导航:首页 > 物理学科 > 物理学前进发生什么

物理学前进发生什么

发布时间:2023-08-25 20:51:44

1. 19世纪末20世纪初物理学的三大发现是什么 意义何在

19世纪末20世纪初物理学的三大发现是:电子、X射线和放射性现象。

1、X射线

X射线是一种波长极短,能量很大的电磁波,由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。这一发现标志着现代物理学的产生。

由于X射线与原子中内层电子的跃迁有关,这说明了物理学还存在亟待搜索的未知领域,X射线本身在医疗、研究物质结构等方面都有很多的实用价值。

2、放射线

1896年,贝克勒耳发现了放射线。卢瑟福继而开始研究放射线,他分别研究了三种射线的穿透本领。结果是:α射线的穿透本领最差,β射线的穿透本领比α射线强一些,能穿透几毫米厚的铝片。γ射线的穿透本领极强,1.3厘米厚的铅板也只能使它的强度减弱一半。

3、电子

电子是在1897年由剑桥大学卡文迪许实验室的约瑟夫·约翰·汤姆森在研究阴极射线时发现的,一切原子都由一个带正电的原子核和围绕它运动的若干电子组成。电子的定向运动形成电流,如金属导线中的电流。

利用电场和磁场,能按照需要控制电子的运动(在固体、真空中),从而制造出各种电子仪器和元件,如各种电子管、电子显微镜等。

(1)物理学前进发生什么扩展阅读

十九世纪末二十世纪初,经典物理学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。

由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。

物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。

然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。

首先是世纪之交物理学的三大发现,其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。

这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到冲击,经典物理发生“危机”。

由此引起物理学的一场革命。普朗克在德国物理学会上报告结果,成为革命开始的时刻。爱因斯坦创立相对论;海森堡、薛定谔等一群科学家创立量子力学,现代物理学诞生。

2. 你如何看待现代物理学的发展是否已经到了瓶颈呢

物理学,不是你想突破,想突破就能突破的。很多人感觉现代物理学似乎触摸到了天花板,发展举步维艰,但也仅仅是感觉而已,有这种感觉的人又有多少是物理学的专业人士呢?即使不是专业人士,对物理学又了解多少呢?

最后一点,或许是因为我们生活在这个时代,并不能明显感觉到物理学的发展,只因“我们身在此山中”。如今科学领域的人工智能,量子通信,生物科学等领域都有了很大发展,但更多的仍旧停留在基础层面而没有广泛地得到商业应用。

3. 物理学已经发展到瓶颈了吗

我觉得题主或许对物理学的发展有什么误会。讲真近100年来的物理学发展,其实是人类史上发展最快的100年。我们来简单做一个对比,就能够知道目前的科学发展到底有多快了。

首先,科学起源于古希腊的自然哲学,尤其是毕达哥拉斯和柏拉图的那一支,到了亚里士多德时期,他是集大成者。

他在自己师兄的基础上提出的地心说,以及托勒密最后做出的地心说模型,大概花了700年左右的时间。(从泰勒斯约公元前624年-公元前547或546年,到托勒密公元90年-公元168年)

从托勒密开始,自然哲学几乎是停滞的状态,甚至整个西欧都不知道原来生活在这片土地上的人有过这么璀璨的文化。而继承者是阿拉伯人,但是他们做出的贡献十分有限,以知道文艺复兴其实,依旧是托勒密做出地心说1400年左右的时间,西欧的人民才知道原来古希腊罗马时期的文化这么繁盛。也就是在整个时候,哥白尼提出了自己的日心说,开启了哥白尼革命,

从哥白尼开始一直到牛顿提出牛顿力学,万有引力定律,一共花了200多年(从哥白尼1473年2月19日-1543年5月24日,到牛顿1643年1月4日-1727年3月31日)也就是说,科学发展的第一阶段,用了700多年,跨越到第二阶段用了1400多年,而第二阶段,又花了200多年。

接近着,物理学成了数学家手中万物,他开始深化牛顿力学,并且把牛顿力学发扬光大,甚至还可以预测行星的存在。而这段时间物理学几乎是停滞的,直到麦克斯韦提出麦克斯韦方程(麦克斯韦1831年6月13日-1879年11月5日),而麦克斯韦和牛顿力学的矛盾,终于催生了相对论和量子力学,这也应了物理学的第二座高峰,从牛顿到相对论量子力学的诞生,前前后后用了250多年的时间。

量子力学的黄金年代在1930年之后就慢慢暗淡了下来,随后开始剧烈发展的是粒子物理标准模型,大概是从50年代开始一直到70年代结束。

这短短的20年左右,科学家们同意了四大作用力当中的,强相互作用力,弱相互作用力以及电磁力。他们有尝试过把万有引力也纳入进来,但失败了。

而且就几乎在同时,科学家又发展出了一个有望继承大一统理论的弦论。但由于观测仪器的限制,我们还没办法验证弦论的正确与否。

而从相对论,量子力学再到粒子物理标准模型,以及弦论,至今不过100年左右,比起科学之前的发展,这已经是非常非常快的了。这还没完,这只是理论物理学,其实在20世纪快速发展的还有天体物理学,大爆炸理论,暴涨理论,以及发展宇宙微波背景辐射,引力波,黑洞,暗物质,暗能量都足以载入史册。 科技 方面,三极管,激光,芯片,通信等方面都有长足的进步。所以,20世纪,或者说近一百年来,其实科学的发展速度并不慢,应该是说特别快。
科学发展受到的限制
而理论物理学之所以让人觉得慢,很有可能是很多人在期待类似于相对论和量子力学,牛顿力学,麦克斯韦方程这样的成就。但是,我们要知道的是,是不是可以搞得出全新的理论物理学理论,并 不是在于人类的智力,更重要的是观测仪器。

