导航:首页 > 物理学科 > 如何判断某物理量具有波动性

如何判断某物理量具有波动性

发布时间:2022-03-16 03:34:21

A. 哪些现象证明光的波动性哪些现象证明光有粒子性

说明光的粒子性的现象:光电效应, 氢光谱的原子特征光谱不连续,光的直线传播,光的反射可以用粒子性解释。光电效应,氢光谱原子特征谱线不连续,证明光具有粒子性,同时,光的直线传播,反射也可用粒子说得到解释。

说明光的波动性:叠加,干涉,衍射,偏振,光的电磁波属性,光的色散,反射,折射,衍射,干涉,偏振,叠加等证明光的波动性。

(1)如何判断某物理量具有波动性扩展阅读:

爱因斯坦支持光的粒子性,在于光电效应无法用传统物理学的波动理论来解释。相反,如果将光视作能量量子化分布的“粒子”而非能量连续分布的“波”,可以解释一系列光电效应的现象。(爱因斯坦获得诺贝尔奖是因为他在光电效应上的工作,并非因为相对论。)光的单缝衍射实验是支持光的波动性的实验。

在该实验中,一束光通过一道细缝(缝的宽度和光的波长相似)后,在屏上会显示出一系列衍射条纹。而如果将光束能量降低到平均只能有一个光子同时通过细缝,长时间曝光后发现光子在屏上的分布仍然符合衍射条纹。这说明光的波动性并非仅仅是大量光子相互影响而产生的现象,而是单个光子本身固有的性质。

波粒二象性是量子力学当中的概念,虽然可以用宏观的“粒子”与“波动”来近似描述,但是本质上并不能用宏观观念来替代。综上,单个光子本身既具有类似宏观粒子的“粒子性”,同时具有类似宏观波动的“波动性”,这个性质本身被称为“波粒二象性”,是光子的固有性质,并非宏观粒子性质与波动性质的合成。

事实上,微观粒子都具有波粒二象性这种量子性质。换句话说,“光具有波粒二象性”这句话是不等同于“光既是粒子,又是波”这句话的,只能理解为“光会同时表现出类似宏观粒子与宏观波动的性质。”

B. 描述波动的物理量有哪些

‘波动’原是一大类物理现象的专有名词,如水波、弹性介质波、电磁波、引力波、以及具有波粒二象性的物质波、等等都是物理学上的波动。‘波动’又是一些社会现象和心理或生理现象的借用名词,如‘物价波动’、‘股市波动’、‘情绪波动’、‘血压波动’等等。首先指出,本文所讨论的只是物理学上的波动。

在维基网络全书中,对物理学上与物质及能量相联系的波动大致是这样定义的:“波或波动是物理量扰动随着时间的进展在空间中传播(也可说成是在时空中的传播)的一种物理现象”。这个定义是目前物理学的主流看法,多数物理学者赞同这个定义或类似的定义。本文也赞同并且只讨论这样的定义。在网上对物理学上的波动,有人提出过另外的定义,本博只采用物理学的主流看法,不打算对另外的波动定义进行讨论。在维基网络全书中把信息的传播也看成是一种波动,但信息是否是一种表征场的物理量?尚待深入研究,为慎重起见故本文不把信息的传播视为物理学上的一种波动。

下面我们以引力波为例,基于广义相对论来说明上述波动的定义。按照广义相对论的引力场方程,当时空中物质的能动张量发生变动时,时空中的度规张量,因之联络系数、曲率张量(这些都是描述引力场几何特性的物理场量)也随之发生变动而出现扰动。度规张量的扰动、联络系数的扰动、曲率张量的扰动都是物理量扰动,它们在时空中的传播总称为引力波。也可分别把度规张量的扰动、联络系数的扰动、曲率张量的扰动的传播各别称为度规波、联络波、曲率波;并且常把曲率波形象地说成是‘时空涟漪’。

