导航:首页 > 物理学科 > 固体物理当中存在什么等多体问题

固体物理当中存在什么等多体问题

发布时间:2023-08-18 08:57:22

① 关于固体物理的问题。谈谈金属绝缘体,半导体的物理解释 。

能导电的是导体 不能得使绝缘体 介于二者之间的是半导体
导体是容易导电的物体,即是能够让电流通过材料;不容易导电的物体叫绝缘体。(并不是能导电的物体叫导体,不能导电的物体叫绝缘体,这是一般人常犯的错误)金属导体里面有自由运动的电子,导电的原因是自由电子.半导体随温度其电阻率逐渐变小,导电性能大大提高,导电原因是半导体内的空穴和电子对。在科学及工程上常用利用欧姆[1]来定义某一材料的导电程度。
不善于传导电流的物质称为绝缘体,绝缘体又称为电介质[1]。它们的电阻率极高。绝缘体的定义:不容易导电的物体叫做绝缘体。
绝缘体的种类很多,固体的如塑料、橡胶、玻璃,陶瓷等;液体的如各种天然矿物油、硅油、三氯联苯等;气体的如空气、二氧化碳、六氟化硫等。在通常情况下,气体是良好的绝缘体。
绝缘体在某些外界条件,如加热、加高压等影响下,会被“击穿”,而转化为导体。在未被击穿之前,绝缘体也不是绝对不导电的物体。如果在绝缘材料两端施加电压,材料中将会出现微弱的电流。
绝缘材料中通常只有微量的自由电子,在未被击穿前参加导电的带电粒子主要是由热运动而离解出来的本征离子和杂质粒子。绝缘体的电学性质反映在电导、极化、损耗和击穿等过程中。
绝缘体是一种可以阻止热(热绝缘体)或电荷(电绝缘体)流动的物质。电绝缘体的相对物质就是导体和半导体,他们可以让电荷通畅的流动(注:严格意义上说,半导体也是一种绝缘体,因为在低温下他会阻止电荷的流动,除非在半导体中掺杂了其他原子,这些原子可以释放出多余的电荷来承载电流)。术语电绝缘体与电介质有相同的意思,但是两种术语分别用在不同的领域中。
一个完全意义上的热绝缘体,根据热力学第二定律是不可能存在的。然而,有一些材料(如二氧化硅)就非常接近真正的电绝缘体,从而产生了闪存技术。一个更大类别的材料,如,橡胶和很多的塑料,对于家庭和办公室配线来说都是"完美”的,没有安全性方面的隐患,并且效率也很高。
在没有发明出更好的合成(物理或化学反应)物质前,在大自然的固有物质中,云母和石棉都可以作为很好的热和电绝缘体。
常温下导电性能介于导体(conctor)与绝缘体(insulator)之间的材料,叫做半导体(semiconctor).
物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。
半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,最近虽然不常用,单还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。