新的理论来自于新的误差。

为什么这么说呢?最早牛顿提出牛顿定律,其实是牛顿解释了肉眼或者用低倍望远镜就能观察到的宏观低速的世界,在这个世界里,牛顿力学的理论和现实拟合得非常完美。后来物理学似乎就停滞住了。这其实是因为观测水平限制住了,人类很难看到原子级的现象,或者大尺度(引力大,速度快)的现象,看不到现象就提不出理论,这是很正常的。可到了20世纪初,观测水平太高,使得科学家提出了两个理论,广义相对论在大尺度上和现实拟合得很好,量子力学在亚原子级的尺度上和现实拟合得非常好。恰恰牛顿力学在更大和更小尺度就显示出了不足,误差变得特别大。

因此, 新的理论其实来自于更精准的观测,来自于观测之后产生的误差。如果没有观测技术的升级,即使爱因斯坦活在古希腊罗马也提不出相对论来。

所以,未来的理论,其实会出现在比相对论适用范围更大的尺度,以及比亚原子级更小的多的尺度。但是目前,我们其实不具备观测到更大和更小尺度的设备。所以,理论物理学没办法发展。

这也是为什么,现在各国都争先恐后地研究引力波,暗物质,暗能量,黑洞的情况,对于这四种现象,是相对论的盲区。如果能够获取到相关的物理学现象,那理论物理学就很有可能取得长足的发挥

我们国家在这四个领域都各自投入了千亿级的资金去做研究,前段时间的悟空探测器就是针对暗物质的探测器。而弦论一直都是假说的原因,也就在这里,因为它的尺度比我们现在精度最高的观测设备的误差还要小很多很多,你说这咋验证这个理论到底对不对?

所以,其实理论物理学的发展理应是越来越慢的,因为观测技术的提升越来越慢。但是事实却反了,科学的发展其实仔细盘下来是加速发展的,这其实体现了现代人十分重视科学发展的一面。

最后,还是那一句话, 理论物理学的发展不是受到人类智力的局限,而是受到观测技术的局限。

物理学最近的发展,确实没有20世纪初的物理学大革命时代那么快了,当时一下子出现了相对论与量子力学的大革命,带来了原子弹与核能,半导体与激光,光谱仪器与大型加速器等等,而当初的黄金时代已经不能在现在重现,物理学进入失落的时代。着名物理学家,李斯莫林写了一本书,叫《物理学的终结》,大致也反应了这个失落,物理学的发展已经到了瓶颈期,本来大家还寄希望于超弦理论能够给物理带来新的突破,但后来大家越来越感觉到超弦像是一个数学理论,无法给出能验证的物理预言,所以物理学家的心情也有点黯淡了。

看看最近的物理学新闻,也能感觉到一些黯淡。

比如说,中国科学院的悟空卫星,探测到了异常的电子信号,但虽然大家希望它是暗物质粒子,可是大家也觉得可能性不大,因为美国的AMS也没有探测到,熊猫计划的地下实验也没有探测到,估计悟空也难以探测到,于是一大希望可能破灭。

再比如说,中国科学院高能物理所积极倡导了建设巨型对撞机,这个项目也是折蕺沉沙,不但非物理圈的科学家反对这个项目,甚至物理界里面也出现了反对的声音,很多人因为不是利益相关,强烈反对这个项目,而不是从民族大义的高度去思考这个问题,尤其是很多凝聚态物理学家,觉得高能物理不应该花那么多钱,居然也默默反对这个项目,其实大型加速器的建造,用到很多超导磁铁,也会促进凝聚态物理的发展,但是,囿于门户之间,大家没有齐心合力,最后巨型撞击机在这5年内没有得到支持,中国的物理发展也错过了一个战略机遇。

要回答这个问题,首先要了解物理学是什么?

直白一点说,物理学史研究自然现象的,是基于自然现象而归纳出的一般性规律,这是理论物理学。

实践物理学是:用依旧归纳的一般性规律演绎出自然状态不太可能自动生成的事物,比如电脑,人工智能等。

所以物理学的瓶颈在本质上取决于人对自然现象的认识。
有两种可能会导致物理学永不前进
第一种可能:自然世界本来就是屈数可指的现象,物理学也只能在这些仅有的现象上归纳一般性规律。

