① 安培是世界上什么的物理学家
安德烈·马丽·安培
法国物理学家、建立了电动力学(现在叫做电磁学)
安培逝世,享年61岁。
量度电流的单位就以他的姓名命名。
国际单位制中的电流强度单位,即每秒钟通过导体横截面的电量为1库仑时,其电流强度为1安培。
1775年安培在法国里昂出生。童年在里昂附近父母的家园度过。他父亲开始教他学拉丁文,直到发现他喜欢数学为止。不久,他把所学的拉丁总结,使他能阅读欧拉和伯努利的作品。他18岁时已经知道许多数学和科学,但读了一本“博学的人”书后,使他又学了不少历史,旅行,诗歌,哲学和自然科学等。
1796年,安培遇到朱莉·卡伦。
1799年与卡伦结婚。
1798年在里昂当家庭教师;教数学,化学和语言。
1801年独身移居布雷斯村镇当物理和化学教授。
1804年安培任里昂大学的数学教授。
1806年在巴黎工艺学校任职。
1809年任数学教授。他在此继续他的科学研究和努力学习。
1814年成为研究所的成员。
1828年瑞典皇家科学院选他为外国人的院士。
1836年安培在法国的马赛逝世。
② 我办家庭短号被说是物理成员是什么意思怎么才能取消物理成员呢
551主号统一付费的不需要经过你同意,只要拉你进网时你没在其它家庭短号网里你就被拉进网了,各付各的就要经过你同意才行。更多业务质询,功能开通与设置请拨打10086话务服务热线或到各地沟通100服务厅找工作人员咨询与办理~
③ 物理师是干什么的
物理师是肿瘤放射治疗中非常非常重要的成员,可以毫不夸张的说,没有物理师,放射治疗工作就开展不了。特别是随着近年来肿瘤放射治疗设备和技术的飞速发展,物理师在保证辐射安全,提高治疗技术水平,为患者提供高质量服务等方面所起的作用也越来越重要。在欧美国家医院里的肿瘤放疗科,物理师作为一个职业已有很长的历史,从事物理师职业的人数也由于设备和精确放疗技术的发展不断增加,同时所担负的责任也越来越重。
④ 物理学家的具体简介
物理学家介绍——霍金
1942年1月8日,霍金出生于英国牛津。这一天正是伟大的物理学家、天文学家伽利略300年前阖然长逝的日子。伽利略是最先提出了惯性定律原理(一切物体在不受外力作用时都会保持原来的运动状态)的人,后来牛顿系统地归纳了这个定律(因此后人也叫它“牛顿第一定律”),使之成为一切力学定律的基石。爱因斯坦提出狭义相对论和广义相对论,彻底改变了人类的时空观念。霍金的成就与这几位前辈相比又如何呢?他有资格跻身科学名人堂吗?让我们从他在学术界的第一次亮相看起:
1970年,28岁的霍金和彭罗斯(R. Penrose)合作,证明了“奇点定理”:在一定条件下,按照广义相对论,宇宙大爆炸必然从一个“奇点”开始。为此,他们共同获得1988年的沃尔夫物理奖。
霍金的贡献——对黑洞性质的研究和提出量子引力论——论重要程度虽赶不上牛顿的万有引力定律和爱因斯坦的两个相对论,但是足以为他在科学名人堂中留下一席之地。尤其是他的量子引力论,整合了现代物理学的两大领域,自成体系,使他能与创立分子生物学(生物学与量子力学的成功结合)的科学家平起平坐。
在霍金之前,所有的宇宙理论都以广义相对论为基础,但是只有霍金发现并证明了广义相对论只是一个不完全的理论,它不能告诉我们宇宙起源的细节。因为根据广义相对论得出的结论,所有的物理理论(包括它自己在内)都将在宇宙的开端处失效。显然,广义相对论只是一个不完全的“部分”理论,所以奇点定理真正所显示的是,在极早期宇宙中有过一个时刻,那时宇宙是如此之小,以至于人们不得不考虑用20世纪另一个伟大的“部分”理论——专门描述微观世界的量子力学——来研究它。霍金和他的搭档被迫从对极其巨大范围的理论研究转到对极其微小范围的理论研究。
恰好有这样一种可能存在的微型天体可作为研究对象。正如霍金后来回忆的:“研究黑洞的性质,有助于我们同时理解大爆炸奇点,因为他们之间实在是太相似了。”于是他开始潜心研究黑洞问题。
【名词解释黑洞:一颗内部燃烧尽了的大质量恒星由于自身的重力作用,外壳不断向中心坍塌缩小,最后就会形成致密的黑洞。黑洞是宇宙中的实体微粒,它们的体积趋向于零,而密度(密度=质量÷体积)几乎是无穷大,由于具有强大的引力,物体只要靠近这个微粒,就会被强大的引力吸住,连每秒传播30万千米的光也不能幸免。也就是说,没有任何信号能够从黑洞的作用范围内传出,这个作用范围的界限被称为“视界”,人类无法看到里面的情形——对于观测者来说,那就是漆黑一片—— 这也是黑洞名字的由来。】
1971年,霍金指出,宇宙大爆炸时间可能产生像质子那么小(半径10-13厘米)的重约十亿吨的“太初黑洞”,它们的寿命大约和宇宙年龄相同。
1973年霍金、卡特尔(B. Carter)等人严格证明了“黑洞无毛定理”:“无论什么样的黑洞,其最终性质仅由几个物理量(质量、角动量、电荷)惟一确定”。即当黑洞形成之后,只剩下这三个不能变为电磁辐射的守恒量,其他一切信息(“毛发”)都丧失了。“黑洞”的命名者惠勒(J.A. Wheeler)戏称这特性为“黑洞无毛”。
华裔着名物理学家介绍
吴有训
吴有训先生于1916年考入南京高等师范学校理化部,受教于留美归来的胡刚复博士。在胡先生的指导下,吴有训在国内即对X射线有了一定的了解。 1921年以优异成绩获得赴美留学机会。该年底吴有训赴美,1922年初进入芝加哥大学。其时,着名物理学家A•H•康普顿正以访问学者身份在芝加哥大学从事研究与教学,1923年他正式成为该校教授,该年5月康普顿发表了解释X射线被石墨散射后频率改变现象(后称康普顿效应)的论文。当时也研究这一现象的美国物理界一位重要人物杜安已有所谓“箱子效应”和“三次辐射”的理论,因此他极力反对康普顿的工作。吴有训先后以十几种元素为散射物质进一步做了大量深入研究,通过精心设计实验方案以无法辩驳的事实对康普顿的理论给予了极大支持。这些成果得到了国际物理界的关注和承认。相关数据被一些国际着作引用。吴先生1926年获博士学位。国外有的物理教科书,因尊重吴先生的工作而将康普顿效应称为康普顿—吴有训效应。
严济慈
严先生1923年赴法国留学,1927年获科学博士学位。1880年着名物理学家比埃尔•居里发现了晶体的压电效应,但压电效应的定量数据的获得,是严先生深入研究并精确测量给出的。严济慈的导师是物理学家夏尔•法布里,他是居里夫妇的好朋友。玛丽•居里夫人对严先生的研究非常支持,并把四十年前居里用过的石英晶体样品借给了严济慈。着名的物理学家朗之万对严济慈也非常赏识,给予了许多指导和帮助。严先生在大量实验基础上,总结出了石英晶体的压电效应及其反效应具有各向异性、饱和现象以及瞬时性等特性,扩充发展了居里的理论。1927年法布里当选为法国科学院院士,在就职仪式上他宣读了他的得意弟子---严济慈的博士论文。1931年严先生回国。1935年与着名物理学家F•约里奥—居里及卡皮察同时当选为法国物理学会理事。
赵忠尧
赵忠尧先生1927年到美国加州理工学院受教于1923年诺贝尔奖得主密里根,1930年获博士学位。1979年丁肇中在西德同步幅射中心“佩特拉”加速器落成典礼时,向十多个国家上百名科学家这样介绍赵忠尧:“这位是正负电子产生和湮灭的最早发现者,没有他的发现,就没有现在正负电子对撞机”这是指赵先生在研究密里根给出的第二个课题(第一个课题被赵先生拒绝了)“硬γ射线通过物质时的吸收系数”时,测量到了反常吸收和特殊辐射现象。所谓反常就是与当时比较公认的克莱因---仁科公式有很大出入,即只有在轻元素上的散射才符合而在通过重元素时相差很大,如当硬γ射线被铅散射时吸收系数比公式结果大了约40%。由于密里根相信克莱因---仁科公式的结果,而对赵先生的结果不甚相信,以至将论文搁置了2个多月。后来由于鲍文教授十分了解赵先生的工作,向密里根作了保证,文章才于1930年5月在美国《国家科学院院报》发表。在接下来的实验中赵忠尧发现γ射线被铅散射时,除康普顿散射外,伴随着反常吸收还有一种特殊的光辐射出现。由于当时所用的方法不能显示详细的机制,只能断定这两种现象不是由于核外壳层电子而是由于原子核所引起的。事实上,反常吸收是由γ射线在原子核周围产生正负电子对而减少的结果,而特殊辐射就是一个正电子和一个负电子碰撞湮没而产生二个(或二个以上)光子的湮没辐射。