② 固体物理学的固体磁性

指固体具有的来源于电子自旋和轨道磁矩的一种物性。抗磁性是物质的通性,来源于电子轨道因外磁场而发生变化所产生的与磁场反向的微弱磁矩。金属的磁性比较复杂,除上述抗磁性外,还有源于金属电子气自旋磁矩的总和趋于同磁场平行的顺磁性。非金属顺磁体的磁性来源于固体中原子或离子固有磁矩趋于与磁场的同向排列。原子核亦有磁矩,核磁共振已成为探索物质结构的有力工具。核磁共振成像技术则是当今疾病诊断的重要手段。 铁磁性和亚铁磁性是两类磁有序结构固体具有的强磁性。温度在居里点TC以上固体呈顺磁性,在居里点TC时发生相变而呈铁磁性或亚铁磁性。1907年P.外斯用分子场唯象理论解释铁磁性。1926年实验确定过渡金属铁磁性来源于3d壳层的电子自旋磁矩。W.海森伯在1928年以固体中原子之间电子自旋的直接交换作用给予分子场量子力学的解释。1934年E.斯通纳提出巡游电子模型,可解释一部分实验规律。20世纪50年代M.茹德曼、C.基泰耳、T.糟谷和K.芳田奎提出固体中两个相邻局域磁矩通过传导电子气为媒介传递的间接交换作用,称为RKKY互作用,其特点是互作用能随两磁矩间距离呈振荡型衰减。亚铁磁性是由于一些化合物晶体中含有两种磁性离子,它们有不相等的电子自旋磁矩,且按磁矩反平行方式排列形成两个磁子晶格。铁氧体就是典型例子,在高频和微波领域有重要应用。反铁磁体和亚铁磁体相似,但其两个磁子晶格的离子磁矩大小相等而反平行排列。反铁磁体的温度高于奈耳点TN,其反铁磁性消失,变为顺磁性。铜氧化物高温超导体未掺杂的母材具有反铁磁性。 非晶磁性材料和各种磁记录材料发展迅猛,特别是磁光记录材料将应用延伸到光波领域。1988年在多层磁薄膜中发现巨磁电阻效应,后来又发现具有超巨磁电阻效应的新磁性晶体,为发展磁电子学提供了基础。
固体磁性是一个有很久历史的研究领域。抗磁性是物质的通性,来源于在磁场中电子的轨道运动的变化。从20世纪初至30年代,经过许多学者努力建立了抗磁性的基本理论。范扶累克在1932年证明在某些抗磁分子中会出现顺磁性;朗道在1930年证明导体中传导电子的非局域的轨道运动也产生抗磁性,这是量子的效应;解释了石墨和某些金属之所以具有反常大的抗磁性。居里在1895年测定了顺磁体磁化率的温度关系,朗之万在1905年给出顺磁性的经典统计理论,得出居里定律。顺磁性的量子理论连同大量的实验研究,导致顺磁盐绝热去磁致冷技术出现,电子顺磁共振技术和微波激射放大器的发明,以及固体波谱学的建立。关于铁磁体,1926年人们从实验中判知铁磁性同电子自旋磁矩有关。L.奈耳在1932年提出反铁磁体的唯象理论,后来人们的确发现过渡金属氧化物有反铁磁性。H.克喇末在1934年和P.安德森在1950年相继提出通过氧离子耦合的交换作用解释氧化物的反铁磁性。这一理论已成为在技术上有重要应用的铁氧体的亚铁磁性的基础。金属铬是反铁磁体但没有局域磁矩,其根源在于每一种自旋的电子密度在空间有周期性的变化,即形成自旋密度波。稀土金属的铁磁性,来源于未满的4f壳层的局域磁矩。它们通过巡游电子耦合趋于平行排列,产生铁磁性。居里温度很低的弱铁磁体,其中没有局域磁矩,它的铁磁性同自旋密度的起伏有关。过渡金属的铁磁性是一个困难又复杂的多体问题,还没有比较满意的理论处理。
电子具有自旋和磁矩,它们和电子在晶体中的轨道运动一起,决定了晶体的磁学性质,晶体的许多性质(如力学性质、光学性质、电磁性质等)常常不是各向同性的。作为一个整体的点阵,有大量内部自由度,因此具有大量的集体运动方式,具有各式各样的元激发。

③ 固体物理学

固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科。

固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。

在相当长的时间里,人们研究的固体主要是晶体。早在18世纪,阿维对晶体外部的几何规则性就有一定的认识。后来,布喇格在1850年导出14种点阵。费奥多罗夫在1890年、熊夫利在1891年、巴洛在1895年,各自建立了晶体对称性的群理论。这为固体的理论发展找到了基本的数学工具,影响深远。



1912年劳厄等发现X射线通过晶体的衍射现象,证实了晶体内部原子周期性排列的结构。加上后来布喇格父子1913年的工作,建立了晶体结构分析的基础。对于磁有序结构的晶体,增加了自旋磁矩有序排搭渣列的对称性,直到20世纪50年代舒布尼科夫才建立了磁有序晶体的对称群理论。

第二次世界大战后发展的中子衍射技术,是磁性晶体结构分析的重要手段。70年代出现了高分辨电子显微镜点阵成像技术,在于晶体结构的观察方面有所进步。60年代起,人们开始研究在超高真空条件下晶体解理后表面的原子结构。20年代末发现的低能电子衍射技术在60年代经过改善,成为研究晶体表面的有力工具。近年来发展的扫描隧道显微镜,可以相当高的分辨率探测表面的原子结构。

晶体的结构以及它的物理、化学性质同晶体结合的基本形式有密切关系。通常晶体结合的基本形式可分成:高子键合、金属键合、共价键合、分子键合(范德瓦耳斯键合)和氢键合。根据X射线衍射强度分析和晶体的物理、化学性质,或者依据晶体价电子的局域密度分布的自洽理论计算,人们可以准确地判定该晶体具有何种键合形式。

固体中电子的状态和行为是了解固体的物理、化学性质的基础。维德曼和夫兰兹于1853年由实验确定了金属导热性和导电性之间关系的经验定律;洛伦兹在1905年建立了自由电子的经典统计理论,能够解释上述经验定律,但无法说明常温下金属电子气对比热容贡献甚小的原因;泡利在1927年首先用量子统计成功地计算了自由电子气的顺磁性,索末菲在1928年用量子统计求得电子气的比热容和输运现象,解决了经典理论的困难。