在横向来看,除了声、光、热、电、力外绝无其他现象。

在纵向来看,除了微观世界,宏观世界,以及高速世界外,自然现象也没有更多可能的现象了。

仅有不多的自然现象是阻碍物理学进步的根本性原因。

第二种可能:自然现象或许本有无数多种存在的形式,只是人类在认识上的局限性导致与更多的自然现象绝缘。

很可能的原因在于人类感官的局限性。

比如我们常说的暗物质,之所以最近几十年来人类才相信暗物质的存在,是由于暗物质是和感官绝缘的。

我们无非是通过视觉、听觉、味觉、触觉、嗅觉认知世界。

科学技术的升级,让原本不属于可见光之外的电磁波成为了视觉的扩充。

然而暗物质是五官无法直接甚至是间接感受到的。我们只能通过仅有的理论推理这一“可能的自然现象”的存在。

所以物理学的进步取决于自然现象本来的数量,以及人类可通过直接或间接地方式感受到的自然数量为基准。

就21世纪的物理学来说,虽然已经完成了对微观和宏观世界的描述,但是万有理论尚未完成。

暗物质与暗能量也处于空白领域,正反粒子对不对称问题尚未有可靠的诠释等等。

其中任何一个问题取得突破,都是物理学重大的进步。

但未来的物理学到底有没有瓶颈还是一个值得商榷的议题,这依旧取决于我前面提到的两点因素。

准确来说,物理学中的基础科学貌似停滞很久了,从20世纪初的两朵乌云中诞生的相对论和量子理论距今也有百年了,难道物理学发展真的遇到瓶颈了?

科学发展需要时间的积累
科学突破也是量变引起质变的过程,纵观人类科学史,从亚里士多德到伽利略再到牛顿,经历了上千年的时间,人类才对力与运动有了完善的认识,从牛顿到爱因斯坦,又经历了近两个世纪,人类才有了新的时空认识。

“如果说我看得比别人更远些,那是因为我站在巨人的肩膀上”,同样,每一次的科学突破都可以看做是在前人的基础上实现的,而这种科学基础是需要时间累积的,只有在科学 探索 中发现大量的问题,我们才有可能从这些问题中找到原因,分析规律,实验证明,这是一个漫长的过程。

从亚里士多德到牛顿,人类跨越两千年才弄清楚力学原理,从牛顿到爱因斯坦,人类两百年就参悟到了时空本质,这已经是进步神速了,相对论距今,仅仅只有百年左右,不同于百年前的两朵小乌云,现在的科学天空可以说是乌云密布,随着人类科学 探索 的深入,从百亿光年尺度的宇宙到难以想象的微观世界,到处充满了疑问,暗物质、量子纠缠、磁单极子等等都在等待着科学解释,现在的科学更像是处于“憋大招”的过程。

低垂的果实已经被采集殆尽
低垂的果实已经被采集殆尽,高悬的果实又太高了。这一点从历年来博士学业的完成时长就可以看到,以中国为例,2010年之前平均攻读博士需要3.54年,而现在攻读博士平均需要5年左右,而且这个时长还在增长。

在上个世纪,一个厉害的物理学家往往精通与数学与物理学两个科学,但是到今天,知识总量太大了,没有人能学完所有的物理知识,所以物理的分支也就越来越多,比如力学、高能物理学、量子力学等等。就现在的知识总量来说,估计不会出现物理学全才了。

科学分类越来越多,但是我们知道世界是物理规律共同作用的结果,因此在新时代,科学研究靠单打独斗已经不合适了,要想摘取高处的果实,往往需要团队合作。
科学理论与实验验证
每一条科学定律都经历了从发现问题到找出规律再到实验验证这个流程,所以科学其实是理论与实验相结合,两条腿走路的,但是现在来看,实验这条腿有点跟不上节奏了,黑洞理论于1975年提出,直到今年我们才真实的观测到它存在的证据,而对于黑洞的霍金辐射现象,一直无法提供实验证明,因此霍金到去世也无法获得诺贝尔奖。

以万有理论的有力候选者弦理论为例,其认为的多维时空与物质微观结构以现在的实验水平几乎不可能直接验证。 最近几年的引力波观测与黑洞照片其实都是对相对论的检验,只有充分证明相对论的正确性,才可以以相对论为基石,迈向更高的科学台阶,摘取更高的科学果实。
总结
纵观两千年来的科学发展史,人类对宇宙规律的认识其实一直在提速,从亚里士多德到牛顿,人类耗时上千年认清了力与运动的规律,从牛顿到爱因斯坦,人类只耗时两百年,就领悟到了时空的秘密,相对论发表距今只有百年左右,而现在物理学天空可以说是乌云密布,暗物质、量子纠缠、黑洞、弦理论等等都在等着科学验证,从这点看,物理学现在更像是黎明前的黑暗。

同学们看了《三体》,就老是被刘慈欣洗脑,什么物理学几十年再无寸进,什么基础理论已有50年原地踏步等等,感觉人类 科技 已经被智子锁死,外星人明天就将入侵,然后慌得一笔。
物理学的进展
讲远一点,人类认识自然和发展科学,一开始靠的是直接的感官认知,以及客观经验的积累。

为什么直到今天,仍旧有那么多的同学质疑爱因斯坦的相对论,喜欢用两个手电筒交差反射等等,就超越光速。还不是因为,同学们摆脱不掉,从生活经验中去理解和总结;然而相对论从根本上,就不是可以凭借客观经验,或从现实生活中,直接获知的理论。简单的说,它必须超越你一般想象,才能真正弄明白的的事情。很不幸的是,现代科学的两大理论基础,相对论以及量子力学,恰恰都是如此,非常的脱离群众基础啊。

所以,不是物理学发展到达了瓶颈,而是,一般吃瓜群众们,对于科学的理解到达了瓶颈。而且,这个瓶颈需要普遍极大的教育水平提升,才有可能克服。而现代 社会 随着分工的细化,国家福利保障的提升,一般群众,只要掌握特定的技能,就能生存。因此前沿科学,不被广大人群理解是很正常的情况。
前沿科学
正如“老和山下小学僧”曾经说过:所谓前沿 科技 ,往小了说就是粒子,往大了说就是天文,往虚了说就是时空,往实了说就是生命。

这几样东西再往细了说,归根结底都是讲数学,又有几个同学有兴致和耐心去听,更不用说,去搞懂呢?

