1000 美,另一些纯音,听起来调子高一倍的称为2000 美,调子低一倍的称为500 美,依此类推,可建立起整个可听频率内的音调标度。
㈤ 音的四种物理属性是什么
音的四种物理属性是:高低.强弱.长短.音色
㈥ 音的四种物理属性是什么
1、音高——和频率呈正比,频率越高,音模困越高。音强——和振幅有关。一般来说,气流越强,声音越响。音长——和时间有关。音质——多方面因素决定,包括发音体的质料,发音体发音时的方法以及发音体共鸣腔的形状等。
2、(一)响度:人主观上感觉声音的大小(俗称音量),由“振幅”和人离声源的距离决定,振幅越大响度越大,人和声源旅行的距离越小,响度越大。(单位:分贝dB)
3、(二)音调:声音的高低(高音、低音),由“频率决定,频率越高音调越高(频率单位Hz(hertz),赫兹[/url,人耳听觉范围20~20000Hz。20Hz以下称为次声波,20000Hz以上称为超声波)例如,低音端的声音或更高的声音,如细弦声。
4、(三)音色:又称音品,波形决定了声音的音色。
5、(四)乐音:有规则的让人愉悦的声音。噪音:从物理学的角度看,由发声体作无旦镇念规则振动时发出的声音;从环境保护角度看,凡是干扰人们正常工作、学习和休息的声音,以及对人们要听的声音起干扰作用的声音。
6、(五)音调,响度,音色是乐音的三个主要特征,人们就是根据他们来区分声音。
更多关于音的四种物理属性是什么,进入:https://www.abcgonglue.com/ask/eaa7151616092077.html?zd查看更多内容
㈦ 物理学中的噪音和乐音是什么
乐音:振动起来是有规律的、单纯的,并有准确的高度(也叫音高)的音,我们称它为乐音。
噪音:没有一定高度的音。它的振动即无规律又杂乱无章的音,我们称它为噪音。
从物理学的角度来看:噪声是发声体做无规则振动时发出的声音。音高和音强变化混乱、听起来不谐和的声音。
噪声污染主要来源于交通运输、车辆鸣笛、工业噪音、建筑施工、社会噪音如音乐厅、高音喇叭
以上是物理学的角度上分的乐音与噪音的区别
㈧ 物理学的音分为几类,举例说明
声学(物理学分支学科)
声学是指研究声波的产生、传播、接收和效应的科学。声学是物理学中最早深入研究的分支学科之一,随着19 世纪无线电技术的发明和应用,声波的产生、传输、接收和测量技术都有了飞跃发展,此声学从古老的经典声学进人了近代声学的发展时期。近代声学的渗透性极强,声学与许多其他学科(如物理、化学、材料、生命、地学、环境等)、工程技术(如机械、建筑、电子、通讯等)及艺术领域相交叉,在这些领域发挥了重要又独特的作用,并进一步发展了相应的理论和技术,从而逐步形成为独立的声学分支,如物理声学、非线性声学、量子声学、分子声学、超声学、光声学、电声学、建筑声学、环境声学、语言声学、生物声学、水声学、大气声学、地声学、生理声学、心理声学、音乐声学及声化学等,所以声学已不仅仅是一门科学,也是一门技术,同时又是一门艺术。
声学发展历史
声音是人类最早研究的物理现象之一,声学是物理学中历史最悠久而当前仍在前沿的唯一分支学科。从上古起直到19世纪,都是把声音理解为可听声的同义语。中国先秦时就说:“情发于
河南信阳出土的“帠佀”蟠螭文编钟
声,声成文谓之音”,“音和乃成乐”。声、音、乐三者不同,但都指可以听到的现象。同时又说“凡响曰声”,声引起的感觉(声觉)是响,但也称为声,与现代对声的定义相同。西方也是如此,acoustics的词源是希腊文akoustikos,意思是“听觉”。世界上最早的声学研究工作在音乐方面。
《吕氏春秋》记载,黄帝令伶伦取竹作律,增损长短成十二律;伏羲作琴,三分损益成十三音。三分损益法就是把管(笛、箫)加长三分之一或减短三分之一,听起来都很和谐,这是最早的声学定律。传说希腊时代,毕达哥拉斯也提出了相似的自然律(但是用弦作基础)。中国1957年河南信阳出土的“帠佀”蟠螭文编钟是为纪念晋国于公元前525年与楚作战而铸的。其音阶完全符合自然律,音色清纯,可以用来演奏现代音乐,这是中国古代声学成就的证明。在以后的2000多年中,对乐律的研究有不少进展。