必须强调指出,所谓“物理量扰动随着时间的进展在空间中传播”实质上是相位的传播,即处于上一位置在前一时刻的相位于后一时刻传播到下一位置(例如于上一位置在前一时刻的波峰于后一时刻传播到下一位置,两者相位相同)。对相位概念不熟悉的读者可复习大学普通物理

C. 电子是不是具有波动性

1926年夏天,美国物理学家戴维孙到英国访问,巧遇德国的玻恩教授。这个量子力学的祖师爷把德布罗意的一个有趣想法告诉了戴维孙:既然传统上认为具有典型波动性的光,在某些场合下能显示粒子性,那么,传统上是具有典型粒子性的电子,在某种场合下能不能显示出波动性来呢?这是迄今尚无法验证的一个“悬案”。

言者无意,听者有心。听得出神的戴维孙忽然想起了一件事:1925年4月的一天,他和同事革末像往常一样在着名的贝尔电话实验室里做实验,用一束电子去轰击放在高真空的玻璃容器里的一块镍片,期望能撞出一些新的电子来。那天做实验时由于意外事故空气进入容器,使里面的镍片氧化。由于这项实验需要很纯的镍片,所以他们不得不把氧化后的镍片取出来,一面加热,一面把上面的氧化层洗刷掉。当他们用洗清的镍片继续做实验时,却得到一张奇怪的照片:一圈一圈的同心圆,明暗相间地排列着,很像光经过小孔衍射后的照片。

当初,他们面对这张衍射照片百思不得其解。现在,玻恩教授介绍的德布罗意关于电子可能具有波动性的观点,使戴维孙恍然大悟。原来他和革末拍到的这张奇怪的照片,竟然是发现电子具有波动性的重要证据。

D. 如何判断表现出粒子性还是波动性

光的波粒二象性是指光既具有波动特性,又具有粒子特性。科学家发现光既能像波一样向前传播,有时又表现出粒子的特征。因此我们称光为“波粒二象性”。
光一直被认为是最小的物质,虽然它是个最特殊的物质,但可以说探索光的本性也就等于探索物质的本性。历史上,整个物理学正是围绕着物质究竟是波还是粒子而展开的。
光学的任务是研究光的本性,光的辐射、传播和接收的规律;光和其他物质的相互作用(如物质对光的吸收、散射、光的机械作用和光的热、电、化学、生理效应等)以及光学在科学技术等方面的应用。
科学家们借助试验捕获了光的粒子与波同时存在的场景。主要利用了杨氏双缝实验。把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的双缝干涉条纹。

E. 一个光子具有波动性吗

有的。光子具有明显的波粒二象性。就算是单个只要震动与传播还在进行就会表现出波动性

F. 如何判断波动性强弱

波长越长,光的波动性越长。频率越高,光的粒子性越强。 ⑴个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性.
⑵ν高的光子容易表现出粒子性;ν低的光子容易表现出波动性.
⑶光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性.
⑷由光子的能量E=hν,光子的动量表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ.

G. 波动的振幅可以用什么来描述

波动的振幅可以用分贝来描述。

波动是一种常见的物理现象,我们将某一物理量的扰动或振动在空间逐点传递时形成的运动形式称为波动。

各种形式的波的共同特征是具有周期性,受扰动物理量变化时具有时间周期性,即同一点的物理量在经过一个周期后完全恢复为原来的值;在空间传递时又具有空间周期性,即沿波的传播方向经过某一空间距离后会出现同一振动状态(例如质点的位移和速度)。



振幅的意义:

在机械振动中,振幅是物体振动时离开平衡位置最大位移的绝对值,振幅在数值上等于最大位移的大小。振幅是标量,单位用米或厘米表示。振幅描述了物体振动幅度的大小和振动的强弱。