举个例子,为了撮合引力和强力、弱力以及电磁力的统一,物理学家们提出了超弦理论。这种理论假设,以前我们认为是粒子的夸克和轻子,实际上都是“弦” 振动的能弦,它们在11维中摆动,包括我们已知的3个维度,再加上一维时间,以及另外7个别的维度。这种弦非常微小 小得可以被看成是点粒子。通过引入额外的维度,超弦理论就使科学家能把量子定律和引力定律相对比较融洽地合在一起,完成物理学梦想中的大统一。

弦理论又进一步产生了所谓的M理论。N理论把所谓“膜”的面,作为其物理学世界解释的灵魂。它是这样解释宇宙创生过程的:大爆炸过程以一对又平又空的膜开始;它们互相平行地处于一个卷曲的5维空间里,两张膜构成了第5维的壁,很可能在更遥远的过去作为一个量子涨落产生于无。——WTF?同学们当然要懵的一逼才对!这当然不是理论的错,是因为要将数学模型文字化,特别是纯粹的数学概念文字化,对于前沿的物理学家来说,的确有点勉为其难。

毕竟,你没有理解这些的深厚数学功底;他们同样没有这么简洁明快的科普文字表达能力。随便抛个公式出来,你我都受不了,大家互相体谅一下吧。
结语
自从牛顿以来,特别是电发明之后,人类 社会 的发展快得飞起,是不争的事实!但现在的电,还不是一百五十年前的电,你能说人类应用电就被锁死了吗?

给点耐心,或者,享受就好。毕竟科学的目的,就是为了让人类生活得更容易一些,也仅此而已。

这是一个十分尖锐而严肃的问题!

我们看一下给这个世界贡献最大的10位伟大的物理学家的出生年表,就可以发现问题所在?

伽利略出生在1564年、牛顿出生在1643年、亨利出生在1731年、法拉迪出生在1791年、麦克斯韦出生在1831年、普朗克出生在1858年、爱因斯坦出生在1879年、波尔出生在1885年、狄拉克出生在1902年、费曼出生在1918年(世界上十大着名物理学家是在1564年-1918年的354年里)。

这就是不符合自然规律运转,物理学而出生的瓶颈期,进入了一个失衡的状态。

这种瓶颈最明确的时间就是1914年第一次世界大战的爆发;这场战争后带来了工业革命,带来了 科技 力量。第二世界大战后更加快了 科技 发展的速度。

正是这些现实导致了科学、哲学、物理学的淡化,人类逐渐忘记了物理学、哲学、科学对人类发展的重要?

物理学发展应该引起联合国的重视,应该引起人类的重视!

我相信未来的世界物理学的发展,需要能够代表东方哲学思想的中国,掀起物理学研究、科学研究、哲学研究、 社会 学研究的热潮;我预判中国在人类未来的发展中产生出,对未来世界文明发展史上的伟大的物理学家。

实证物理还有很大的进步空间,理论物理已经限于瓶颈。除非改变数学拟合方法或改变方向的理论模型出现,否则难有突破。

物理自相对论、量子理论、电磁转换理论、基本粒子模型之后,几乎大局已定。大多采用间接拟合方式进行数学拟合。

很多理论或理论假说处于待验证甚至无法验证状态。如相对论推导出的黑洞或灰洞的内部验证。虫洞、白洞,暗物质、暗能量、平行空间、总时空奇点附近、总时空弥散区、弦理论、膜理论、多维的极限验证等等。部分理论假说甚至想不出验证的方法,例如弦理论。

这导致了一些理论问题和现实问题。

相对论已验证部分取得巨大成功,但是在理论推论极端处,现在面临无法观察、验证的问题。而在未验证区域,一些人急躁地想当然地认为相对论依然有效,这未免不物理。大爆炸理论计算最初的五亿光年区域内,明显现在无法观测验证,但是大爆炸假说在这个地方出现理论分歧。笔者也认为总黑洞还在,无需暗物质这个物理变量,发布了双臂紧致螺旋总时空几何模型。而在遥远的这个时空物质弥散区,基本粒子温度逼近绝对零度,那么会出现爱因斯坦凝聚态,基本粒子甚至被冻结速度为0。爱因斯坦知道这个状态,也就意味着他知道相对论不是放之四海而皆准。至少这地方失效。

另外,黑洞、灰洞被间接证实,但是虫洞、白洞还是数学模型。至于平行空间,更是数学逻辑而己。

相对论四维时空理论产生的年代,还没有分数分形维概念,为了区别平直的三维,为其增加曲率,爱因斯坦起了四维时空这个名字,但这导致歧义。

四维时空的曲率方法,基于分数分形维是大于整数三维至小于四维的分数分形维理论。不能解读四维空间。四维时空实际意义是复杂的带有曲率的三维空间。我们的太空观察极限从未跳出3.9(9循环)维。