明朝朱载堉于1584年提出的平均律,与当代西方乐器制造中使用的乐律完全相同,但比西方早提出300年。古代除了对声传播方式的认识外,对声本质的认识与今天的完全相同。在东西方,都认为声音是由物体运动产生的,在空气中以某种方式传到人耳,引起人的听觉。这种认识现在看起来很简单,但是从古代人们的知识水平来看,却很了不起。例如,很长时期内古代人们对日常遇到的光和热就没有正确的认识,一直到牛顿的时代对光还有粒子说和波动说的争执,而粒子说取得优势。至于热,“热质”说的影响时间则更长,直到19世纪后期,F.恩格斯还对它进行过批判。
对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的。从那时起直到19世纪,几乎所有杰出的物理学家和数学家都对研究物体振动和声的产生原理作过贡献。声的传播问题则更早就受到注意,几乎2000年前中国和西方都有人把声与水面波纹相类比。1635年就有人用远地枪声测声速,假设闪光传播不需时间。以后方法不断改进,到1738年巴黎科学院用炮声测量,测得结果折合到0°C时,声速为332m/s,与最准确的数值331.45m/s只差1.5‰,这在当时“声学仪器”只有停表和人耳和情况下的确是了不起的成绩。牛顿在1687年出版的《自然哲学的数学原理》中根据推理:振动物体要推动邻近媒质,后者又推动它的邻近媒质,等等,经过复杂而难懂的推导求得声速应等于大气压与密度之比的二次方根。L. 欧拉在1759年根据这个概念提出更清楚的分析方法,求得牛顿的结果。但是由此算出的声速只有288m/s,与实验值相差很大。J. L. R. 达朗伯于1747年首次导出弦的波动方程,并预言可用于声波。直到1816年,P. S. M. 拉普拉斯指出只有在声波传播中空气温度不变时牛顿的推导才正确,而实际上在声波传播中空气密度变化很快,不可能是等温过程,而应该是绝热过程,因此,声速的二次方应是大气压乘以比热容比(定压比热容与定容比热容的比)γ 与密度之比。据此算出声速的理论值与实验值就完全一致了。
直到19世纪末,接收声波的仪器只有人耳。人耳能听到的最低声强大约是10-6W/m2(声压20μPa),在1000Hz时,相应的空气质点振动位移大约是10pm(=10-11m),只有空气分子直径的十分之一,可见人耳对声的接收确实惊人。19世纪中就有不少人耳解剖的工作和对人耳功能的探讨,但至今还未能形成完整的听觉理论。对声刺激通过听觉器官、神经系统到达大脑皮层的过程有所了解,但这过程以后大脑皮层如何进行分析、处理、判断还有待进一步研究。音调与频率的关系明确后,对人耳听觉的频率范围和灵敏度也都有不少的研究。发现着名的电路定律的G. S. 欧姆于1843年提出人耳可把复杂的声音分解为谐波分量,并按分音大小判断音品的理论。在欧姆声学理论的启发下,开展了听觉的声学研究(以后称为生理声学和心理声学),并取得重要的成果,其中最有名的是H. von亥姆霍兹的《音的感知》。在关闭空间(如房间、教室、礼堂、剧院等)里面听语言、音乐,效果有的很好,有的很不好,这引起今天所谓建筑声学或室内音质的研究。但直到1900年W. C. 赛宾得到他的混响公式,才使建筑声学成为真正的科学。