在交流电路中,电流振幅或电压振幅是指电流或电压变化的最大值,也叫电压或电流的峰值。

在声振动中,振幅是声压与静止压强之差的最大值。声波的振幅以分贝为单位。声波振幅的大小能够决定音强。

简谐振动的振幅是不变的,它是由谐振动的初始条件(初位移和初速度)决定的常数。谐振动的能量与振幅平方成正比。因此,振幅的平方可作为谐振动强度的标志。强迫振动的稳定阶段振幅也是一个常数,阻尼振动的振幅是逐渐减小的。

H. 双缝干涉实验是什么真的能证明光具有波动性特征吗

在量子力学中,双缝实验是显示光子和电子等微观物体的波动性和粒子性的实验。是可以证明光具有波动性的。

双缝实验是“双路径实验”。 在这种更广义的实验中,微观物体可以同时穿过两条路径,或者可以穿过任意路径从初始点到达最终点。 这两个路径之间的距离差使描述微观物体的物理行为的量化状态相移,从而产生干扰现象。 另一个常见的双遍实验是马赫-曾德尔干扰校正实验。 双缝实验还被列入世界十大古典物理实验,但也有人认为双缝实验非常可怕。 双缝实验为什么可怕?

实验本身没有问题,证明了光具有波粒二象性,但科学家们想观察会怎样,他们在微观水平上进行观察,设置高速摄像机,观察光子是如何通过缝隙形成波干涉的,此时出现了不可思议的现象,光子波正是这样,引出了超可怕可疑的电子双缝干涉实验和石破天惊讶的“延迟选择实验”,给全人类带来了前所未有的思想冲击。

I. 光的折射如何用 其波动性解释啊

定义:光从一种透明均匀物质斜射到另一种透明物质中时,传播方向发生改变的现象叫做光的折射。

折射规律:传播速度越快,角越大。
入射光线、法线、折射光线在同一平面内,折射光线和入射光线分别位于法线两侧,当光线垂直入射时,折射光线、法线和入射光线在同一直线上。
入射角增大,折射角也增大。入射角大于折射角。
光垂直入射时,传播方向不变,但光速改变。
在光的折射中,光路是可逆的。
不同介质对光的折射能力是不同的。
光在同一种物质(或均匀介质)中沿着直线传播.光在不同介质中传播的速度不同,在真空中传播速度最大,约为3×10⒏米/秒

光从一种透明均匀物质斜射到另一种透明物质中时,折射的程度与后者的折射率有关。

一,光的波动性
1.光的干涉:两列光波在空中相遇时发生叠加,在某些区域总加强,某些区域减弱,相间的条纹或者彩色条纹的现象.
光的干涉的条件:是有两个振动情况总是相同的波源,即相干波源.(相干波源的频率必须相同).
形成相干波源的方法有两种:
①利用激光(因为激光发出的是单色性极好的光).
②设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等).
(3) 杨氏双缝实验:

亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ= nλ(n=0,1,2,……)
暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即δ=(n=0,1,2,……)
相邻亮纹(暗纹)间的距离.用此公式可以测定单色光的波长.用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹.
(4) 薄膜干涉:
应用:
使被检测平面和标准样板间形成空气薄层,用单色光照射,入射光在空气薄层上下表面反射出两列光波,在空间叠加.干涉条纹均匀:表面光滑;不均匀:被检测平面不光滑.
增透膜:镜片表面涂上的透明薄膜的厚度是入射光在薄膜中波长的,在薄膜的两个表面上反射的光,其光程差恰好等于半个波长,相互抵消,达到减少反射光增大透射光强度的作用.
其他现象:阳光下肥皂泡所呈现的颜色.
例1. 用绿光做双缝干涉实验,在光屏上呈现出绿,暗相间的条纹,相邻两条绿条纹间的距离为Δx.下列说法中正确的有
A.如果增大单缝到双缝间的距离,Δx 将增大
B.如果增大双缝之间的距离,Δx 将增大
C.如果增大双缝到光屏之间的距离,Δx将增大
D.如果减小双缝的每条缝的宽度,而不改变双缝间的距离,Δx将增大
解:公式中l表示双缝到屏的距离,d表示双缝之间的距离.因此Δx与单缝到双缝间的距离无关,于缝本身的宽度也无关.本题选C.
例2. 登山运动员在登雪山时要注意防止紫外线的过度照射,尤其是眼睛更不能长时间被紫外线照射,否则将会严重地损坏视力.有人想利用薄膜干涉的原理设计一种能大大减小紫外线对眼睛的伤害的眼镜.他选用的薄膜材料的折射率为n=1.5,所要消除的紫外线的频率为8.1×1014Hz,那么它设计的这种"增反膜"的厚度至少是多少
解:为了减少进入眼睛的紫外线,应该使入射光分别从该膜的前后两个表面反射形成的光叠加后加强,因此光程差应该是波长的整数倍,因此膜的厚度至少是紫外线在膜中波长的1/2.紫外线在真空中的波长是λ=c/ν=3.7×10-7m,在膜中的波长是λ/=λ/n=2.47×10 -7m,因此膜的厚度至少是1.2×10-7m.
2.光的衍射:
注意关于衍射的表述一定要准确.(区分能否发生衍射和能否发生明显衍射)
⑴各种不同形状的障碍物都能使光发生衍射.
⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小.
(3)衍射现象:明暗相间的条纹或彩色条纹.
(与干涉条纹相比,中央亮条纹宽两边窄,是不均匀的.若为白光,存在一条白色中央亮条纹)
例3. 平行光通过小孔得到的衍射图样和泊松亮斑比较,下列说法中正确的有
A.在衍射图样的中心都是亮斑
B.泊松亮斑中心亮点周围的暗环较宽
C.小孔衍射的衍射图样的中心是暗斑,泊松亮斑图样的中心是亮斑
D.小孔衍射的衍射图样中亮,暗条纹间的间距是均匀的,泊松亮斑图样中亮,暗条纹间的间距是不均匀的
解:从课本上的图片可以看出:A,B选项是正确的,C,D选项是错误的.
3.光谱:
光谱分析可用原子光谱,也可用吸收光谱.太阳光谱是吸收光谱,由太阳光谱的暗线可查知太阳大气的组成元素.
4.光的电磁说:
⑴麦克斯韦根据电磁波与光在真空中的传播速度相同,提出光在本质上是一种电磁波——这就是光的电磁说,赫兹用实验证明了光的电磁说的正确性.
⑵电磁波谱.波长从大到小排列顺序为:无线电波,红外线,可见光,紫外线,X射线,γ射线.各种电磁波中,除可见光以外,相邻两个波段间都有重叠.
各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线,可见光,紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的.
⑶红外线,紫外线,X射线的主要性质及其应用举例.
种 类
产 生
主要性质
应用举例
红外线
一切物体都能发出
热效应
遥感,遥控,加热
紫外线
一切高温物体能发出
化学效应
荧光,杀菌
X射线
阴极射线射到固体表面
穿透能力强
人体透视,金属探伤
例4 为了转播火箭发射现场的实况,在发射场建立了发射台,用于发射广播电台和电视台两种信号.其中广播电台用的电磁波波长为550m,电视台用的电磁波波长为 0.566m.为了不让发射场附近的小山挡住信号,需要在小山顶上建了一个转发站,用来转发_____信号,这是因为该信号的波长太______,不易发生明显衍射.
解:电磁波的波长越长越容易发生明显衍射,波长越短衍射越不明显,表现出直线传播性.这时就需要在山顶建转发站.因此本题的转发站一定是转发电视信号的,因为其波长太短.