王淦昌
丁肇中先生说过:“中国老一辈物理学家能留名学史上的有赵忠尧和王淦昌先生等。”
王先生1930年考取官费留学生,到德国柏林大学威廉皇家化学研究所,师从迈特纳,他先后在哥廷根和柏林大学有幸听过玻恩、米泽斯、海特勒、诺特海姆、弗兰克、薛定谔以及德拜等人的课。1933年26岁的王先生完成博士论文《ThB+C+C11的β谱》,年底由着名物理学家冯•劳厄、玻登斯坦以及迈特纳等人组成的答辩委员会审查并通过了王淦昌的博士论文。1934年1月王淦昌参观了卡文迪许实验室,拜会了卢瑟福、查得威克等物理学家。1934年4 月回国。
王先生的科学贡献主要有:提出了验证中微子存在的实验方案;利用宇宙线研究了μ介子衰变特性;首次发现了反西格马负超子;首次观察到在基本粒子相互作用中产生的带奇异夸克的反粒子,获1982年国家发明一等奖。
王先生参与了我国两弹研制的试验研究和组织领导,是我国核武器研制的主要奠基人之一。
钱学森
钱学森(1911—),中国科学家,火箭专家,1911年12月1日生于上海,3岁时随父来到北京,1934年毕业于上海交通大学机械工程系, 1935年赴美国研究航空工程和空气动力学,1938年获加利福尼亚理工学院博士学位。后留在美国任讲师、副教授、教授以及超音速实验室主任和古根罕喷气推进研究中心主任。1950年开始争取回归祖国,受到美国政府迫害,失去自由,历经5年于1955年才回到祖国,1958年起长期担任火箭、导弹和航天器研制的技术领导职务。1959年,加入中国共产党。现任中国科技协会名誉主席等职。
钱学森1935年进入麻省理工学院航空工程系。当时美国唯独加州理工学院有一所空气动力学实验室,主任是匈牙利着名学者冯•卡门(也译为冯•卡曼)。冯•卡门早年也是有成就的物理学家,是麦克斯•玻恩的好朋友及合作伙伴之一。后来,卡门专门研究流体动力学和空气动力学,成为在这两方面极富盛名的权威。1936年秋,钱先生慕名到加州访问卡门。卡门对钱学森敏捷而又富于智慧的思维非常欣赏,建议钱学森到他这里来读博士学位。从此钱学森在卡门指导下专攻高速空气动力学。中国学生赢得了卡门的特殊感情,除钱先生外,他还培养出了林家翘、钱伟长及郭永怀等中国着名数学家、科学家。他常说:“世界上最聪明的民族有两个,一个是匈牙利,一个是中国”。
在卡门的指导下,钱学森1933-1945年间在《航空科学》、《应用力学》等杂志发表8篇论文,推出了卡门---钱学森公式,提出了跨声速流动相似律等许多开创性工作。1945年卡门任美国空军科学顾问团团长,授少将军衔,钱学森任顾问团火箭组组长,上校军衔。第二次世界大战结束后,美国空军当局高度评价钱学森的工作,认为他为战争的胜利作出了巨大的贡献,卡门更是器重他的得意门生,称他为火箭方面最得力的专家。钱学森几经磨难1955年才得以回国,为新中国火箭、导弹以及航空航天技术的发展做出了奠基性的工作。1991年荣获《国家杰出贡献科学家》的称号。
钱三强
钱三强(1913—1992),中国实验物理学家,浙江省吴兴县。1929年考入北京大学理科预科,1932年考入清华大学物理系,1936年清华大学物理学系毕业。1937年赴法国留学,在约里奥•居里夫妇指导下,在巴黎大学镭学研究所居里实验室和法兰西学院原子核化学实验室进行原子核物理的研究工作,1940年获法国国家博士学位,1942年底赴里昂等待乘船回国,由于太平洋航线中断,他滞留里昂大学任教,1944年和1947年起先后担任法国国家科学研究中心研究员和研究导师,1946年获法国科学院亨利•德巴微奖金。1948年回国后,任清华大学物理学系教授和北平研究院原子学研究所所长。中国科学院成立后历任近代物理研究所副所长、所长、计划局副局长、局长,学术秘书处秘书长,1956—1978年任副秘书长、1958年任原子能研究所所长,1978—1984年任副院长;1955年受聘为数学物理学化学部(现为数学物理学部)学部委员,任中国科学院主席团成员,特邀顾问。1956— 1978年还担任第二机械工业部副部长。1951年起选为中国物理学会副理事长,1982年被选为理事长。1978年被遴选为中国人民政治协商会议第六届全国委员会常务委员。1992年6月28日0时28分于北京病逝,终年79岁。
钱三强1948年回国后培养了一批从事研究原子核科学的人材,建立起中国研究原子核科学的基地。1955年起参加了原子能事业的建立和组织工作,将近代物理所改建为原子能研究所,
领导并促进了这一事业的发展以及有关科技工作的开展,对中国科学院和中国原子能事业的建设、计划和学术领导都做出了贡献。
1937年,钱三强考取了中法教育基金委员会留法公费生。夏到达巴黎,当时正在法国参加会议的严济慈亲自将他介绍给了伊莱娜•居里。伊莱娜•居里和约里奥•居里人称“小居里夫妇”。钱三强进入居里实验室后,尽量多干具体的工作。除了自己的论文工作,有机会就帮助别人,目的是想多学一点实验本领。有人问他为什么这样?钱三强说:“我比不得你们,你们这里有那么多人,各人各干各人的事。我回国后只有我自己一个人,什么都得会干才行。”就这样东问西问两年多的实验室工作使钱三强增加了丰富的知识和实际技能。
1939年希特勒军队占领法国,钱三强随同事想逃难,但未能成功。这时他的公费留学费用中断了,回国不能,留下又没有生计。在钱三强最困难的时候,当时不肯离开法国的约里奥向他伸出了援助之手,他说:“既然是这样,那还是想法留下吧,只要我们自己能活下去,实验室还开着,就总能设法给你安排”。 1943钱三强回到了巴黎继续在居里实验室做研究工作,直到回国。钱三强不仅完成了学业,而且凭他的卓越贡献已成为着名的物理学家。1946年他领导的研究小组利用核乳胶研究铀裂变,发现了着名的铀核三分裂四分裂现象,荣获法国科学院享利•德巴微物理学奖金。约里奥曾说:“铀核三分裂和四分裂是第二次世界大战以来法国核物理界一个重要工作。”1947年钱三强担任法国国家科学研究中心研究导师一职。
1948年钱三强回国时小居里夫妇给他写的评语中说:“他对科学事业的满腔热忱,并且聪慧有创见。我们可以毫不夸张地说,在那些到我们实验室来并由我们指导的同一代科学家中,他最为优秀。......我们的国家承认钱先生的才干,曾先后命他担任国家科学研究中心研究员和研究导师的高职。他曾受到法兰西科学院的嘉奖。”
“钱先生还是一位优秀的组织工作者,在精神、科学与技术方面他具备研究机构的领导者所应用的各种品德。”
彭桓武
在《我的一生和我的观点》一书中玻恩提到:“在我的学生中有四个很有才华的中国人;其中之一是黄昆...”,另外三人是彭桓武、程开甲和杨立铭。
彭桓武1915年生于吉林长春市,1938年秋赴英在爱丁堡大学随玻恩学习,1940年获哲学博士学位,1945年获科学博士学位,1947年底回国。玻恩在他的着作《我的一生》中回忆说:“我的第一个中国学生是个矮小而强壮的小伙子,名叫彭(桓武)。他天赋出众...我记得有一次他在一个理论问题上出了一个错,错误找出来后,他非常沮丧,以致决定放弃科学研究,代之以为中国人民撰写一部大《科学网络全书》,包括西方所有重要的发现和技术方法。当我说到我以为这对单个人来说是个太大的任务时,他回答道,一个中国人能做10个欧洲人的工作。...他被任命为爱尔兰都柏林薛定谔高级研究院的教授,作为亥特勒(W.Heitler)的继任,...我想彭是得到欧洲教授职位的第一个中国人。几年以后他决定回中国,在走以前他来看望我们并和我们(指玻恩一家,本文作者注)一路到苏格兰西北高地的尤拉浦尔去,我们在那里度假。...我们一起度过了美好的几天。然后他离开了我们再没见过他,他也没写信来。”玻恩说:“彭除了他那神秘的才干外是很单纯的,外表象一个壮实的农民。”从玻恩的字里行间渗透出他对这位倔强的中国北方小伙子的喜爱欣赏与想念。彭先生在英国时与亥特勒合作做介子理论方面的研究,并由于在理论物理方面的贡献1945年与玻恩分享了英国爱丁堡皇家学会麦支杜加尔---布列斯班奖。回国后继续进行核物理研究,对分子结构提出了以电子键波函数为基础的计算方法。1956-1957年在他的领导下邓稼先与何祚庥、徐建铭、于敏等合作发表一系列重要论文,为中国核物理研究做了开拓性工作。