19世纪及以前两三百年的大量声学研究成果的最后总结者是瑞利,他在1877年出版的两卷《声学原理》中集经典声学的大成,开现代声学的先河。至今,特别是在理论分析工作中,还常引用这两卷巨着。他开始讨论的电话理论,已发展为电声学。在20世纪,由于电子学的发展,使用电声换能器和电子仪器设备,可以产生接收和利用任何频率、任何波形、几乎任何强度的声波,已使声学研究的范围远非昔日可比。现代声学中最初发展的分支就是建筑声学和电声学以及相应的电声测量。以后,随着频率范围的扩展,又发展了超声学和次声学;由于手段的改善,进一步研究听觉,发展了生理声学和心理声学;由于对语言和通信广播的研究,发展了语言声学。在第二次世界大战中,开始把超声广泛地用到水下,使水声学得到很大的发展。20世纪初以来,特别是20世纪50年代以来,全世界由于工业交通事业的巨大发展出现了噪声环境污染问题,而促进了噪声、噪声控制、机械振动和冲击研究的发展高速大功率机械应用日益广泛。非线性声学受到普遍重视。此外还有音乐声学、生物声学。这样,逐渐形成了完整的现代声学体系。
声学学习方法
与光学相似,在不同的情况,依据其特点,运用不同的声学方法。
声学区别
声学方法与光学方法的比较
声学分析方法已成为物理学三个重要分析方法(声学方法、光学方法、粒子轰击方法)之一。声学方法与光学方法(包括电磁波方法)相比有相似处,也有不同处。相似处是:声波和光波都是波动,使用两种方法时,都运用了波动过程所应服从的一般规律,包括量子概念(声的量子称为
在固体中有纵波,有横波等
声子)。
不同处是:
①光波是横波,声波在气体中和液体中是纵波,而在固体中有纵波,有横波,还有纵横波、表面波等,情况更为复杂。
②声波比光波的传播速度小得多。(在气体中约差百万倍,在液体和固体中约差十万倍)
③一般物体(固态或液态)和材料对光波吸收很大,但对声波却很小,声波在不同媒质的界面上几乎是完全反射。这些传播性质有时造成结果上的极大差别,例如在普通实验室内很容易验证光波的平方反比定律(光的强度与到光源的距离平方成反比),虽然根据能量守恒定律声波也应满足平方反比定律,但在室内则无法测出。因为室内各表面对声波来说都是很好的反射面,声速又比较小,声音发出后要反射很多次,在室内往返多次,经过很长时间(称为混响时间,严格定义见建筑声学)才消失。任何点的声强都是这些直达声和反射声互相干涉的结果,与距离的关系很复杂。这就是为什么直到1900年赛宾提出混响理论以前,人们对很多声学现象不能理解的原因。
声学分支
可以归纳为如下几个方面:
从频率上看,最早被人认识的自然是人耳能听到的“可听声”,即频率在20Hz~20000Hz的声波,它们涉及语言、音乐、房间音质、噪声等,分别对应于语言声学、音乐声学、房间声学以及噪声控制;另外还涉及人的听觉和生物发声,对应有生理声学、心理声学和生物声学;还有人耳听不到的声音,一是频率高于可听声上限的,即频率超过20000Hz的声音,有“超声学”,频率超过500MHz的超声称为“特超声”,当它的波长约为10-8m量级时,已可与分子的大小相比拟,因而对应的“特超声学”也称为“微波声学”或“分子声学”。超声的频率还可以高1014Hz。二是频率低于可听声下限的,即是频率低于20Hz的声音,对应有“次声学”,随着次声频率的继续下降,次声波将从一般声波变为“声重力波”,这时必须考虑重力场的作用;频率继续下降以至变为“内重力波”,这时的波将完全由重力支配。次声的频率还可以低至10-4Hz。需要说明的是,从声波的特性和作用来看,所谓20Hz和20000Hz并不是明确的分界线。例如频率较高的可听声波,已具有超声波的某些特性和作用,因此在超声技术的研究领域内,也常包括高频可听声波的特性和作用的研究。
各种不同频率的声波
从振幅上看,有振幅足够小的一般声学,也可称为“线性(化)声学”,有大振幅的“非线性声学”。
从传声的媒质上看,有以空气为媒质的“空气声学”;还有“大气声学”,它与空气声学不同的是,它主要研究大范围内开阔大气中的声现象;有以海水和地壳为媒质的“水声学”和“地声学”;在物质第四态的等离子体中,同样存在声现象,为此,一门尚未成型的新分支“等离子体声学”正应运而生。
从声与其它运动形式的关系来看,还有“电声学”等等。
声学的分支虽然很多,但它们都是研究声波的产生、传播、接收和效应的,这是它们的共性。只不过是与不同的领域相结合,研究不同的频率、不同的强度、不同的媒质,适用于不同的范围,这就是它们的特殊性。