从数学来讲,面对4.0维,相对论的四维时空是从4.0维向内偏向三维,而四维空间是向外偏出4.0维。

黑洞是由3向外逼近4.0维,虫洞是等于4.0维,白洞是向内逼近4.0维。黑洞内部尚未解决验证问题,虫洞,白洞,暂时只能当数学 游戏 。至于四维之外,还存在一个间接拟合的数学问题。

西方不区分数理和数学,这事和中国的唯物思想不同。特别是数学、物理,几百年前还是为了证明上帝的存在和无所不能。近百年才明显脱离宗教。

虫洞可以解读太极鱼眼到鱼尾;白洞就是鱼眼。弦理论可以解读中国古代的炁。这事有说道。

对于间接拟合数学方法,最成功的例子如声波。声波这种方法很好拟合了声音的物理结果,但是,没有沿着波运动的声波子这个物质。声音的物理性质必须另外的单独的解读,不能用声波子沿着波运动解读。尽管,这么想,这么拟合可以得到正确的间接拟合结论。声波子没有物质性,而声波有。

这就是间接拟合数学方法在解读的时候的关键问题之一。

牛顿使用的直接拟合方法,基于三维整数维,对于分数维度的现实,有些误差。

相对于用间接拟合方式,逼近了拟合。

这是一个拟合标的物的两种数学拟合方法。时空曲线存在吗?不物质性存在。它是引力在三维相对运动体系表现出曲率的拟合特征。是直接拟合的引力造成的结果,而引力是物质性的。现在西方明显把引力场当物质性存在。而引力场,曲面空间,仅仅是引力效果的一种间接拟合,像声波子一样,可以计算结果正确,但是不物质性地存在。寻找引力子,先找到声波子,这个简单。间接拟合理论方向出现错误。

另外,直接拟合需要笛卡尔数学坐标系,才有准确意义。而相对论证实的时空部分,明显是三点几维的分数维,这是一个混沌体系。起初测量的极小误差,就会导致后续误差急剧放大而失去数据解读意义。那么,用简单线性拟合的这个时空混沌体系,越远问题越大。暂时看,百亿光年内问题不大,但再远,要有数学问题。

以往的理论都是把混沌坐标体系当做笛卡尔坐标系使用,这才有牛顿理论的误差问题。而现在有了分数维,混沌分形体系概念,这个最基本的数学问题,在数学拟合中依然存在。

坐标系的各个坐标轴的单位、数学性质统一的是笛卡尔数学坐标系,不统一的,很可能是混沌坐标系。时间这个要素特殊,不一定。

笔者仅仅是数学爱好者,不是物理学家,就看出这些数学问题来。最美的欧拉方程,利用超越数,否定了代数几何的大一统。而同样沿着循环、迭代方向发展的波,现在要物理大一统。都不统了,没有数学支撑的物理,怎么统?

物理这瓶颈还不小。中国好好发展实证物理就好。理论物理,他们以后会改的,反正无法证实无法证伪的部分,假说会不断,直到证实。但是,数学有问题的,那就是数学 游戏 ,而非物理。数理和数学是两个事情,基于点没有几何形状,波才能代替圆和弦,这样代数几何才能在笛卡尔坐标系上统一, 可是基于这种假设,证明出点有五个几何形状,自己找数学问题吧。

好好的古典的时间定义被物理弄的乱七八糟,时间是一种间接拟合方法,就是记录一个过程的序列号,不是物质。只要你不能返老还童,时间永回不到过去。

三维空间你知道是数学的一种假设,那么四维时空,复杂了一点,弯曲的三维空间,就不是数学假设了?就是物质了?大爆炸炸出一个时空和盘古开天辟地属于一个性质的解读。时空超光速扩展?大型对撞机现在还没装出超光速的基本粒子。而三维空间弯曲一点,坐标轴是无限长的,用扩展吗,还超光速。这是物理吗?

方向不改,物理这瓶颈过不去!

其实瓶颈期,也正是机遇期。

从量子理论以来,物理学的发展,一直是以线性的应用研究为主线。在收获极大成功的同时,这同时也限制了人类的想象力。因为物理学家们并不需要冒失败风险做开拓性的研究,就能站在前人的肩膀上收获成功。但现在好日子已经过去了,物理理论又到了必须做出根本性突破的关键点,没有人知道方向,也没有前人的肩膀可以垫脚。所以只有默默无闻的做大量方向性验证,才有可能脱颖而出,开辟物理学的新天地。

让我们一起期待,这一次带领人类突破桎梏的学者,是我们中国人,或外籍华人。

物理学一直是天才推动的学科,不可能一日千里,也不能搞人海战术。只能等待天才降临。

科学的发展永无止境。

4. 物理学发展史及其重要事件

经典物理学发展史
古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。

伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论 。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出着名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。

法国在大革命的前后,人才辈出,以P.S.M.拉普拉斯为首的法国科学家(史称拉普拉斯学派)将牛顿的力学理论发扬光大,把偏微分方程运用于天体力学,求出了太阳系内三体和多体问题的近似解,初步探讨并解决了太阳系的起源和稳定性问题,使天体力学达到相当完善的境界。在牛顿和拉普拉斯的太阳系内,主宰天体运动的已经不是造物主,而是万有引力,难怪拿破仑在听完拉普拉斯的太阳系介绍后就问 :你把上帝放在什么地位?无神论者拉普拉斯则直率地回答 :我不需要这个假设。