布洛赫和布里渊分别从不同角度研究了周期场中电子运动的基本特点,为固体电子的能带理论奠定了基础。电子的本征能量,是在一定能量范围内准连续的能级组成的能带。相邻两个能带之间的能量范围是完整晶体中电子不许可具有的能量,称为禁带。利用能带的特征以及泡利不相容原理,威耳逊在1931年提出金属和绝缘体相区别的能带模型,并预言介于两者之间存在半导体,为尔后的半导体的发展提供理论基础。

贝尔实验室的科学家对晶体的能带进行了系统的实验和理论的基础研究,知扰悄同时掌握了高质量半导体单晶生长和掺杂技术,导致巴丁、布喇顿以及肖克莱于1947~1948年发明晶体管。



固体中每立方厘米内有1022个粒子,它们靠电磁互作用联系起来。因此,固体物理学所面对的实际上是多体问题。在固体中,粒子之间种种各具特点的耦合方式,导致粒子具有特定的集体运动形式和个体运动形式,造成不同的固体有千差万别的物理性质。

汉密尔顿在1839年讨论了排成阵列的质点系的微振动;1907年,爱因斯坦首先用量子论处理固体李游中原子的振动。他的模型很简单,各个原子独立地作同一频率的振动;德拜在1912年采用连续介质模型重新讨论了这问题,得到固体低温比热容的正确的温度关系;玻恩和卡门同时开始建立点阵动力学的基础,在原子间的力是简谐力的情况下,晶体原子振动形成各种模式的点阵波,这种波的能量量子称为声子。它对固体的比热容、热导、电导、光学性质等都起重要作用。

派尼斯和玻姆在1953年提出:由于库仑作用的长程性质,固体中电子气的密度起伏形成纵向振荡,称为等离子体振荡。这种振荡的能量量子称为等离激元。实验证明,电子束通过金属薄膜的能量损耗来源于激发电子气的等离激元。考虑到电子间的互作用,能带理论的单电子状态变成准电子状态,但准电子的有效质量包含了多粒子相互作用的效应。同样,空穴也变成准粒子。在半导体中电子和空穴之间有屏蔽的库仑吸引作用,它们结合成激子,这是一种复合的准粒子。

在很低的温度,由于热扰动强度降低,在某些固体中出现宏观量子现象。其中最重要的是开默林-昂内斯在1911年发现金属汞在4.2K具有超导电性现象,迈斯纳和奥克森菲尔德在1933年又发现超导体具有完全的抗磁性。以这些现象为基础,30年代人们建立了超导体的电动力学和热力学的理论。

后来,伦敦在1946年敏锐地提出超导电性是宏观的量子现象,并预言磁通是量子化的。1961年果真在实验上发现了磁通量子,实验值为伦敦预计值的一半,正好验证了库珀提出的电子配对的概念。弗罗利希在1950年提出超导电性来源于金属中电子和点阵波的耦合,并预言存在同位素效应,同年得到实验证实。

1957年巴丁、库珀和施里弗成功地提出超导微观理论,即有名的BCS理论。50年代苏联学者京茨堡、朗道、阿布里考索夫、戈科夫建立并论证了超导态宏观波函数应满足的方程组,并由此导出第二类超导体的基本特性。继江崎玲于奈在1957年发现半导体中的隧道效应之后,加埃沃于1960年发现超导体的单电子隧道效应,由此效应可求得超导体的重要的信息。不久,约瑟夫森在1962年预言了库珀对也有隧道效应,几个月之后果然实验证实了。从此开拓了超导宏观量子干涉现象及其应用的新领域。

固体磁性是一个有很久历史的研究领域。抗磁性是物质的通性,来源于在磁场中电子的轨道运动的变化。从20世纪初至30年代,经过许多学者努力建立了抗磁性的基本理论。范扶累克在1932年证明在某些抗磁分子中会出现顺磁性;朗道在1930年证明导体中传导电子的非局域的轨道运动也产生抗磁性,这是量子的效应;居里在1895年测定了顺磁体磁化率的温度关系,朗之万在1905年给出顺磁性的经典统计理论,得出居里定律。顺磁性的量子理论连同大量的实验研究,导致顺磁盐绝热去磁致冷技术出现,电子顺磁共振技术和微波激射放大器的发明,以及固体波谱学的建立。

在固体物理学中相变占有重要地位。它涉及熔化、凝聚、凝固、晶体生长、蒸发、相干衡、相变动力学、临界现象等,19世纪吉布斯研究了相平衡的热力学。后来厄任费斯脱在1933年对各种相变作了分类。60年代以后,人们对发生相变点的临界现象做了大量研究,总结出标度律和普适性。卡达诺夫在1966年指出在临界点粒子之间的关联效应起重要作用。威耳逊在1971年采用量子场论中重正化群方法,论证了临界现象的标度律和普适性,并计算了临界指数,取得成功。



