1. 怎样通俗易懂地解释卷积
对卷积的意义的理解:
从“积”的过程可以看到,我们得到的叠加值,是个全局的概念。以信号分析为例,卷积的结果是不仅跟当前时刻输入信号的响应值有关,也跟过去所有时刻输入信号的响应都有关系,考虑了对过去的所有输入的效果的累积。在图像处理的中,卷积处理的结果,其实就是把每个像素周边的,甚至是整个图像的像素都考虑进来,对当前像素进行某种加权处理。所以说,“积”是全局概念,或者说是一种“混合”,把两个函数在时间或者空间上进行混合。
2. 卷积的作用与意义
卷积其实就是为冲击函数诞生的。“冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。古人曰:“说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明“冲击函数”。在t时间内对一物体作用F的力,倘若作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。于是在用t做横坐标、F做纵坐标的坐标系中,就如同一个面积不变的长方形,底边被挤的窄窄的,高度被挤的高高的,在数学中它可以被挤到无限高,但即使它无限瘦、无限高、但它仍然保持面积不变(它没有被挤没!),为了证实它的存在,可以对它进行积分,积分就是求面积嘛!于是“卷积”这个数学怪物就这样诞生了。
卷积是“信号与系统”中论述系统对输入信号的响应而提出的。
2 意义
信号处理是将一个信号空间映射到另外一个信号空间,通常就是时域到频域,(还有z域,s域),信号的能量就是函数的范数(信号与函数等同的概念),大家都知道有个Paserval定理就是说映射前后范数不变,在数学中就叫保范映射,实际上信号处理中的变换基本都是保范映射,只要Paserval定理成立就是保范映射(就是能量不变的映射)。
信号处理中如何出现卷积的。假设B是一个系统,其t时刻的输入为x(t),输出为y(t),系统的响应函数为h(t),按理说,输出与输入的关系应该为
Y(t)=h(t)x(t),
然而,实际的情况是,系统的输出不仅与系统在t时刻的响应有关,还与它在t时刻之前的响应有关,不过系统有个衰减过程,所以t1(<t)时刻的输入对输出的影响通常可以表示为x(t)h(t-t1),这个过程可能是离散的,也可能是连续的,所以t时刻的输出应该为t时刻之前系统响应函数在各个时刻响应的叠加,这就是卷积,用数学公式表示就是
y(s)=∫x(t)h(s-t)dt,
离散情况下就是级数了。
3 计算
卷积是一种积分运算,它可以用来描述线性时不变系统的输入和输出的关系:即输出可以通过输入和一个表征系统特性的函数(冲激响应函数)进行卷积运算得到。(以下用$符号表示从负无穷大到正无穷大的积分)
1)一维卷积:
y(t)=g(k)*x(k)=$g(k)x(t-k)
先把函数x(k)相对于原点反折,然后向右移动距离t,然后两个函数相乘再积分,就得到了在t处的输出。对每个t值重复上述过程,就得到了输出曲线。
2)二维卷积:
h(x,y)=f(u,v)*g(u,v)=$$f(u,v)g(x-u,y-v)
先将g(u,v)绕其原点旋转180度,然后平移其原点,u轴上像上平移x, v轴上像上平移y。然后两个函数相乘积分,得到一个点处的输出。
3. 有人能告诉我卷积和、卷积积分的物理意义,谢谢,诸位!
卷积和的物理意义:在LTI离散系统中,可用与上述大致相同的方法进行分析。由于离散信号本身是一个序列,因此,激励信号分解为单位序列的工作很容易完成。如果系统的单位序列响应为已知,那么,把这些序列相加就得到系统对于该激励信号的零状态响应。
卷积积分的物理意义:在激励条件下,线性电路在t时刻的零状态响应=从激励函数开始作用的时刻(ξ=0);到t时刻( ξ=t)的区间内,无穷多个强度不同的冲激响应的总和。可见,冲激响应在卷积中占据核心地位。
(3)卷积物理意义是什么扩展阅读:
卷积积分的应用:
卷积积分法已知电路的冲激响应为h(t),则任意激励e(t)的零状态响应r(t)求得拉普拉斯变换法(也称运算法);即:
(1)先将表示电压或电流的时域形式的任意激励f()做拉氏变换,得到复频域的电压或电流激励的象,从等效运算电路求解以象函数为变量的线性代数方程,得到电压或电流响应的象函数。
(2)再利用拉氏反变换(通常可以查表)求原函数,即可得任意激励e(t)的时域形式的零状态响应。
参考资料来源:网络-卷积和
参考资料来源:网络-卷积积分
4. 卷积公式的假定
卷积的物理意义是将输入信号用时移加权的单位冲激信号和(积分)表示,然后输出就是各个冲激信号作用系统后再求和,而时移量u(f(t-u)),再对u积分,就产生了反转。
5. 卷积和、卷积积分的物理意义是什么
对于初学者,我推荐用复利的例子来理解卷积可能更直观一些:
小明存入100元钱,年利率是5%,按复利计算(即将每一年所获利息加入本金,以计算下一年的利息),那么在五年之后他能拿到的钱数是,如下表所示:
相信通过上面这个例子,大家应该能够很清晰地记住卷积公式了。下面我们再展开说两句:
如果我们将小明的存款函数视为一个信号发生(也就是激励)的过程,而将复利函数视为一个系统对信号的响应函数(也就是响应),那么二者的卷积就可以看做是在时刻对系统进行观察,得到的观察结果(也就是输出)将是过去产生的所有信号经过系统的“处理/响应”后得到的结果的叠加,这也就是卷积的物理意义了。
6. 数字信号处理中循环卷积的物理意义怎么解释
简单的说,线性卷积表示一个信号通过一个系统的输出,这个信号可以是无限长的,也可以是有限长的,可以的离散的也可以是连续的。
周期卷积和循环卷积都是针对离散信号而言的,周期卷积是无限长周期离散信号通过一个离散系统后的输出,循环卷积(也叫圆周卷积)是一个有限长序列通过一个数字系统后的输出序列,在计算这个序列之前,必须先定义卷积运算的点数,不然这个运算就无法确定,点数确定后就可以按照线性卷积的计算一样进行,不同的是结果的处理,例如,序列1 1 1 1和序列1 1 1的线性卷积结果是序列1 2 3 3 2 1,而这两序列的4点循环卷积结果是 3 3 3 3 ,5点循环卷积结果是 2 2 3 3 2.