彭先生1982年获国家自然科学奖一等奖。1985年获国家科技进步特等奖。
杨振宁
杨振宁(1922—),美籍华人,理论物理学家,1922年10月1日生于安徽省合肥县(今合肥市)。
在西南联合大学物理学系吴大猷指导下完成学士论文,1942年毕业后即入研究院深造,在王竹溪指导下研究统计物理学。1945年赴美,入芝加哥大学做研究生,
受E•费米熏陶,在导师E•特勒的指导下完成博士论文,1948年获博士学位。1948—1949年任芝加哥大学教员,1948—1955年在普林斯顿高级研究院工作,1955—1966年任该所教授,1966年任纽约州立大学
石
溪分校的爱因斯坦物理学讲座教授,并任新创办的该校理论物理研究所所长,美国总统授予他1985年的国家科学技术奖章。1948年12月27日,北京大学授予杨振宁名誉教授授证书。
杨振宁对理论物理学的贡献范围很广,包括基本粒子、统计力学和凝聚态物理学等领域。对理论结构和唯象分析他都有多方面的贡献。
邓稼先
邓稼先(1924—1986),中国核物理学家,1924年6月25日生于安徽怀宁,祖父是清代着名书法家和篆刻家,其父是着名的美学家和美术史家。七七事变后,全家滞留北平,16岁随其姐来到四川江津念完高中。1941—1945年在西南联大物理系学习,受业王竹溪、郑华炽等着名教授。1945 年抗战胜利后,迁返北平,应聘于北大物理系任教。1948年到美国印第安那州普渡大学念研究生,被选入“留美科协”总会干事会。新中国的诞生促使他决心尽早回到祖国。1950年8月,在他取得学位后的第九天,冲破重重险阻登上了回国轮船。1950年10月在中国科学院近代物理研究所任助理研究员,从事原子核理论研究。1958年8月调到新筹建的核武器研究所任理论部主任,负责领导核武器的理论设计,后历任研究所副所长、所长,核工业部第九研究设计院副院长、院长,核工业部科技委副主任,国防科工委科技委副主任,是我国核武器研制与发展的主要组织者和领导者。
1956年加入中国共产党,曾任中共第十二届中共委员会委员,中国科学院委员。
1985年7月患直肠癌,坚持工作直到生命的最后一刻,1986年7月29日卒于北京,终年62岁。
李政道
李政道(1926—),理论物理学家。1926年11月25日生于上海。1943—1944年在浙江大学(当时一年级在贵州永兴)物理学系学习,得到老师束星北的启迪,而开始了他的学术生涯。1944年因翻车受伤停学。1945年转学到昆明西南联合大学物理学系。1946年受他的老师吴大猷的推荐,得国家奖学金,去美国深造,入芝加哥大学研究院,1948年春天,李政道通过了研究生资格考试,开始在费米的指导下作博士论文研究。
1949年底,在费米的指导下,李政道完成了关于白矮星的博士论文,获得博士学位。以后在该校天文学系半年和加利福尼亚大学(伯克莱)物理系一年任讲师并从事研究工作。
1950年,李政道和来自上海的大学生秦惠君结婚。他们有两个孩子,长子李中清,现任加州理工学院历史教授;次子李中汉,现任密歇根大学化学系助理教授。1951年到普林斯顿高级研究院工作。1953年任哥伦比亚大学物理学助理教授,1955年任副教授,1956年任教授,1957年获诺贝尔物理学奖,1960—1963年任普林斯顿高级研究院教授兼哥伦比亚大学教授。1963年任哥伦比亚大学物理学讲座教授,1964年任该大学费米物理学讲座教授,1983年任该大学全校讲座教授。他还是美国科学院院士。
李政道对近代物理学的杰出贡献是:1956年和杨振宁合作,深入研究了当时令人困惑的“θ•γ”之谜,即后来所谓的K介子有两种不同的衰变方式,一种衰变变成偶宇称态,一种衰变成奇宇称态。认识到很可能在弱相互作用中宇称不守恒。进一步提出了几种检验弱相互作用中宇称是不是守恒的实验途径。次年,这一理论预见得到吴健雄小组的实验证实。因此,李政道与杨振宁的工作迅速得到了学术界的公认,并获得了1957年诺贝尔物理学奖。
丁肇中
丁肇中(1936—),实验物理学家。祖籍山东日照。1956年到美国密执安大学,在物理系和数学系学习,1960年获硕士学位,1962年获物理学博士学位。1963年,他获得福特基金会的奖学金,到瑞士日内瓦欧洲核子研究中心(CERN)工作。1964年起在美国哥伦比亚大学工作。1965
年成为纽约哥伦比亚大学讲师。1967年起任麻省理工学院物理学系教授。他的研究方向是高能实验粒子物理学,包括量子电动力学、电弱统一理论、量子色动力学的研究。他所领导的马克•杰实验组先后在几个国际实验中心工作。
由于丁肇中对物理学的贡献,他在1976年被授予诺贝尔物理奖(发现J/Ψ粒子),并被美国政府授予洛仑兹奖,1988年被意大利政府授予特卡斯佩里科学奖。他是美国国家科学院院士,美国文理科学院院士,前苏联科学院外籍院士,中国台北中央研究院院士,巴基斯坦科学院院士。他曾被密歇根大学 (1978年)、香港中文大学(1987年)、意大利波洛格那大学(1988年) 和哥伦比亚大学(1990年)授予名誉博士学位。他是中国上海交通大学和北京师范大学的名誉教授。他曾获得过许多奖章,如1977年获美国工程科学学会的埃林金奖章,1988年获意大利陶尔米纳市的金豹优秀奖及意大利布雷西亚市的科学金质奖章。他也是《原子核物理B(Nuclear Physics B)》、《核仪器方法(Nuclear Instruments and Methods)》和《数学模型(Mathem atical Modeling)》等科学期刊的编委。
⑤ 世界物理学界比较有名的人物都有哪些,国籍和贡献是什么
爱因斯坦(1879-1955)是20世纪最伟大的自然科学家,物理学革命的旗手。1879年 3月14日生于德国乌耳姆一个经营电器作坊的小业主家庭。一年后,随全家迁居慕尼黑。父亲和叔父在那里合办一个为电站和照明系统生产电机、弧光灯和电工仪表的电器工。在任工程师的叔父等人的影响下,爱因斯坦较早地受到科学和哲学的启蒙。1894年,他的家迁到意大利米兰,继续在慕尼黑上中学的爱因斯坦因厌恶德国学校窒息自由思想的军国主义教育,自动放弃学籍和德国国籍,只身去米兰。1895年他转学到瑞士阿劳市的州立中学;1896年进苏黎世联邦工业大学师范系学习物理学,1900年毕业。由于他的落拓不羁的性格和独立思考的习惯,为教授们所不满,大学一毕业就失业,两年后才找到固定职业。1901年取得瑞士国籍。1902年被伯尔尼瑞士专利局录用为技术员,从事发明专利申请的技术鉴定工作。他利用业余时间开展科学研究,于1905年在物理学三个不同领域中取得了历史性成就,特别是狭义相对论的建立和光量子论的提出,推动了物理学理论的革命。同年,以论文《分子大小的新测定法》,取得苏黎世大学的博士学位。1908年兼任伯尔尼大学编外讲师,从此他才有缘进入学术机构工作。1909年离开专利局任苏黎世大学理论物理学副教授。1911年任布拉格德语大学理论物理学教授,1912年任母校苏黎世联邦工业大学教授。1914年,应M.普朗克和W.能斯脱的邀请,回德国任威廉皇帝物理研究所所长兼柏林大学教授,直到1933年。1920年应H.A.洛伦兹和P.埃伦菲斯特(即P.厄任费斯脱)的邀请,兼任荷兰莱顿大学特邀教授。回德国不到四个月,第一次世界大战爆发,他投入公开的和地下的反战活动。他经过8年艰苦的探索,于1915年最后建成了广义相对论。他所作的光线经过太阳引力场要弯曲的预言,于1919年由英国天文学家A.S.爱丁顿等人的日全食观测结果所证实,全世界为之轰动,爱因斯坦和相对论在西方成了家喻户晓的名词,同时也招来了德国和其他国家的沙文主义者、军国主义者和排犹主义者的恶毒攻击。1933年1月纳粹攫取德国政权后,爱因斯坦是科学界首要的迫害对象,幸而当时他在美国讲学,未遭毒手。3月他回欧洲后避居比利时,9月9日发现有准备行刺他的盖世太保跟踪,星夜渡海到英国,10月转到美国普林斯顿,任新建的高级研究院教授,直至1945年退休。1940年他取得美国国籍。1939年他获悉铀核裂变及其链式反应的发现,在匈牙利物理学家L.西拉德推动下,上书罗斯福总统,建议研制原子弹,以防德国占先。第二次世界大战结束前夕,美国在日本两个城市上空投掷原子弹,爱因斯坦对此强烈不满。战后,为开展反对核战争的和平运动和反对美国国内法西斯危险,进行了不懈的斗争。1955年 4月18日因主动脉瘤破裂逝世于普林斯顿。遵照他的遗嘱,不举行任何丧礼,不筑坟墓,不立纪念碑,骨灰撒在永远对人保密的地方,为的是不使任何地方成为圣地。