例5. 右图是伦琴射线管的结构示意图.电源E给灯丝K加热,从而发射出热电子,热电子在K,A间的强电场作用下高速向对阴极A飞去.电子流打到A极表面,激发出高频电磁波,这就是X射线.下列说法中正确的有
A.P,Q间应接高压直流电,且Q接正极
B.P,Q间应接高压交流电
C.K,A间是高速电子流即阴极射线,从A发出的是X射线即一种高频电磁波
D.从A发出的X射线的频率和P,Q间的交流电的频率相同
解:K,A间的电场方向应该始终是向左的,所以P,Q间应接高压直流电,且Q接正极.从A发出的是X射线,其频率由光子能量大小决定.若P,Q间电压为U,则X射线的频率最高可达Ue/h.本题选AC.
二,光的粒子性
1.光电效应
⑴在光的照射下物体发射电子的现象叫光电效应.(右图装置中,用弧光灯照射锌版,有电子从锌版表面飞出,使原来不带电的验电器带正电.)
(2)爱因斯坦的光子说.光是不连续的,是一份一份的,每一份叫做一个光子,光子的能量E跟光的频率ν成正比:E=hν
(3)光电效应的规律:
各种金属都存在极限频率ν0,只有ν≥ν0才能发生光电效应;
瞬时性(光电子的产生不超过10-9s).
③光子的最大初动能与入射光的强度无关,只随着入射光的的频率的增大而增大;
④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比.
⑷爱因斯坦光电效应方程:Ek= hν - W(Ek是光电子的最大初动能;W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功.)
例6. 对爱因斯坦光电效应方程EK= hν-W,下面的理解正确的有
A.只要是用同种频率的光照射同一种金属,那么从金属中逸出的所有光电子都会具有同样的初动能EK
B.式中的W表示每个光电子从金属中飞出过程中克服金属中正电荷引力所做的功
C.逸出功W和极限频率ν0之间应满足关系式W= hν0
D.光电子的最大初动能和入射光的频率成正比
解: 爱因斯坦光电效应方程EK= hν-W中的W表示从金属表面直接中逸出的光电子克服金属中正电荷引力做的功,因此是所有逸出的光电子中克服引力做功的最小值.对应的光电子的初动能是所有光电子中最大的.其它光电子的初动能都小于这个值.若入射光的频率恰好是极限频率,即刚好能有光电子逸出,可理解为逸出的光电子的最大初动能是0,因此有W= hν0.由EK= hν-W可知EK和ν之间是一次函数关系,但不是成正比关系.本题应选C.
三,光的波粒二象性
1.光的波粒二象性
干涉,衍射和偏振以无可辩驳的事实表明光是一种波;光电效应和康普顿效应又用无可辩驳的事实表明光是一种粒子;因此现代物理学认为:光具有波粒二象性.
2.正确理解波粒二象性
波粒二象性中所说的波是一种概率波,对大量光子才有意义.波粒二象性中所说的粒子,是指其不连续性,是一份能量.
⑴个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性.
⑵ν高的光子容易表现出粒子性;ν低的光子容易表现出波动性.
⑶光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性.
⑷由光子的能量E=hν,光子的动量表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ.

阅读全文

与如何判断某物理量具有波动性相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:738
乙酸乙酯化学式怎么算 浏览:1403
沈阳初中的数学是什么版本的 浏览:1349
华为手机家人共享如何查看地理位置 浏览:1041
一氧化碳还原氧化铝化学方程式怎么配平 浏览:883
数学c什么意思是什么意思是什么 浏览:1407
中考初中地理如何补 浏览:1298
360浏览器历史在哪里下载迅雷下载 浏览:700
数学奥数卡怎么办 浏览:1386
如何回答地理是什么 浏览:1022
win7如何删除电脑文件浏览历史 浏览:1054
大学物理实验干什么用的到 浏览:1483
二年级上册数学框框怎么填 浏览:1698
西安瑞禧生物科技有限公司怎么样 浏览:966
武大的分析化学怎么样 浏览:1246
ige电化学发光偏高怎么办 浏览:1336
学而思初中英语和语文怎么样 浏览:1649
下列哪个水飞蓟素化学结构 浏览:1422
化学理学哪些专业好 浏览:1485
数学中的棱的意思是什么 浏览:1056