① 导数的物理意义是什么 例如...还有呢讲多一点..
不好意思,你说反了,路程求导得到速度(路程随时间变化率),速度求导得到加速度(速度随时间变化率);
求导就是求变化率.
还有其它都是类似的,每(按时间)求导一次,得到的东西都是被求导的那个物理量(随时间)的变化率.
数学上,一个函数每按自变量求导一次,得到的东西都是被此函数随自变量的变化率.
② 导数的意义是什么啊
导数的几何意义是,导数在几何上表现为切线的斜率。对于一元函数,某一点的导数就是平面图形上某一点的切线斜率;对于二元函数而言,某一点的导数就是空间图形上某一点的切线斜率。
导数的经济意义就是边际量,经济学里面所有边际量都由导数表示。边际量就是比如,边际利润,就是每曾加一单位的投入所获得的利润。边际就是每一单位XX得到的因它变化而产生的XX。
弹性就是,比如需求弹性,人们对某东西的需求程度,或重要程度。比如,大米,中国人对他的需求程度就高就算价格涨了人们还的买来吃。美国人就不吃大米,一涨价他们就不买了。所以弹性是对某东西的一个重要程度的衡量,没弹性,就非要不可,弹性大就可要可不要。导数与物理,几何,代数关系密切.在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度,加速度. 导数亦名纪数、微商(微分中的概念),是由速度变化问题和曲线的切线问题(矢量速度的方向)而抽象出来的数学概念.又称变化率. 如一辆汽车在10小时内走了 600千米,它的平均速度是60千米/小时.但在实际行驶过程中,是有快慢变化的,不都是60千米/小时.为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置s与时间t的关系为 s=f(t) 那么汽车在由时刻t0变到t1这段时间内的平均速度是 [f(t1)-f(t0)]/[t1-t0] 当 t1与t0很接近时,汽车行驶的快慢变化就不会很大,平均速度就能较好地反映汽车在t0 到 t1这段时间内的运动变化情况 . 自然就把当t1→t0时的极限lim[f(t1)-f(t0)]/[t1-t0] 作为汽车在时刻t0的瞬时速度,这就是通常所说的速度.这实际上是由平均速度类比到瞬时速度的过程 (如我们驾驶时的限“速” 指瞬时速度)导数定义可以认为是反映局部欧氏空间的函数变化。为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。 希望采纳 谢谢
③ 导数的物理意义是什么
导数就是衡量变化的快慢的物理量,就是变化率的值、、
④ 导数的物理意义,如图,请教一下这是什么意思。导数的物理意义是什么
这是因为导数是平均变化率取极限得到的瞬时变化率,位移对时间的导数就是位移对速度的瞬时变化率,而位移对速度的平均变化率就是某时间段内平均每单位时间位移的改变量,即该段时间内的平均速度。因此瞬时变化率就是某时刻的瞬时速度。
速度队时间求导同理可得
⑤ 导数又有几何意义又有物理意义是什么意思
导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
⑥ 导数物理意义问题
u对x求偏导的物理意义是:表示在X方向的加速度。
u对x求二阶偏导的物理意义是:在X方向加速度的变化快慢。
⑦ 导数又有几何意义又有物理意义是什么意思
(1)函数在点处的导数的几何意义:示曲线在点处的切线的斜率
(2)函数在点处的导数的物理意义:指函数在处对自变量x的变化率.函数的二阶导数指对自变量x的变化率.在物理量中最常用的瞬时加速度