拉普拉斯学派还将力学规律广泛用于刚体、流体和固体,加上W.R.哈密顿、G.G.斯托克斯等的共同努力,完善了分析力学,把经典力学推进到更高阶段。该学派还将各种物理现象如热、光、电、磁甚至化学作用都归于粒子间的吸引和排斥,例如用光子受物质的排斥解释反射,光微粒受物质的吸引解释折射和衍射,用光子具有不同的外形以解释偏振,以及用热质粒子相互排斥来解释热膨胀、蒸发等等,都一度取得成功,从而使机械的唯物世界观统治了数十年。正当这学派声势煊赫、如日中天时,受到英国物理学家T.杨和这个学派的后院法兰西科学院及科学界的挑战,J.B.V.傅里叶从热传导方面,T.杨、D.F.J.阿拉戈、A.-J.菲涅耳从光学方面,特别是光的波动说和粒子说(见光的二象性)的论争在物理史上是一个重大的事件。为了驳倒微粒说,年轻的土木工程师菲涅耳在阿拉戈的支持下,制成了多种后以他的姓命名的干涉和衍射设备,并将光波的干涉性引入惠更斯的波阵面在介质中传播的理论 ,形成惠更斯-菲涅耳原理,还大胆地提出光是横波的假设,并用以研究各种光的偏振及偏振光的干涉,他创造了“菲涅耳波带”法,完满地说明了球面波的衍射,并假设光是以太的机械横波解决了光在不同介质界面上反射、折射的强度和偏振问题,从而完成了经典的波动光学理论。菲涅耳还提出地球自转使表面上的部分以太漂移的假设并给出曳引系数。也在阿拉戈的支持下,J.B.L.傅科和A.H.L.菲佐测定光速在水中确比空气中为小,从而确定了波动说的胜利,史称这个实验为光的判决性实验。此后,光的波动说及以太论统治了19世纪的后半世纪,着名物理学家如法拉第、麦克斯韦、开尔文等都对以太论坚信不疑。另一方面,利用干涉仪内干涉条纹的移动,可以精确地测定长度、速度、曲率的极微细的变化;利用棱镜和衍射光栅产生的光谱,可以确定地上和天上的物质的成分及原子内部的变化。因此这些光学仪器已成为物理学、分析化学、物理化学和天体物理学中的重要实验手段。
蒸汽机的发明推动了热学的发展 ,18世纪60年代在 J.瓦特改进蒸汽机的同时,他的挚友J.布莱克区分了温度和热量,建立了比热容和潜热概念,发展了量温学和量热学,所形成的热质说和热质守恒概念统治了80多年。在此期间,尽管发现了气体定律,度量了不同物质的比热容和各类潜热 ,但对蒸汽机的改进帮助不大,蒸汽机始终以很低的效率运行。1755年法国科学院坚定地否决了永动机 。1807年T.杨以“能”代替莱布尼兹的“活力” ,1826年 J. V. 彭赛列创造了“功”这个词。1798年和1799年,朗福德和H.戴维分析了摩擦生热,向热质说挑战;J.P.焦耳从 19 世纪 40 年代起到1878年,花了近40年时间,用电热和机械功等各种方法精确地测定了热功当量 ;生理学家 J.R.迈尔和H.von亥姆霍兹 ,更从机械能、电能、化学能、生物能和热的转换,全面地说明能量既不能产生也不会消失,确立了热力学第一定律即能量守恒定律。在此前后,1824年,S.卡诺根据他对蒸汽机效率的调查,据热质说推导出理想热机效率由热源和冷却源的温度确定的定律。文章发表后并未引起注意。后经R.克劳修斯和开尔文分别提出两种表述后,才确认为热力学第二定律。克劳修斯还引入新的态函数熵;以后,焓、亥姆霍兹函数、吉布斯函数 等态函数相继引入 ,开创了物理 化学 中的重要分支——热化学。热力学指明了发明新热机、提高热机效率等的方向,开创了热工学;而且在物理学、化学、机械工程、化学工程 、冶金学等方面也有广泛的指向和推动作用。这些使物理化学开创人之一W.奥斯特瓦尔德曾一度否认原子和分子的存在 ,而宣扬“唯能论”,视能量为世界的最终存在 。但另一方面,J.C.麦克斯韦的分子速度分布率(见麦克斯韦分布)和L.玻耳兹曼的能量均分定理把热学和力学综合起来,并将概率规律引入物理学,用以研究大量分子的运动,创建了气体分子动力论(现称气体动理论),确立了气体的压强、内能、比热容等的统计性质,得到了与热力学协调一致的结论。玻耳兹曼还进一步认为热力学第二定律是统计规律,把熵同状态的概率联系起来,建立了统计热力学。任何实际物理现象都不可避免地涉及能量的转换和热量的传递,热力学定律就成为综合一切物理现象的基本规律。经过20世纪的物理学革命,这些定律仍然成立。而且平衡和不平衡、可逆和不可逆、有序和无序乃至涨落和混沌等概念,已经从有关的自然科学分支中移植到社会科学中。
在19世纪20年代以前 ,电和磁始终认为 是两种不同的物质,因此,尽管1600年W.吉伯发表《论磁性》,对磁和地磁现象有较深入的分析 ,1747 年B.富兰克林提出电的单流质理论,阐明了正电和负电,但电学和磁学的发展是缓慢,1800年A.伏打发明伏打电堆,人类才有能长期供电的电源 ,电开始用于通信 ;但要使用一个电弧灯 ,就需联接2千个伏打电池,所以电的应用并不普及。1920年H.C.奥斯特的电流磁效应实验,开始了电和磁的综合,电磁学就迅猛发展,几个月内 ,通过实验A.-M.安培建立平行电流间的安培定律 ,并提出磁分子学说 ,J.-B.毕奥和F.萨伐尔建立载流导线对磁极的作用力(后称毕-萨-拉定律),阿拉戈发明电磁铁并发现磁阻尼效应,这些成就奠定了电磁学的基础。1831年M.法拉第发现电磁感应现象,磁的变化在闭合回路中产生了电流,完成了电和磁的综合,并使人类获得新的电源。1867年W.von 西门子发明自激发电机 ,又用变压器完成长距离输电,这些基于电磁感应的设备,改变了世界面貌,创建了新的学科——电工学和电机工程。法拉第还把场的概念引入电磁学;1864年麦克斯韦进一步把场的概念数学化,提出位移电流和有旋电场等假设,建立了麦克斯韦方程组,完善了电磁理论,并预言了存在以光速传播的电磁波。但他的成就并没有即时被理解,直到H.R.赫兹完成这组方程的微分形式,并用实验证明麦克斯韦预言的电磁波,具有光波的传播速度和反射 、折射干涉、衍射、偏振等一切性质,从而完成了电磁学和光学的综合,并使人类掌握了最快速的传递各种信息的工具 ,开创了电子学这门新学科。
直到19世纪后半叶 ,电荷的本质是什么 ,仍没有搞清楚,盛极一时的以太论,认为电荷不过是以太海洋中的涡元。H.A.洛伦兹首先把光的电磁理论与物质的分子论结合起来 ,认为分子是带电的谐振子 ,1892年起 ,他陆续发表“电子论”的文章 ,认为1859年 J.普吕克尔发现的阴极射线就是电子束;1895年提出洛伦兹力公式,它和麦克斯韦方程相结合,构成了经典电动力学的基础;并用电子论解释了正常色散、反常色散(见光的色散)和塞曼效应。1897年J.J.汤姆孙对不同稀薄气体、不同材料电极制成的阴极射线管施加电场和磁场,精确测定构成阴极射线的粒子有同一的荷质比 ,为电子论提供了确切的实验根据。电子就成了最先发现的亚原子粒子 。1895年W.K.伦琴发现X射线,延伸了电磁波谱 ,它对物质的强穿透力,使它很快就成为诊断疾病和发现金属内部缺陷的工具 。1896年A.-H.贝可勒尔发现铀的放射性 ,1898年居里夫妇发现了放射性更强的新元素——钋和镭,但这些发现一时尚未引起物理学界的广泛注意
20世纪的物理学 到19世纪末期 ,经典物理学已经发展到很完满的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙 - 莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。
1905 年 A. 爱因斯坦为了解决电动力学应用于动体的不对称(后称为电动力学与伽利略相对性原理的不协调),创建了狭义相对论,即适用于一切惯性参考系的相对论。他从真空光速不变性出发,即在一切惯性系中,运动光源所射出的光的速度都是同一值,推出了同时的相对性和动系中尺缩 、钟慢的结论 ,完满地解释了洛伦兹为说明迈克耳孙 -莫雷实验提出的洛伦兹变换公式,从而完成了力学和电动力学的综合。另一方面,狭义相对论还否定了绝对的空间和时间,把时间和空间结合起来,提出统一的相对的时空观构成了四度时空;并彻底否定以太的存在,从根本上动摇了经典力学和经典电磁学的哲学基础,而把伽利略的相对性原理提高到新的阶段,适用于一切动体的力学和电磁学现象。但在动体或动系的速度远小于光速时,相对论力学就和经典力学相一致了。经典力学中的质量、能量和动量在相对论中也有新的定义,所导出的质能关系为核能的释放和利用提供了理论准备。1915年,爱因斯坦又创建广义相对论,把相对论推广到非惯性系,认为引力场同具有相当加速度的非惯性系在物理上是完全等价的,而且在引力场中时空是弯曲的,其曲率取决于引力场的强度,革新了宇宙空间都是平直的欧几里得空间的旧概念。但对于范围和强度都不很大的引力场如地球引力场,可以完全不考虑空间的曲率,而对引力场较强的空间如太阳等恒星的周围和范围很大的空间如整个可观测的宇宙空间 ,就必须考虑空间曲率。因此广义相对论解释了用牛顿引力理论不能解释的一些天文现象,如水星近日点反常进动、光线的引力偏析等。以广义相对论为基础的宇宙学已成为天文学的发展最快的一个分支。