补充爱因斯坦在天文方面的贡献的详细资料:
划时代的大科学家,现代物理学的开创者和奠基人。他的工作对天文学和天体物理学有巨大的影响。
1879年3月14日生于德国乌尔姆镇,在瑞士度过青年时代。1900年毕业于苏黎世工业大学。毕业后即失业。经过两年的努力,才在伯尔尼的专利局找到固定工作。他早期的一系列有历史意义的贡献都是在这里完成的。1909年他开始在大学任教,1914年被邀请回到德国,任威廉皇家物理研究所所长兼柏林大学教授。1933年希特勒上台,爱因斯坦因是犹太人,又坚决捍卫民主,就首遭迫害,被迫迁居到美国的普林斯顿。1940年入美国国籍。1955年4月18日在普林斯顿逝世。
十九世纪末叶是物理学的变革时期,新的实验结果冲击着伽利略、牛顿以来所建立的经典物理学体系。以洛伦兹等为代表的老一代理论物理学家力图在原有的理论框架内解决旧理论同新事实之间的矛盾。爱因斯坦则从实验事实出发重新考查了物理学的最基本的概念,抛弃了一些熟知的、但并不正确的观念,在理论上作出根本性的突破。他的一些主要成就都大大地推动了天文学的发展。
爱因斯坦的一项开创性贡献是发展了量子论。量子论是普朗克于1900年为解决黑体辐射谱而提出的一个假说。他认为物体发出辐射时所放出的能量不是连续的,而是量子化的。然而,大多数人,包括普朗克本人在内,都不敢把能量不边续概念再向前推进一步,甚至一再企图把这一概念纳入经典物理学体系。爱困斯坦的态度则截然不同,他预感到量子论带来的,不是小的修正,而是整个物理学的根本变革。他把量子论推向前进,利用量子概念分析辐射的传播和吸收,提出光量子概念,完满地解释了经典物理学无法解释的光电效应的经验规律,从而动摇了光的波动论的正统地位。光量子概念的提出在人类认识自然界的历史第一次揭示了光同时具有波动性和粒子性(今通称二象性),它直接为德布罗意的物质波理论的建立,以及随后的量子力学的建立开辟了道路。这项工作获得1921年诺贝尔物理学奖金。爱因斯坦于1906年又把量子论扩展到物体内部的振动上去,成功地说明了低温时固体的比热同温度变化的关系。1916年他继续发展量子论,从玻尔的量子跃迁概念导出黑体辐射。在这项研究中他把统计物理概念和量子论结合起来,提出自发发射及受激发射等概念。从量子论的基础直到受激发射概念,对天体物理学,特别是理论天体物理学都有很大的影响。理论天体物理学的第一个成熟的方面--恒星大气理论,就是在量子理论和辐射理论的基础上建立起来的。
作为爱因斯坦终生事业的标志是他的相对论。他在1905年发表的题为《论动体的电动力学》的论文中,完整地提出了狭义相对论。他根据惯性参考系的相对性和光速的不变性这两个具有普遍意义的概括,改造了经典物理学中的时间、空间及运动等基本概念。否定了绝对静止空间的存在,否定了同时概念的绝对性。在这一体系中,运动的尺要缩短,运动的钟要变慢。狭义相对论最出色的成果之一是揭示了能量与质量之间的联系。着名的关系式E=mc^2成为打开核能源理论的金钥匙。核能的发现,使长期存在的恒星能源的疑难最终获得了满意的解决。近年来发现越来越多的高能天体物理现象,狭义相对论已成为解释这种现象的一种最基本的理论工具。
狭义相对论确立之后,爱因斯坦开始致力于引力理论的研究。他也象在建立狭义相对论的工作一样,抓住一个众所周知的基本事实,即:惯性质量同引力质量之比是一个与物性无关的普遍常数。根据这一点,他提出等效原理。经过多年的努力,终于在1915年建立了本质上与牛顿引力理论完全不同的引力理论---广义相对论。广义相对论从一开始就与天文现象有密切的关系。广义相对论的一系列关键性的检验,都是在宇宙“实验室”中完成的。根据广义相对论,爱因斯坦推算出水星近日点的(反常)进动,解决了一个天文学上多年不解之谜。同时,他推断光线在引力场中要弯曲。这一预言于1919年由爱丁顿等通过日食的观测而得到证实。在六十二年后的1978年,测定了射电脉冲星双星PSR1913+16的周期变化,许多人认为它完全符合引力波阻尼理论所作的预言,对广义相对论可能是又一个有力的证明。在强引力场情况下,广义相对论有许多独特的结论。例如奥本海默根据广义相对论预言,恒星在核能用尽之后,如果质量足够大,就不可避免地会演变成黑洞。1967年发现脉冲星并证实为中子星后,人们认识到到空中的确存在着强场天体。现在,天鹅座X-1被认为可能就是一个黑洞。上述这一切构成相对论天体物理学的基本内容,它是目前天体物理学中最活跃的分支之一。
最能代表爱因斯坦对天文学有重大影响的莫过于他的宇宙学理论了。爱因斯坦在确立了广义相对论之后,紧接着就转向了对宇宙的考察。1917年,爱因斯坦发表他的第一篇宇宙论文《根据广义相对论对宇宙学所作的考察》。象他多次以一篇论文开创一个领域一样,这篇论文宣告了相对论诞生。虽然时间已经过去六十多年了,但是,这篇论文所引进的许多观念至今仍富有生命力。在探索宇宙中,爱因斯坦首先指出无限宇宙与牛顿理论二者这间存在着难以克服的内在矛盾。在原则上,根据牛顿力学不能建立无限宇宙这一物理体系的动力学。从牛顿理论和无限宇宙这两点出发,根本得不到一个自洽的宇宙模型。因此,必然是:或者修改牛顿理论,或者修改无限空间观念,或者对二者都加以修改。爱因斯坦放弃了传统的宇宙空间三维欧几里得几何的无限性。他根据广义相对论建立了静态有限无边的自洽的动力学宇宙模型。在这个模型中,宇宙就其空间广延来说是一个闭合的连续区。这个连续区的体积是有限的,但它是一个弯曲的封闭体,因而是没有边界的。
爱因斯坦在宇宙学的研究中引进用动力学建立宇宙模型的方法,引进了宇宙学原理、弯曲空间等新概念。而且他主张,宇宙的体积是无限的或有限的这个问题,只有依靠科学而不是依靠信仰才能解决。这种崇尚科学的态度,继承了由哥白尼等开创的科学探索精神。他曾说:“科学研究能破除迷信,因为它鼓励人们根据因果关系来思考和观察事物。”他的宇宙学研究,体现了这种反对迷信的精神。因此,无论是同意或反对他的宇宙观念的人,都有不能不承认,爱因斯坦在宇宙学中也写下了十分光辉的一页。
不论在海内还是海外,杨振宁这个名字在华人中是很响亮的。他,1957年与李政道共同获得了诺贝尔物理奖。
这是中国人第一次登上斯德哥尔摩的诺贝尔领奖台,全世界的炎黄子孙无不为自己的同胞在世界科学殿堂上取得的辉煌成就感到骄傲。
“中国人在国际科学坛上有建立不朽之功绩者,乃自杨振宁始。”继杨振宁、李政道之后在1976年也获得诺贝尔物理奖的丁肇中教授如是说。
杨振宁1922年出生在安徽合肥。父亲杨武之曾留学美国攻读数学,获博士学位,回国后先后在厦门大学和清华大学任数学教授,是最早将西方近代数学引入中国的先驱者之一。聪颖的天赋,加上家庭的熏陶,使杨振宁从小就很有“异禀”。他不但书念得好,而且兴趣广泛,还是读中学时,他就对父亲说过:“我长大了要争取得诺贝尔奖!”