声学交叉学科
声学生命科学
语言通信
主要研究语言的分析、合成和机器识别问题。录放声设备和电子计算机的发展在这些工作中起了很大促进作用。已作到语言可以根据打字文稿按声学规律合成声音,有限词
获得良好的音质
汇的口语可以用机器自动识别,口语也可以转化为电码或由电码再转换为声音(声码器)并保存原来口语的特性。现在语言通信的设备还比较复杂,系统的质量和局限还有待于改进。这种改进不仅是技术上的,更重要的是对语言的产生和感知的基本理解。这只有深入进行语言和听觉的基础研究才能得到解决,而不是近期所能完成的(见语言声学)。
听觉
听觉过程涉及生理声学和心理声学。能定量地表示声音在人耳产生的主观量(音调和响度),并求得与物理量(频率和强度)的函数关系,这是心理物理研究的重大成果。还建立了测听技术和耳鼓声阻抗测量技术,这是研究中耳和内耳病变的有效工具。在听觉研究中,所用的设备很简单,但所得结果却惊人的丰富。1961年物理学家 G. von 贝凯西曾由于在听觉方面的研究工作获得诺贝尔医学或生理学奖,这是物理学家在边缘学科中的工作受到了承认的例子。主要由于对神经系统和大脑的确切活动和作用机理不明,还未形成完整的听觉理论,但这方面已引起了很多声学工作者的重视,从20世纪50年代以来已取得很大成绩。通过大量的生理、心理物理实验可得出若干结论,并提出一些设想:声音到达人耳后,耳把它转换为机械振动,经中耳放大后再到达内耳,使蜗管中的基底膜发生共振。传感单元是基底膜上的内外两排毛细胞。外毛细胞基本是一排化学放大器,把振动传到内毛细胞,激发其弯曲振动,振动达到某阈值以上时,与内毛细胞接触的神经末梢就发出电脉冲,把信号通过神经系统送入大脑。与内毛细胞联结的神经核主要对基底膜振动速度响应,而外毛细胞响应于基底膜的位移。神经信号为几十毫伏的电脉冲,脉冲延续时间约几十毫秒。信号就通过神经脉冲送入大脑,图4是设想的流程图,从大脑再把信号分配到大脑皮层的各个中心,进行储存、分析、积分或抛弃。这是初步的理解,要建立起完整的听觉理论,解释所有听觉现象,还需要做大量的工作,这涉及到对大脑功能的研究。
在语言和听觉范围内,基础研究导致很多重要医疗设备的生产:整个装到耳听道内的助听器;保护听力的耳塞,为声带损伤病人用的人工喉,语言合成器,为全聋病人用的触觉感知器和人工耳蜗等等。
速度
一般来说,固体传播比水传播的速度快,水传播比空气传播的速度快。
医疗
声学在医疗方面的应用包括超声辅助诊断和超声治疗。
超声辅助诊断,最常见的就是B型超声成像,简称B超。通常这种超声诊断应用于腹部非侵入成像。其他常见类型的超声成像-辅助诊断是M超,即心动超声。与X线和CT相比,超声成像的优势在于对人体没有任何辐射伤害。声波是一种机械波,在穿过体内组织的同时也有部分声波反射,通过接受并且处理这些信息丰富的反射声波,我们可以利用这些信息形成体内实时的灰阶图像。在软组织成像中,效果比X光成像要好,但是由于骨头对超声有强烈的反射和吸收作用,因此经颅B超成像还处于起步阶段,国外已有报道使用相控换能器进行B-超经颅成像。它的价钱便宜,成像速度快,准确性高,无副作用,都是至今超声在腹部常规检查中不可替代原因。临床使用的超声辅助诊断技术还包括利用多普勒效应查体内运动(包括胎儿运动及血管内血液的流速等),
超声治疗,利用超声波是机械波的特性,利用机械波周期震荡的特点,有着不同的临床应用。神经外科在脑的深部用聚焦的超声波造成破坏,治疗脑肿瘤、帕金森综合症、脑血栓等,这样的治疗手段,不仅减少对脑部的损伤(可以进行非开颅手术治疗),而且不影响大脑的其他部分的功能。普通外科中,利用聚焦超声治疗腹部肝脏肿瘤,妇科肿瘤,前列腺癌,膀胱癌,都有显着的疗效。牙科用超声钻钻牙而丝毫不影响软组织,可以大大减少病人的不适。
声学在医学中还有很多可以应用的方面,但发展都很不够或根本未发展,特别是在治疗方面,主要原因是不能确定适当的剂量。中国科学院声学研究所牛凤岐教授,天津医科大学的菅喜岐教授,重庆医科大学的王智彪教授,对聚焦超声的理论、仿真和临床应有有着深入的研究,剂量问题也是他们的研究重点之一。