晶体或多或少都存在各种杂质和缺陷,它们对固体的物性,以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质依赖于其中的杂质和缺陷;大规模集成电路的工艺中控制和利用杂质及缺陷是极为重要的。贝特在1929年用群论方法分析晶体中杂质离子的电子能级的分裂,开辟了晶体场的新领域。数十年来在这领域积累了大量的研究成果,为顺磁共振技术、微波激射放大器、固体激光器的出现准备了基础。

硬铁磁体、硬超导体、高强度金属等材料的功能虽然很不同,但其技术性能之所以强或硬,却都依赖于材料中一种缺陷的运动。在硬铁磁体中这缺陷是磁畴壁,在超导体中它是量子磁通线,在高强度金属中它是位错线,采取适当工艺使这些缺陷在材料的微结构上被钉住不动,有益于提高其技术性能。

高分辨电子显微术正促使人们在更深的层次上来研究杂质、缺陷和它们的复合物。电子顺磁共振、穆斯堡尔效应、正电子堙没技术等已成为研究杂质和缺陷的有力手段。在理论上借助于拓扑学和非线性方程的解,正为缺陷的研究开辟新的方向。

从60年代起,人们开始在超高真空条件下研究晶体表面的本征特性,以及吸附过程等通过粒子束(光束、电子束、高子束或原子束)和外场(温度、电场或磁场)与表面的相互作用,获得有关表面的原子结构、吸附物特征、表面电子态以及表面元激发等信息,加上表面的理论研究,形成表面物理学。

同体内相比,晶体表面具有独特的结构和物理、化学性质。这是由于表面原子所处的环境同体内原子不一样,在表面几个原子层的范围,表面的组分和原子排列形成的二维结构都同体内与之平行的晶面不一样的缘故。表面微观粒子所处的势场同体内不一样,因而形成独具特征的表面粒子的运动状态,限制粒子只能在表面层内运动并具有相应的本征能量,它们的行为对表面的物理、化学性质起重要作用。

非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子或者不同的磁矩;另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。

例如,金属玻璃是无规密积结构,而非晶硅是四面体键组成的无规网络。20年代发现,并在70年代得到发展的扩展X射线吸收精细结构谱技术,成为研究非晶态固体原子结构的重要手段。

无序体系的电子态具有其独特的性质,安德森在他的富有开创性的工作中,探讨了无序体系中电子态局域化的条件,10年之后,莫脱在此基础上建立了非晶态半导体的能带模型,提出迁移率边的概念。

在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电,这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现在非晶硅已成为制备高效率太阳能电池的重要材料。

非晶态合金具有特殊的物理性质。例如,它们的电阻率较大而其温度系数小。有的材料有很大的拉伸强度,有的具有优异的抗腐蚀性,可与不锈钢相比。非晶态磁性合金具有随机变化的交换作用,可导致居里温度的改变(大多数材料居里温度变低),同时在无序体系中,缺陷失去原有的意义。因而非晶态磁性固体可以在较低的外磁场下达到饱和,磁损耗减小。所以,非晶态合金具有多方面用途。

无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。目前对许多基本问题还存在着争论,有待进一步的探索和研究。

新的实验条件和技术日新月异,为固体物理不断开拓出新的研究领域。极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。

由于固体物理本身是微电子技术、光电子学技术、能源技术、材料科学等技术学科的基础,也由于固体物理学科内在的因素,固体物理的研究论文已占物理学中研究论文三分之一以上。同时,固体物理学的成就和实验手段对化学物理、催化学科、生命科学、地学等的影响日益增长,正在形成新的交叉领域。

阅读全文

与固体物理当中存在什么等多体问题相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:721
乙酸乙酯化学式怎么算 浏览:1387
沈阳初中的数学是什么版本的 浏览:1332
华为手机家人共享如何查看地理位置 浏览:1025
一氧化碳还原氧化铝化学方程式怎么配平 浏览:865
数学c什么意思是什么意思是什么 浏览:1387
中考初中地理如何补 浏览:1275
360浏览器历史在哪里下载迅雷下载 浏览:683
数学奥数卡怎么办 浏览:1365
如何回答地理是什么 浏览:1003
win7如何删除电脑文件浏览历史 浏览:1035
大学物理实验干什么用的到 浏览:1464
二年级上册数学框框怎么填 浏览:1678
西安瑞禧生物科技有限公司怎么样 浏览:900
武大的分析化学怎么样 浏览:1229
ige电化学发光偏高怎么办 浏览:1318
学而思初中英语和语文怎么样 浏览:1625
下列哪个水飞蓟素化学结构 浏览:1407
化学理学哪些专业好 浏览:1470
数学中的棱的意思是什么 浏览:1035