抗日战争期间,杨武之任教的清华大学被迫南迁长沙,与北大、南开合并成临时大学。日军攻占南京后,临时大学撤至昆明,并改名西南联合大学。杨振宁也随父母颠沛流离长途奔波来到昆明,他在念完高中二年级之后,未上高三就考上了西南联大。当时的西南联大集中了许许多多各个学科的着名教授,形成一个灿烂的教师群,是中国最大的教育中心。在这里,杨振宁得到了名师们的极好指点。他在吴大猷教授指导下完成了学士论文。大学毕业并取得理学学士学位后,即入研究生院深造,在王竹溪教授指导下研究统计物理学,取得硕士学位。
1945年,杨振宁作为“留美公费生”赴美,寻找他所敬慕的物理大师E·费米教授,成为费米主持的芝加哥大学研究生班的博士研究生,并得遇后来被称为“氢弹之父”的E·特勒教授。他深受费米的熏陶和影响,在泰勒指导下完成博士论文,于1948年获博士学位。在应校方聘请,留校当了一年教员之后,他于1949年到普林斯顿高等学术研究所工作,1955至1966年任该所教授。从1966年起,他担任了纽约州立大学石溪分校的爱因斯坦物理学讲座教授,并任新创办的该校理论物理学研究所所长。
在理论物理学上,杨振宁创造了许多辉煌。
他的最高成就是1954年与R·L·密耳斯共同提出杨-密耳斯规范场理论,开辟了非阿贝耳规范场的新研究领域,为现代规范场打下了基础。它被世界物理学家们公认为是二十世纪最伟大的理论结构之一,是继麦克斯韦的电磁场理论、爱因斯坦的引力场理论和狄拉克的量子理论之后的最为重要的物理理论。
杨振宁的另一杰出贡献是1956年与李政道合作提出“弱相互作用下,宇称不守恒”,从而推翻了原来被认为适用于一切相互作用的“宇称守恒定律”。而这个“宇称守恒定律”,本来是被视作物理学的基本定律的。他们因此获得了1957年的诺贝尔物理奖。一项科学成果,在发表的第二年就获得诺贝尔奖,这是第一次。
杨振宁对理论物理学的贡献范围很广,包括基本粒子、统计力学和凝聚态物理学等领域。对理论结构和唯象分析,他也有多方面的贡献。他的工作有特殊的风格:独立性与创建性强,眼光深远。他近年来另一个重要工作——Yang-Baxter方程受到了数学家和物理学家的密切关注,并成为最热门的研究题目。
杨-密耳斯规范场、宇称不守恒定律与Yang-Baxter方程被公认是杨振宁的工作中达到世纪水平的三项成就。
除诺贝尔奖外,杨振宁还在1980年获Rumford奖,1986年获美国国家科技奖,1993年获美利坚哲学学会颁发的本杰明·富兰克林奖章,1994年获费城富兰克林学院颁发的鲍威尔科学成就奖。
创立于1743年的美利坚哲学学会是一个声誉卓着的国际学术组织,其700名成员中,仅诺贝尔奖金获得者就有100名。本杰明·富兰克林奖章代表该学会的最高荣誉。这个学会的执行官说,授予杨振宁本杰明·富兰克林奖章,是因为“杨振宁教授是自爱因斯坦和狄拉克之后20世纪物理学出类拔萃的设计师。”他和李政道的合作以及与密耳斯的合作取得的成就是“物理学中最重要的事件。”,是“对物理学影响深远和奠基性的贡献”。
费城富兰克林学院是美国最具权威的学术研究机构之一。这个学院颁发给杨振宁的鲍威尔科学成就奖,是美国奖金额最高的科学奖(25万美金)。杨振宁是获此项殊荣的第一位物理学家。该学院的文告称赞杨振宁的研究工作“对20世纪下半叶基础科学研究的广大领域产生了巨大的影响”,“给人类对宇宙基本作用力和自然规律提供了理解”,说杨-密耳斯规范场理论“已经排列在牛顿、麦克斯韦和爱因斯坦的工作之行列,并必将对未来几代有类似的影响”。
为表彰杨振宁的杰出贡献,中国有关方面也报请国际机构批准,将中国科学院紫金山天文台发现的一颗编号为3421的小行星命名为“杨振宁”星。中国高能物理研究所学术委员会请他担任委员;香港中文大学聘请他担任客座教授;北京大学、复旦大学、中国科技大学、中山大学等着名院校也聘请他担任名誉教授。
杨振宁对中国有深厚的感情,他于1971年夏天访问中国,是美籍华人学者访问新中国的第一人。这次访问,叩开了中美之间关闭了二十多年的科学大门。在中美建交的过程中,他作为全美华人协会主席,参加发起了“全美华人促进美中邦交正常化委员会”,以赤子之心努力为增进中美两国人民之间的了解和友谊铺路架桥。他深知科学技术、教育是强国之本,经常就科学技术、教育在中国经济发展中的战略地位以及人才培养、科技体制等问题发表自己的独到见议。他几乎每年都要去中国,发表演讲,介绍自己的读书、教学、研究经验。他对中国青年一代寄予厚望,希望他们放开眼界,博学多才,融合中西,培养自己的风格,发挥自己的特长,做有价值的工作,为祖国的发展作出实在的贡献。他在纽约州立大学石溪分校发起组织CEEC(与中国学术交流会),资助中国学者去进修,还促成香港实业家刘永龄先生设立“亿利达青少年发明奖”、“吴健雄物理奖”、“陈省生数学奖”,倡议成立了多个学术研究机构。他对中国的前途充满信心,为中国的繁荣昌盛尽心竭力,其贡献已远远超越了一个物理学家所做的一切。
杨振宁曾经说过:“我一生最重要的贡献是帮助改变了中国人自己觉得不如人的心理。”在杨振宁之前,包括知识界在内,为数不少的中国人对自己缺乏自信心,以为中国人在政治上、经济上、科学上、技术上不行,以为诺贝尔之类的奖项与中国人根本无缘。是杨振宁用自己的成就打掉了国人们的自卑感,使他们从心理上战胜了自己,敢同西方人一争短长了。
杨振宁,中国人的骄傲,中国人的楷模。
⑥ 什么是物理,事理,人理
1、物理
通常指自然规律。
2、事理
现实社会规律。涉及到人的自由意志,往往很难理清。如“当局者迷,旁观者清”。
现在有一种把事理物理化的倾向,这是科学方法讲求实证的要求。古代中国是物理事理化。中国古代讲“物”,往往是和“事”联系在一起。如杜甫的诗“细推物理须行乐,何用浮名绊此身”。又如,“格物致知”,是从实践中获得知识。“致知格物”,是说把正确的知识应用到解决问题上,把事性做好。。
物理—事理—人理系统方法论
这是从另一角度说理,如何依理行事。根据“懂物理、明事理、通人理”的系统实践原则,顾基发提出了物理—事理—人理系统方法论(简称WSR方法论)。
1、物理、事理、人理
表1 物理、事理、人理系统方法论内容
物理
事理
人理
对象与内容
客观物质世界 法则、规则
组织、系统 管理和做事的道理
人、群体、关系 为人处事的 道理
焦点
是什么? 功能分析
怎样做? 逻辑分析
最好怎么做?可能是? 人文分析
原则
诚实;追求真理
协调;追求效率
讲人性、和谐;追求成效
所需知识
自然科学
管理科学、系统科学
人文知识、行为科学
2、WSR方法论的理解意图
物理
事理
人理
尽可能了解服务对象(顾客)的所有目标,现有资源情况
了解目标的背景、目标间的相互关系、目前系统组织和运行方式,目前工作实行的评价准则
与各层用户沟通,考察顾客对目标的期望或认同程度,了解用户的视点,特别是有决策权的领导的观点
3、WSR方法论应用示例
项目
物理
事理
人理
1
区域水资源管理决策支持系统
水资源系统组成;日常管理系统;计算机网络系统;领域知识
决策支持系统功能:预测,水库调度,水分配、洪汛管理;适合的数学模型与仿真模型
见地,利益,协调
2
劳动力市场评估
中国劳动力市场运行机制、市场发展项目
监测、评估与推广;
评价指标,评价方法,统计分析;
利益,CATWOE分析,价值观
3
企业管理软件包的研发
企业组织结构、企业管理、企业信息结构、功能模块
整体系统目标、研发力量的安排
研发机构的企业文化,研究人员、管理人员、开发人员和应用部门的利益与冲突
4
大学评价
大学基本数据
大学评价指标、运行效率;主成分分析,聚类分析,宽容序数解
社会的评价(校长、院长、公司、院士)
⑦ 为什么这么多伟大的科学家都是物理学家
理乍得·费曼(Richard)是美国理论物理学家,量子电动力学专家,纳米技术之父,诺贝尔奖获得者。他个性十足,平易近人且喜爱搞怪,是有史以来十位最伟大的物理学家之一。
猜你喜欢:
无印良品一度缩水99.8%,松井忠三在1年内只用1招实现逆转
【创业课堂】权威投资机构评判AI初创企业的17个要素
比创业失败更可怕的是,什么都不干就被干掉
二十分钟带你重读卡耐基《人性的弱点》
⑧ 物理和化学中,有许多“子”,如粒子,原子,电子,胶子等等。能不能把这些全列出来,再告诉我什么意思。
物理学是研究自然界的物质结构,大到宇宙的结构,小到最微小的粒子结构,以及物质运动的最普遍最基本的规律的自然科学。自伽利略 —— 牛顿时代(17 世纪中叶)以来,特别是 19 世纪中叶以来,物理学已有了长足的发展。物理学的成就是现代高新技术的基础。日益发展的近代技术为物理学的发展提出了新问题并准备了物质条件。下面简要介绍现代物理学在物质的基本结构 —— 粒子 —— 的研究中所取得的认识。
粒子的发现与特征