声学环境科学
当代重大环境问题之一是噪声污染,社会上对环境污染的意见(包括控告)有一半是噪声问题。除了长期在较强的噪声(90dB以上)中工作要造成耳聋外,不太强的噪声对人也会形成干扰。例如噪声级到70dB,对面谈话就有困难,50dB环境下睡眠、休息已受到严重影响。近年来,对声源发声机理的研究受到注意,也取得了不少成绩。例如,撞击声、气流声、机械振动声等的理论研究都取
利用回声探测水下物体
得重要成果,根据噪声发生的机理可求得控制噪声的有效方法。
振动对人危害也很大,虽然影响的人数比噪声少一些。常日手持凿岩机的矿山工人受振动危害严重时可得到白指病,甚至手指会逐节掉下。全身振动则可达到感觉不适、工作效率降低及至肌体损伤的程度,也应加以保护。对振动的保护一般采取质量弹簧系统或阻尼材料(见隔振、减振)。控制振动也是降低噪声的基本办法。
噪声控制中常遇到的声源功率范围非常大,这也增加了噪声控制工作的复杂性。例如一个大型火箭发动机的噪声功率可开动一架大型客机,而大型客机的噪声功率可开动一辆卡车。工业交通事业的进一步发展,其关键之一是降低噪声。噪声污染是工业化的后果,而降低噪声又是改善环境、提高人的工作效率、延长机器寿命的重要措施。
声学建筑声学
环境科学不但要克服环境污染,还要进一步研究造成适于人们生活和活动的环境。使在厅堂中听到的讲话清晰、音乐优美是建筑声学的任务,厅堂音质的主要问题是室内的混响。赛宾在 20 世纪初由大量实验总结出来的混响理论标志现代声学的开始。混响必须合适(要求因使用目的而异),有时还需要混响可变。在厅堂音质的研究中混响虽是主要因素但不是唯一因素。第二个因素常称为扩散。实验证明,由声源到听者的直达声及其后 50或100ms内到达的反射声对音质都有重要影响,反射声的方向分布也是很重要的因素,两侧传来的反射声似乎很重要,全面研究各种因素才能获得良好的音质。声学实际应用
声学应用
利用对声速和声衰减测量研究物质特性已应用于很广的范围。测出在空气中,实际的吸收系数比19世纪G. G. 斯托克斯和G. R. 基尔霍夫根据粘性和热传导推出的经典理论值大得多,在
声学流程图
液体中甚至大几千倍、几万倍。这个事实导致了人们对弛豫过程的研究,这在对液体以及它们结构的研究中起了很大作用(见声吸收)。对于固体同样工作已形成从低频到起声频固体内耗的研究,并对诸如固体结构和晶体缺陷等方面的研究都有很大贡献。
表面波、声全息、声成像、非线性声学、热脉冲、声发射、超声显微镜、次声等以物质特性研究为基础的研究领域都有很大发展。
瑞利时代就已经知道的表面波,现已用到微波系统小型化发展中。在压电材料(如石英)上镀收发电极,或在绝缘材料(如玻璃)上镀压电薄膜都可以作成表面波器件。声表面波的速度只有电磁波的十万分之几,相同频率下波长短得多,所以表面波器件的特点是小,在信号存储上和信号滤波上都优于电学元件,可在电路小型化中起很大作用。
声全息和声成像是无损检测方法的重要发展。将声信号变成电信号,而电信号可经过电子计算机的存储和处理,用声全息或声成像给出的较多的信息充分反应被检对象的情况,这就大大优于一般的超声检测方法。固体位错上的声发射则是另一个无损检测方法的基础。
声波在固体和液体中的非线性特性可通过媒质中声速的微小变化来研究,应用声波的非线性特性可以实现和研究声与声的相互作用,它还用于高分辨率的参量声呐(见非线性声学)中。 用热脉冲产生的超声频率可达到1012Hz以上,为凝聚态物理开辟了新的研究领域。
次声学主要是研究大气中周期为一秒至几小时的压力起伏。火山爆发、地震、风暴、台风等自然现象都是次声源。研究次声可以更深入地了解上述这些自然现象。次声在国防研究上也有重要应用,可以用来侦察和辨认大型爆破、火箭发射等。大气对次声的吸收很小,比较大的火山爆发,氢弹试验等产生的次声绕地球几周仍可被收到,可用次声测得这些事件。固体地球内声波的研究已发展为地震学。