另一方面 ,1900年 M.普朗克提出了符合全波长范围的黑体辐射公式,并用能量量子化假设从理论上导出,首次提出物理量的不连续性。1905年爱因斯坦发表光量子假设,以光的波粒二象性,解释了光电效应;1906年又发表固体热容的量子理论;1913年N.玻尔(见玻尔父子)发表玻尔氢原子理论,用量子概念准确地地计算出氢原子光谱的巴耳末公式,并预言氢原子存在其他线光谱,后获证实。1918年玻尔又提出对应原理,建立了经典理论通向量子理论的桥梁;1924年L.V.德布罗意提出微观粒子具有波粒二象性的假设,预言电子束的衍射作用;1925年W.泡利发表泡利不相容原理,W.K.海森伯在M.玻恩和数学家E.P.约旦的帮助下创立矩阵力学 ,P.A.M.狄拉克提出非对易代数理论 ;1926 年
E.薛定谔根据波粒二象性发表波动力学的一系列论文,建立了波函数,并证明波动力学和矩阵力学是等价的,遂即统称为量子力学 。同年6月玻恩提出了波函数的统计解释 ,表明单个粒子所遵循的是统计性规律而非经典的确定性规律;1927年海森伯发表不确定性关系;1928年发表相对论电子波动方程,奠定了相对论性量子理论的基础。由于一切微观粒子的运动都遵循量子力学规律,因此它成了研究粒子物理学、原子核物理学、原子物理学、分子物理学和固体物理学的理论基础,也是研究分子结构的重要手段,从而发展了量子化学这个化学新分支。
差不多同时,研究由大量粒子组成的粒子系统的量子统计法也发展起来了 ,包括1924年建立的玻色-爱因斯坦分布和1926年建立的费米-狄拉克分布 ,它们分别适应于自旋为整数和半整数的粒子系统。稍后,量子场论也逐渐发展起来了 。1927年 ,狄拉克首先提出将电磁场作为一个具有无穷维自由度的系统进行量子化的方案,以处理原子中光的自发辐射和吸收问题。1929年海森伯和泡利建立了量子场论的普遍形式,奠定了量子电动力学的基础。通过重正化解决了发散困难,并计算各阶的辐射修正,所得的电子磁矩数值与实验值只相差2.5×10-10 ,其准确度在物理学中是空前的 。量子场论还正向统一场论的方向发展,即把电磁相互作用、弱相互作用、强相互作用和引力相互作用统一在一个规范理论中,已取得若干成就的有电弱统一理论、量子色动力学和大统一理论等。