物质是由一些基本微粒组成的这种思想可以远溯到古代希腊。当时德谟克利特(公元前 460 — 370 年)就认为物质都是由“原子”(古希腊语本意是“不可分”)组成的。中国古代也有认为自然界是由金木水火土 5 种元素组成的说法。但是物质是由原子组成的这一概念成为科学认识是迟至 19 世纪才确定的,当时认识到原子是化学反应所涉及的物质的最小基本单元。1897 年,汤姆逊发现了电子,它带有负电,电量与一个氢离子所带的电量相等。它的质量大约是氢原子质量的 1 / 1800,它存在于各种物质的原子中,这是人类发现的第一个更为基本的粒子。其后 1911 年卢瑟福通过实验证实原子是由电子和原子核组成的。1932 年又确认了原子核是由带正电的质子(即氢原子核)和不带电的中子(它和质子的质量差不多相等)组成的。这种中子和质子也成了“基本粒子”。1932 年还发现了正电子,其质量和电子相同但带有等量的正电荷。由于很难说它是由电子、质子或中子构成的,于是正电子也加入了“基本粒子”的行列。之后,人们制造了大能量的加速器来加速电子或质子,企图用这些高能量的粒子作为炮弹轰开中子或质子来了解其内部结构,从而确认它们是否是“真正的基本粒子”。但是,令人惊奇的是在高能粒子轰击下,中子或质子不但不破碎成更小的碎片,而且在剧烈的碰撞过程中还产生许多新的粒子,有些粒子的质量比质子的质量还要大,因而情况显得更为复杂。后来通过类似的实验(以及从宇宙射线中)又发现了几百种不同的粒子。它们的质量不同、性质互异,且能相互转化。这就很难说哪种粒子更基本。所以现在就把“基本”二字取消,统称它们为粒子。本篇的题目仍用“基本粒子”,只具有习惯上的意义。
在粒子的研究中,发现描述粒子特征所需的物理量随着人们对粒子性质的认识逐步深入而增多。常见的这种物理量可以举出以下几个。
1、质量
粒子的质量是指它的静止质量,在粒子物理学中常用 MeV / c2 作质量的单位。MeV 是能量的单位,1 MeV = 1.602 × 10-13 J 。由爱因斯坦质能公式 E = mc2 可以求得 1 MeV / c2 的质量为
1.602 × 10-13 / ( 3 × 108 )2 = 1.78 × 10-30 ( kg )
2、电荷
有的粒子带正电,有的带负电,有的不带电。带电粒子所带电荷都是量子化的,即电荷的数值都是元电荷 e (既一个质子的电荷)的整数倍。因而粒子的电荷就用元电荷 e 作单位来度量
1e = 1.602 × 10-19 C
3、自旋
每个粒子都有自旋运动,好像永不停息地旋转着的陀螺那样。它们的自旋角动量(简称自旋)也是量子化的,通常用做单位来度量
1 = 1.05 × 10-34 J•s
有的粒子的自旋是 整数倍或零,有的则是 的半整数倍(如 1/2,3/2,5/2 倍)。
4、寿命
在已发现的数百种粒子中,除电子、质子和中微子以外,实验确认它们都是不稳定的。它们都要在或长或短时间内衰变为其它粒子。粒子在衰变前平均存在的时间叫粒子的寿命。例如一个自由中子的寿命约 12min,有的粒子的寿命为 10-10s 或 10-14s ,很多粒子的寿命仅为 10-23s 甚至 10-25s 。
对各种粒子的研究比较发现,它们都是配成对的。配成对的粒子称为正、反粒子。正、反粒子的一部分性质完全相同,另一部分性质完全相反。例如,电子和正电子就是一对正、反粒子,它们的质量和自旋完全相同,但它们的电荷和磁矩完全相反。又例如,中子和反中子也是一对正、反粒子,它们的质量、自旋、寿命完全相同,但它们的磁矩完全相反。有些正、反粒子的所有性质完全相同,因此就是同一种粒子。光子和 π0 介子就是两种这样的粒子。
2、粒子分类
粒子间的相互作用,按现代粒子理论的标准模型划分,有 4 种基本的形式,即万有引力、电磁力、强相互作用力和弱相互作用力。按现代理论,各种相互作用都分别由不同的粒子作为传递的媒介。光子是传递电磁作用的媒介,中间玻色子是传递弱相互作用的媒介,胶子是传递强相互作用的媒介。这些都已为实验所证实。对于引力,现在还只能假定它是由一种“引力子”作为媒介的。由于这些粒子都是现代标准模型的“规范理论”中预言的粒子,所以这些粒子统称为规范粒子。由于胶子共有 8 种,这些规范粒子就总共有 13 种。它们的已被实验证实的特征物理量如表 1 所示。
除规范粒子外,所有在实验中已发现的粒子可以按照其是否参与强相互作用而分为两大类:一类不参与强相互作用的称为轻子,另一类参与强相互作用的称为强子。
现在已发现的轻子有电子(e), 子, 子( )及相应的中微子( ve,vμ,vτ)。它们的特征物理量如表 2 所示。在目前实验误差范围内 3 种中微子的质量为零。但是由于这些实验还不很精确,中微子的质量是否等于零,还有待于精确的实验证实。
从表 2 中可以看出 子质量约是电子质量的 3500 倍,差不多是质子质量的两倍。它实际上一点也不轻。这 6 种“轻子”都有自己的反粒子,所以实际上有 12 种轻子。 子和中微子虽然不是一般原子的组成部分,但在自然界中是大量存在的。宇宙射线在大气高层能产生大量的 子和中微子,这些粒子就作为次级宇宙射线射向地球表面。太阳内部的核反应也产生大量的中微子,这些中微子也射向地球,并能穿过整个地球。天然的 子和中微子的射线都能穿过人体,但由于剂量很小,对人体并无伤害。
实验上已发现的成百种粒子绝大部分是强子。强子又可按其自旋的不同分为两大类:一类自旋为半整数,统称为重子;另一类自旋为整数或零,统称为介子。最早发现的重子是质子,最早发现的介子是 π 介子。π 介子的质量是电子质量的 270 倍,是质子质量的 1/7 ,介于二者之间。后来实验上又发现了许多介子,其质量大于质子的质量甚至超过 10 倍。例如,丁肇中发现的 J/ψ 粒子的质量就是质子质量的 3 倍多。这样,早年提出的名词“重子”、“轻子”和“介子”等已经不合适,但由于习惯,仍然一直沿用到今天。表 3 列出了一些强子的特征物理量。
3、粒子的转化与守恒定律
研究种种粒子的行为时,发现的另一个重要事实是:没有一种粒子是不生不灭、永恒不变的。在一定的条件下都能产生和消灭,都能相互转化,毫无例外。例如,电子遇上正电子,就会双双消失而转化为光子。反过来高能光子在原子核的库仑场中又能转化为一对电子和正电子(图 1)。在缺中子同位素中,质子会转化为中子而放出一个正电子和一个中微子。质子遇上反质子就会相互消灭而转化为许多介子。π 介子和原子核相互碰撞,只要能量足够高,就能转化为一对质子和反质子。前面所提到的粒子衰变也是一种粒子转化的方式。因此,产生和消灭是粒子相互作用过程中非常普通的现象。
实验证明,在粒子的产生和消灭的各种反应过程中,有一些物理量是保持不变的。这些守恒量有能量、动量、角动量、电荷、还有轻子数、重子数、同位旋、奇异数、宇称等。例如,对于中子衰变为质子的 β 衰变反应
n → p + e +
所涉及的粒子,中子 n 和反中微子 的电荷都是零,质子 p 的电荷为 1,电子 e 的电荷为 -1,显然衰变前后电荷(的代数和)是守恒的。此反应中 n 和 p 的重子数都是 1,轻子数都是零,而 e 和 的重子数都是零,前者的轻子数为 1,后者的轻子数为 -1;也很容易看出这一衰变的前后的重子数轻子数也都是守恒的。同位旋、奇异数和宇称等的概念比较抽象,此处不作介绍。但可以指出,它们有的只在强相互作用引起的反应(这种反应一般较快)中才守恒,而在弱相互作用或电磁相互作用引起的反应(这种反应一般的较慢)中不一定守恒。它们不是绝对的守恒量。
4、夸克
强子种类这样多,很难想象它们都是“基本的”,它们很可能都有内部结构。前面已讲过,利用高能粒子撞击质子使之破碎的方法考查质子的结构是不成功的,但有些精确的实验还是给出了一些质子结构的信息。1955 年,霍夫斯塔特曾用高能电子束测出了质子和中子的电荷和磁矩分布,这就显示了它们有内部结构。1968 年,在斯坦福直线加速器实验室中用能量很大的电子轰击质子时,发现有时电子发生大角度的散射,这显示质子中有某些硬核的存在。这正像当年卢瑟福在实验中发现原子核的结构一样,显示质子或其它强子似乎都由一些更小的颗粒组成。
在用实验探求质子的内部结构的同时,物理学家已经尝试提出了强子由一些更基本的粒子组成的模型。这些理论中最成功的是1964 年盖尔曼和茨威格提出的,他们认为所有的强子都由更小的称为“夸克”(在中国有人叫做“层子”)的粒子所组成。将强子按其性质分类,发现强子形成一组一组的多重态,就像化学元素可以按照周期表形成一族一族一样。从这种规律性质可以推断:现在实验上发现的强子都是由 6 种夸克以及相应的反夸克组成的。它们分别叫做上夸克 u,下夸克 d,粲夸克 c,奇异夸克 s,顶夸克 t,底夸克 b,它们的特征物理量如表 4 所示。值得注意的是它们的自旋都是 1/2 而电荷量是元电荷 e 的 -1/3 或 2/3。
在强子中,重子都由 3 个夸克组成,而介子则由1个夸克和 1 个反夸克组成。例如,质子由 2 个 u 夸克和 1 个 d 夸克组成,中子由 2 个 d 夸克和 1 个 u 夸克组成,∑+ 粒子由 2 个 u 夸克和 1 个奇异夸克组成。而 π 介子由 1 个 u 夸克和 1 个反 d 夸克组成,J/ψ 粒子由正、反粲夸克(c, )组成,等等。