研究液氦中的声传播也很有意义。早在40年代,Л. Д. 朗道就预计液氦温度低于λ 点时可能有周期性的温度波动,后来将这种温度波称为第二声,而压力波为第一声。对第一声和第二声的研究又得到另外两种声:第三声超流态氦薄膜上超流体的纵波,第四声多孔材料孔中液氦中超流体内的压缩波。深入研究这些现象都已经成为研究液氦的物理特性尤其是量子性质的重要手段(见量子声学)。
声波可以透过所有物体:不论透明或不透明的,导电或非导电的,包括了其他辐射(如电磁波等)所不能透过的物质。因此,从大气、地球内部、海洋等宏大物体直到人体组织、晶体点阵等微小部分都是声学的实验室。近年来在地震观测中,测定了固体地球的简正振动,找出了地球内部运动的准确模型,月球上放置的地声接收器对月球内部监测的结果,也同样令人满意。进一步监测地球内部的运动,最终必将实现对地震的准确预报,从而避免大量伤亡和经济损失。
声学仪器设备
20世纪以前,声源仅限于人声、乐器、音义和哨子。频率限于可听声范围内,可控制的声强范围也有限。接收仪器主要是人耳,有时用歌弧、歌焰作定性比较,电话上的接收器和传声器还很简陋,难于用作测试仪器。20世纪以后,人们把电路理论应用于换能器的设计,把晶体的压
声学示意图
电性用于声信号和电信号之间的转换,以后又发展了压电陶瓷、驻极体等,并用电子线路放大和控制电信号,使声的产生和接收几乎不受频率和强度的限制。用半导体(如 CdS)薄膜产生超声,用激光轰击金属激发声波等,使声频超过了可听声高限的几亿倍。次声频率可达每小时一周以下,声强可超过人耳所能接收高强声音的几千万倍。声功率也可超过人口所发声的 1011倍。声学测量分析仪器也达到了高度准确的程度,以台式计算机(微型计算机)为中心的测试设备可完成多种测试要求,60年代需要几天才能完成的测试分析工作,用现代设备可能只要几分钟就可以完成。以前无法进行的测量工作(如声强、简正波等)现在也可以测量了。这些手段就给声学各分支的进一步发展创造了很好的条件。
声学研究课题
声学音乐
音乐是声学研究最早注意的课题,已开始进入新的境界。用于音乐及立体声的录放和广播的磁带录声技术以及电子放大系统,带电子放大器的乐器等都已得到了广泛的应用。电子乐器和计算机音乐的问世为作曲家和演奏艺术家开辟了新的创作天地。电子音乐合成器产生的乐音既可以模拟现有任何乐器的声音,也可以创造出从来未有过的新乐音。电子计算机能够模拟整个乐队的演奏,作曲家可以坐在计算机前,通过计算机的信息处理,从事创作,一切都由他的手指操纵,并且可以一遍一遍地重听和修改,直到他满意为止。在音乐方面和物理学方面都受过完善教育的人,在音乐发展上是大有可为的,他可以把两个学科的新构思结合起来取得独特的艺术效果。
声学国防
除了上面已提到的次声外, 声学对国防还有许多重要用途。语言通信在指挥联络上是关键性问题。超声检测和表面波器件在国防工业中起重要作用。其他各声学分支也都与国防有关,在国防中应用较多的是水声学。海洋中除声以外的各种信号都很难传到几米之外,因此水声技术在利用回声探测水下物体,如潜艇、海底、鱼群、沉船等,是有力手段。由于温度、压力等的分布,在水面下 1200m左右有一声速最低的深水声道(声发声道)。其中声速比其上、下层的都低,声波传入后就局限于声道内,损失很小。船舶遇到事故时,丢下一枚小型深水炸弹,其低频信号可在声道内传播几百甚至几千km远,在这个范围内的“声发”站接收到信号即可组织救援。在水下检测异物时就要用较高可听声频或较低超声频,这时水中吸收较大,只能达到较近区域,要延长作用距离还是个困难课题。在航海和渔业方面水声学也有广阔的应用前景。
声学相关学科
次声学、超声学、电声学、大气声学、音乐声学、语言声学、建筑声学、生理声学、生物声学、水声学、物理学、力学、热学、光学、电磁学、核物理学、固体物理学。