“实践是真理的唯一标准”,物理学也同样遵循这一标准。一切假说都必须以实验为基础,必须经受住实验的验证。但物理学也是思辨性很强的科学,从诞生之日起就和哲学建立了不解之缘。无论是伽利略的相对性原理、牛顿运动定律、动量和能量守恒定律 、麦克斯韦方程乃至相对论、量子力学,无不带有强烈的、科学的思辨性。有些科学家例如在19世纪中主编《物理学与化学》杂志的J.C.波根多夫曾经想把思辨性逐出物理学,先后两次以具有思辨性内容为由,拒绝刊登迈尔和亥姆霍兹的论能量守恒的文章,终为后世所诟病。要发现隐藏在实验事实后面的规律,需要深刻的洞察力和丰富的想象力。多少物理学家关注θ-τ之谜 ,唯有华裔美国物理学家李政道和杨振宁,经过缜密的思辨,检查大量文献,发现谜后隐藏着未经实验鉴定的弱相互作用的宇称守恒的假设。而从物理学发展史来看,每一次大综合都促使物理学本身和有关学科的很大发展,而每一次综合既以建立在大量精确的观察、实验事实为基础,也有深刻的思辨内容。因此一般的物理工作者和物理教师,为了更好地应用和传授物理知识,也应从物理学的整个体系出发,理解其中的重要概念和规律。
应用 物理学是广泛应用于生产各部门的一门科学 ,有人曾经说过,优秀的工程师应是一位好物理学家。物理学某些方面的发展,确实是由生产和生活的需要推动的。在前几个世纪中,卡诺因提高蒸汽机的效率而发现热力学第二定律,阿贝为了改进显微镜而建立光学系统理论,开尔文为了更有效地使用大西洋电缆发明了许多灵敏电学仪器;在20世纪内,核物理学、电子学和半导体物理、等离子体物理乃至超声学、水声学、建筑声学、噪声研究等的迅速发展,显然和生产 、生活的需要有关。因此,大力开展应用物理学的研究是十分必要的。另一方面,许多推动社会进步,大大促进生产的物理学成就却肇始于基本理论的探求,例如:法拉第从电的磁效应得到启发而研究磁的电效应,促进电的时代的诞生;麦克斯韦为了完善电磁场理论,预言了电磁波,带来了电子学世纪;X射线、放射性乃至电子 、中子的发现 ,都来自对物质的基本结构的研究。从重视知识、重视人才考虑,尤应注重基础理论的研究。因此为使科学技术达到世界前列,基础理论研究是绝不能忽视的。
展望 21世纪的前夕 ,科学家将从本学科出发考虑百年前景。物理学是否将如前两三个世纪那样,处于领先地位,会有一番争议,但不会再有一位科学家像开尔文那样,断言物理学已接近发展的终端了。能源和矿藏的日渐匮乏,环境的日渐恶化,向物理学提出解决新能源、新的材料加工、新的测试手段的物理原理和技术。对粒子的深层次探索,解决物质的最基本的结构和相互作用,将为人类提供新的认识和改造世界的手段,这需要有新的粒子加速原理,更高能量的加速器和更灵敏、更可靠的探测器。实现受控热核聚变,需要综合等离子体物理、激光物理、超导物理、表面物理、中子物理等方面知识,以解决有关的一系列理论技术问题。总之,随着新的技术革命的深入发展,物理学也将无限延伸。

阅读全文

与物理学前进发生什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1300
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1025
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:976
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1651
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1059