用能量很大的粒子轰击电子或其它轻子的实验尚未发现轻子有任何内部结构。例如在一些实验中曾用能量非常大的粒子束探测电子,这些粒子曾接近到离电子中心 10-18m 以内,也未发现电子有任何内部结构。
关于夸克的大小,现有实验证明它们和轻子一样,其半径估计都小于 10-20m 。我们知道核或强子的大小比原子或分子的小 5 个数量级,即为 10-15m 。因此,夸克或轻子的大小比强子的还要小 5 个数量级。
5、色
自从夸克模型提出后,人们就曾用各种实验方法,特别是利用它们具有分数电荷的特征来寻找单个夸克,但至今这类实验都没有成功,好像夸克是被永久囚禁在强子中似的(因此之故,表 4 给出的夸克的质量都是根据强子的质量值用理论估计的处于束缚状态的夸克的质量值)。这说明在强子内部,夸克之间存在着非常强的相互吸引力,这种相互作用力叫做“色”力。
对于强子内部夸克状态的研究,使理论物理学家必须设想每一种夸克都可能有 3 种不同的状态。由于原色有红、绿、蓝 3 种,所以将“色”字借用过来,说每种夸克都可以有三种“色”而被称为红夸克、绿夸克、蓝夸克。“色”这种性质也是隐藏在强子内部的,所有强子都是“无色”的,因而必须认为每个强子都是由 3 种颜色的夸克等量地组成的。例如组成质子的 3 个夸克中,就有 1 个是红的,1 个是绿的,1 个是蓝的。色在夸克的相互作用的理论中起着十分重要的作用。夸克之间的吸引力随着它们之间的距离的增大而增大,距离增大到强子的大小时,这吸引力就非常之大,以至不能把 2 个夸克分开。这就是目前对夸克囚禁现象的解释。这种相互作用力就是色力,即两个有色粒子之间的作用力。它是强相互作用力的基本形式。如果说万有引力起源于质量,电磁力起源于电荷,那么强相互作用力就起源于色。理论指出,色力是由被称为胶子的粒子作为媒介传递的。
按以上的说法,由于 6 种夸克都有反粒子,还由于它们都可以有 3 种色,这样就共有 36 种不同状态的夸克。
除了夸克外,按照现在粒子理论的标准模型,为了实现电弱相互作用在低于 250GeV 的能量范围内分解为电磁相互作用和弱相互作用,自然还应存在一种自旋为零的特殊粒子,称为希格斯粒子。理论对于它的所有的相互作用性质和运动行为都有精确的描绘和预言,但对它的质量却没有给出任何预言。现在还未在实验中发现这种粒子。从已有的实验结果分析,希格斯粒子的质量应大于 58.4GeV /c2 。从实验上去寻找希格斯粒子是当前粒子物理实验研究的中心课题之一。
综上所述,规范粒子共有 13 种,轻子共有 12 种,夸克共有 36 种,再加希格斯粒子就共有 62 种。按照现在对粒子世界结构规律的认识,根据标准模型,物质世界就是由这 62 种粒子构成的。这些粒子现在还谈不上内部结构,可以称之为“基本粒子”了。
但是,宇宙万物就是仅由这 62 种粒子构成的吗?为什么有这么多种轻子和夸克?它们真的没有内部结构吗?有没有真正的“基于粒子”?……还有许许多多的问题摆在理论的和实验的粒子物理学面前有待研究、发现、解决。
6、粒子研究与技术
对粒子研究的进展是和粒子加速技术、探测技术以及实验数据的获取和处理技术的迅速发展分不开的。在瑞士和法国边界上的欧洲核子研究中心(CERN)已经建成的质子反质子对撞机(在这种装置中,两个反向运动的高能粒子对撞比用一个高能粒子去轰击静止的靶粒子可以实现更剧烈的碰撞)的质心能量已经高达 2 × 270GeV 。这个对撞机中粒子在其中运行的超高真空环形管道的周长达 2.7km 。在这样的管道中质子和反质子在对撞前要飞行超过冥王星轨道的直径那样长的路程而不丢失。发现 W+、W- 和 Z0 中间玻色子的两个实验中的一个实验所用的探测器重达 2000t 。这样高能量的质子和反质子相碰撞平均产生几十个粒子,它们的径迹和动量都要准确地测量(图 2)。在约一亿次碰撞过程中才有一次产生 W + 和 W - 粒子的事例。在约十亿次碰撞过程中,才有一次产生 Z0 粒子的事例。这不仅需要非常灵敏和精确的探测技术,也需要非常强大和快速的数据获取和处理能力。没有自动控制、电子学、计算技术等等一系列高、精、尖技术的支持,就不可能有今天对粒子的认识。在许多情况下,工业所能提供的最高水平的技术还不足以满足粒子物理实验的要求,这又反过来促使工业技术的进一步发展。
我国 1988 年 10 月建成的北京正负电子对撞机(BEPC),设计能量为 2 × 2.8GeV 。它由注入器、束流输运线和储存环、探测器、同步辐射实验区(见图 3)四个部分组成。注入器是一台电子直线加速器。正、负电子在这里被加速到 1.1GeV ~1.4GeV 。正负电子束经输运线的两支分别沿相反方向注入储存环。储存环是由偏转磁铁、聚焦磁铁、高频腔、超高真空系统等组成的一个周长约 240m 的环(图 4)。在环内正负电子由高频腔供给能量而被加速到 2.2GeV ~ 2.8GeV 。正负电子束流在储存环内绕行,可具有 5h ~ 6h 的寿命。探测器安装在对撞点附近,它能记录、分析对撞时产生的粒子的种类、数目、飞行时间、动量、能量等数据,探测立体角接近 4π。同步辐射是电子在储存环中做曲线运动时沿切线方向向前发出的电磁波。BEPC 的同步辐射在紫外和软 X 光范围,可用于生物物理、固体物理、表面物理、计量标准、光刻和医学等方面。
为了更深入地研究粒子的结构和它们之间的相互作用,现在正在兴建、设计和研究能量更高的粒子加速器。例如,美国费米实验室的 1TeV 的质子加速器将改建升级为 2TeV 的质子反质子对撞机。欧洲核子研究中心正在建造 14TeV 的质子质子对撞机。美国、日本和德国正研究设计能量为 1.5TeV 和 2.0TeV 的正负电子直线对撞机。4TeV 的正负μ子对撞机和电子直线对撞机也在研究中。我们期望这些高能加速器的建成能发现更多的新粒子与新现象,使人们对自然界的认识更加深入。
⑨ 人在物理上的定义是什么
非晶体.人是什么?这个问题似乎太简单了,因为各种辞典上早就对"人"的词条作了简明的解释。不过,他们都是分别从生物学或社会学的角度来回答"人是什么"的问题,而本文则是从哲学的角度来阐述"人是什么"的。
本文虽是一篇哲学论文,却并没有人们所想象的那种枯燥的政治定义和晦涩的理论阐述。作者赵鑫珊融哲学与科学、艺术为一炉,从而使本文富有散文的韵味。
文章开门见山地提出“人是什么”的问题,然后引用科学家爱因斯坦,文学家雨果、歌德的话和哲学家加缪、康德的看法,指出对于这个问题,不同的人的回答迥然不同,即便是同一个人,不同时期也会有不同的答案。雨果把人看成是判了死刑的罪人,加缪把人看成是终生服苦役的西西弗斯。他们的回答是消极的。歌德说自己的一生只是辛苦地工作,康德认为人就是不断地进行创造性的工作,爱因斯坦说有合理的事情做,工作和生活就有奇异的色彩。他们的回答都是积极的,且和我国古代哲学家孔子的“生无所息”见解一致。这就表明无论是西方人还是东方人,无论是科学家、文学家还是哲学家,都有一个共同的认识,即人是应该不断地工作的,应该是“生无所息”的。有了这样的共识,作者再水到渠成地提出自己的看法:人是由对往事的追忆、对现时的把握和对未来的憧憬三部分组成,其中对现时的把握是重点,比重占95%。为阐述这一看法,本文又引用了若干东西方格言、诗歌、音乐、电影和名人语录,先后论述了追忆往事和憧憬未来的意义、作用和性质,最后用类比的方法阐述把握现时的重要性及其和追忆往事、憧憬未来的关系,以诗的语言"啊,人啊,多一点希望,多一点晨光......"结束全文,使文章显得思路清晰,见解深刻透彻。特别吸引读者的是,本文旁征博引,把科学、艺术和哲学融于一炉,把名人语录和文艺作品中的名段名句同全文的哲学思辨紧密地糅合,形成了独特的诗化的论述语言。
人是什么?“要回答清楚这个同人类自身一样古老的问题是着实不容易的。因为即便是爱因斯坦这样一身充满智慧的人,有时候也难免被这个最古老、最棘手的问题弄得非常尴尬,手足无措。”尽管我引的位于课文第二小节之前的这两句话已经删去,但读者也不难从爱因斯坦的“自白”中掂出这个问题的份量。
爱因斯坦毕竟回答了,他认为,人的坚强来自内心;个人“生存的意义,在于他是伟大人类社会的一个成员”。雨果的回答充满悲观色彩,说“我们(人)都是罪人”。歌德的回答则“几乎是另一种调子”,他认为“他这一生基本上只是辛苦地工作”,“好像推一块石头上山”。康德则认为“人是借助于令人惊异的能力——想象力——创造文化的生物”。作者然后又引爱因斯坦逝世前不久的话,说“只要有一天你得到了一件合理的事情去做,从此你的工作和生活都会有点奇异的色彩”。最后作者又引孔子的话“生无所息”,并说“不妨把‘生无所息’这句格言赋予新的含义,写在我们的旗帜上”。
比较这几个伟人的话及作者的评价,我们稍加揣摩,便可得出以下几点认识:1、爱因斯坦、歌德、康德、孔子的观点基本一致:人,应该“生无所息”,不断创造。2、作者的评价,其实在课文用“……”代替的删去部分,说得很清楚,“从某个角度看,孔子、康德、歌德和爱因斯坦的回答已经圆满到了无以复加的地步”。当然,即使删去了,我们仍可以从文中诸如“像伫立在夜雾茫茫的大海上的一座灯塔”,“照亮我的人生航程”;“能为我们欣然接受”;“诗人的一生实在是富有伟大创造力”;“——读者,这就是人哪!”;“东西方哲学家竟有如此一致的见解”等等句子中,揣摩出作者对这四个伟人的回答是极表赞同的。