7. 卷积 含义
你是通信与信息工程专业的吗?
对于非数学系学生来说,只要懂怎么用卷积就可以了,研究什么是卷积其实意义不大,它就是一种微元相乘累加的极限形式。卷积本身不过就是一种数学运算而已。就跟“蝶形运算”一样,怎么证明,这是数学系的人的工作。
在信号与系统里,f(t)的零状态响应y(t)可用f(t)与其单位冲激响应h(t)的卷积积分求解得,即y(t)=f(t)*h(t)。学过信号与系统的都应该知道,时域的卷积等于频域的乘积,即有Y(s)=F(s)×H(s)。(s=jw,拉氏变换后等到的函数其实就是信号的频域表达式)
有一点你必须明白,在通信系统里,我们关心的以及要研究的是信号的频域,不是时域,原因是因为信号的频率是携带有信息的量。
所以,我们需要的是Y(s)这个表达式,但是实际上,我们往往不能很容易的得到F(s)和H(s)这两个表达式,但是能直接的很容易的得到f(t)和h(t),所以为了找到Y(s)和y(t)的对应关系,就要用到卷积运算。
复频域。
s=jw,当中的j是复数单位,所以使用的是复频域。通俗的解释方法是,因为系统中有电感X=jwL、电容X=1/jwC,物理意义是,系统H(s)对不同的频率分量有不同的衰减,即这种衰减是发生在频域的,所以为了与时域区别,引入复数的运算。但是在复频域计算的形式仍然满足欧姆定理、KCL、KVL、叠加法。
负的频率。
之所以会出现负的频率,这只是数学运算的结果,只存在于数学运算中,实际中不会有负的频率。
最后提一点建议,对于工程师而言,数学是一种工具,只管用,别管怎么来的。一些科学家,毕其一生研究出来的定理方法,有很多我们都在应用,但是如果我们去研究它的话,显然是不合适的。
8. 信号卷积的物理意义
信号卷积在物理意义当中的意思就是说,当信号发射出去之后,发生一定的波的传输过程,有阻碍物遮挡而进行发生改变。
9. 卷积的物理意义
卷积这个东东是“信号与系统”中论述系统对输入信号的响应而提出的。因为是对模拟信号论述的,所以常常带有繁琐的算术推导,很简单的问题的本质常常就被一大堆公式淹没了,那么卷积究竟物理意义怎么样呢?
卷积表示为
y(n) = x(n)*h(n)
使用离散数列来理解卷积会更形象一点,我们把y(n)的序列表示成
y(0),y(1),y(2) and so on;
这是系统响应出来的信号。
同理,x(n)的对应时刻的序列为x(0),x(1),x(2)...and so on;
其实我们如果没有学过信号与系统,就常识来讲,系统的响应不仅与当前时刻系统的输入有关,也跟之前若干时刻的输入有关,因为我们可以理解为这是之前时刻的输入信号经过一种过程(这种过程可以是递减,削弱,或其他)对现在时刻系统输出的影响,那么显然,我们计算系统输出时就必须考虑现在时刻的信号输入的响应以及之前若干时刻信号输入的响应之“残留”影响的一个叠加效果。
假设0时刻系统响应为y(0),若其在1时刻时,此种响应未改变,则1时刻的响应就变成了y(0)+y(1),叫序列的累加和(与序列的和不一样)。但常常系统中不是这样的,因为0时刻的响应不太可能在1时刻仍旧未变化,那么怎么表述这种变化呢,就通过h(t)这个响应函数与x(0)相乘来表述,表述为x(m)×h(m-n),具体表达式不用多管,只要记着有大概这种关系,引入这个函数就能够表述y(0)在1时刻究竟削弱了多少,然后削弱后的值才是y(0)在1时刻的真实值,再通过累加和运算,才得到真实的系统响应。
再拓展点,某时刻的系统响应往往不一定是由当前时刻t和前一时刻t-1这两个响应决定的,也可能是再加上t-2时刻,t-3时刻,t-4时刻,等等,那么怎么约束这个范围呢,就是通过对h(n)这个函数在表达式中变化后的h(m-n)中的m的范围来约束的。即说白了,就是当前时刻的系统响应与多少个之前时刻的响应的“残留影响”有关。
当考虑这些因素后,就可以描述成一个系统响应了,而这些因素通过一个表达式(卷积)即描述出来不得不说是数学的巧妙和迷人之处了。