但是,细心的读者就会发现,这几个人的回答似乎并没有准确的回答“人是什么”这个问题,根据我们习惯的思维方式,“X X是X
X”,从判断的构成来说,主词与判断词之后应该有一个宾词及其揭示概念内涵的限制语,这个宾词应该是主词的上位概念,即应以“人是……的生物(或高等动物)”的判断形式来回答。康德是以判断形式来回答的,但其揭示“人”的主要特征的话却只涵盖富有创造力的人的特征,而不是所有人的特征。因为,社会生活中,还有的人不是创造文化,而只是享受文化,甚至于破坏文化。由此可见,这几个伟人的回答并不是给“人”下一个科学的定义,而只是根据他们的人生观和人生体验来描述人的特征。换句话说,他们的回答,是解决“什么样的人生是有意义的”,或“人应该怎样活着”,或“人活着的意义是什么”这一类问题的。包括下文,作者自己的看法——“人是由三部分组成的:对往事的追忆、对现时的把握和对未来的憧憬”,同样只是对“人是什么”给予描述性的回答。
作者为什么不以下定义的方式回答“人是什么”这个问题?认真的读者,也许会产生这样的疑问。
是文章表述不准确吗?不是。这个疑问源于我们习惯的思维方式。我们习惯于用理性的、抽象的、科学的思维方式来提取文章的外部框架,而不习惯于用感性的、具体的、艺术的眼光来感受、感悟文章的内在的情感与宏旨。特别是在阅读一篇说理成分较多的文章的时候,我们常常只是顾及文章的逻辑性,而忽略了它的情感性,甚至于写作宗旨。
人是什么?翻开词典可知:“人是能制造工具并使用工具进行劳动的高等动物。”科学的定义告诉我们理性地认识世界,而艺术的回答激励我们勇敢地面对世界、改造世界。本文作为一篇散文,或者说是学者散文,亦或文化散文,理所当然地运用文学的手段来表现作者的情志,那么,我们理应用文学的眼光来解读它。
因此,本文回答“人是什么”的问题,就可以不拘泥于给“人”下定义,而可以,也应该根据当时——1980年代初期,我们民族拨乱反正、改革开放的需要,从“人”“应该怎样活着”的角度,褒扬、激励人们奋发向上、积极进取的创造精神。
用“文学的眼光”解读文学作品,似乎是老生常谈,而在实际解读作品或在课堂教学中我们往往习惯于用逻辑的手术刀去肢解作品。这种现象我们今后应该力求避免。
用“文学的眼光”解读作品,远不止于领会文章的思路。当我们读到作者对“人是什么?”的回答时,有没有想过:多么奇特的回答!作者的这种奇思妙想从哪里来的?还有,作者既然说对眼前现实的把握应该是重点,“作为整体的第二个组成部分,作为中间环节,它的比重应该占百分之九十五”,那为什么在后文的阐述中却又不将“把握现实”作为重点,而将“追忆往事”部分给予浓墨重彩地渲染,占了这“三个组成部分”中的大半篇幅?
这些问题,显然,用一般的文学创作的技巧难以解说。我们必须更新传统的文学观、阅读观,也许才能窥见其中的奥义。
⑩ 人类有史以来最伟大的物理学家是谁
阿尔伯特·爱因斯坦
爱因斯坦是德裔美国物理学家(拥有瑞士国籍),思想家及哲学家,犹太人,现代物理学的开创者和奠基人,相对论——“质能关系”的提出者,“决定论量子力学诠释”的捍卫者(振动的粒子)——不掷骰子的上帝。1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。
中文名:阿尔伯特·爱因斯坦
外文名:AlbertEinstein
国籍:美国,瑞士
民族:犹太族
出生地:德国乌尔姆市
出生日期:1879年3月14日
逝世日期:1955年4月18日
职业:物理学家,哲学家
毕业院校:苏黎世联邦理工学院
主要成就:提出相对论及质能方程
解释光电效应
推动量子力学的发展
代表作品:《论动体的电动力学》,《广义相对论的基础》
简介
爱因斯坦1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年获苏黎世大学哲学博士学位。曾在伯尔尼专利局任职,在苏黎世工业大学、布拉格德意志担任大学教授。1913年返德国,任柏林威廉皇帝物理研究所所长和柏林洪堡大学教授,并当选为普鲁士科学院院士。1933年因受纳粹政权迫害,迁居美国,任普林斯顿高级研究所教授,从事理论物理研究,1940年入美国国籍。有一句熟悉的格言是“任何事都是相对的。”但爱因斯坦的理论不是这一哲学式陈词滥调的重复,而更是一种精确的用数学表述的方法。此方法中,科学的度量是相对的。显而易见,对于时间和空间的主观感受依赖于观测者本身。
在爱因斯坦小的时候,有一天德皇军队通过慕尼黑的市街,好奇的人们都涌向窗前喝彩助兴,小孩子们则为士兵发亮的头盔和整齐的脚步而向往,但爱因斯坦却恐惧得躲了起来,他既瞧不起又害怕这些“打仗的妖怪”,并要求他的母亲把他带到自己永远也不会变成这种妖怪的国土去。中学时爱因斯坦放弃了德国国籍,可他并不申请加入意大利国籍,他要做一个不要任何依附的世界公民……大战过后,爱因斯坦试图在现实的基础上建立他的世界和平的梦想,并且在“敌国”里作了一连串“和平”演说。他的思想和行动,使他险遭杀身之祸:一个抱有帝国主义野心的俄国贵族女刺客把枪口偷偷对准了他;德国右翼刺客们的黑名单上也出现了阿尔伯特·爱因斯坦的名字;希特勒悬赏两万马克要他的人头。为了使自己与这个世界保持“和谐”,爱因斯坦不得不从意大利迁到荷兰,又从荷兰迁居美国,而且加入了美国国籍。他认为,在美国这个国度里,各阶级的人们都能在勉强过得去的友谊中共存下去。(节选自《应用写作》学术月刊1985年第5-6期《爱因斯坦的反省》)
十九世纪末期是物理学的大变革时期,爱因斯坦从实验事实出发,重新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的广义相对论对天体物理学、特别是理论天体物理学有很大的影响。爱因斯坦的狭义相对论成功地揭示了能量与质量之间的关系,坚守着“上帝不掷骰子”的量子论诠释(微粒子振动与平动的矢量和)的决定论阵地,解决了长期存在的恒星能源来源的难题。近年来发现越来越多的高能物理现象,狭义相对论已成为解释这种现象的一种最基本的理论工具。其广义相对论也解决了一个天文学上多年的不解之谜——水星近日点的近动[这是牛顿引力理论无法解释的],并推断出后来被验证了的光线弯曲现象,还成为后来许多天文概念的理论基础。
2009年10月4日,诺贝尔基金会评选“1921年物理学奖得主爱因斯坦”为诺贝尔奖百余年历史上最受尊崇的3位获奖者之一。(其他两位是1964年和平奖得主马丁路德金、1979年和平奖得主德兰修女。)
成长履历
1879年3月14日上午11时30分,爱因斯坦出生在德国乌尔姆市(Ulm,KingdomofWürttemberg,GermanEmpire)班霍夫街135号。父母都是犹太人。父名赫尔曼·爱因斯坦,母亲玻琳。
1881年11月18日,爱因斯坦的妹妹玛雅在慕尼黑出生。
1884年,爱因斯坦对袖珍罗盘着迷。
1885年,爱因斯坦开始学小提琴。
1886年,爱因斯坦在慕尼黑公立学校(CouncilSchool)读书;在家里学习犹太教的教规。
1888年,爱因斯坦入路易波尔德高级中学学习。在学校继续受宗教教育,接受受戒仪式。弗里德曼是指导老师。
1889年,在医科大学生塔尔梅引导下,读通俗科学读物和哲学着作。
1891年,自学欧几里德几何学(Euclideangeometry),感到狂热的喜爱,同时开始自学高等数学。
1892年,开始读康德(ImmanuelKant)的着作。1895年,自学完微积分(calculous)。
1896年,获阿劳中学毕业证书。10月,进苏黎世联邦工业大学师范系学习物理。
爱因斯坦
1899年10月19日,爱因斯坦正式申请瑞士公民权。
1900年8月爱因斯坦毕业于苏黎世联邦工业大学;12月完成论文《由毛细管现象得到的推论》,次年发表在莱比锡《物理学杂志》上并入瑞士籍。
1901年3月21日,取得瑞士国籍。在这一年5-7月完成电势差的热力学理论的论文。
1904年9月,由专利局的试用人员转为正式三级技术员。
1905年3月,发表量子论,提出光量子假说,解决了光电效应问题。4月向苏黎世大学提出论文《分子大小的新测定法》,取得博士学位。5月完成论文《论动体的电动力学》,独立而完整地提出狭义相对性原理,开创物理学的新纪元。
1906年4月,晋升为专利局二级技术员。11月完成固体比热的论文,这是关于固体的量子论的第一篇论文。1908年10月兼任伯尔尼大学编外讲师。
1909年10月,离开伯尔尼专利局,任苏黎世大学理论物理学副教授。
爱因斯坦
1910年10月,完成关于临界乳光的论文。
1912年提出“光化当量”定律。
1913年他返德国,任柏林威廉皇帝物理研究所长和柏林洪堡大学教授,并当选为普鲁士科学院院士。
1914年4月,爱因斯坦接受德国科学界的邀请,迁居到柏林,
8月即爆发了第一次世界大战。他虽身居战争的发源地,生活在战争鼓吹者的包围之中,却坚决地表明了自己的反战态度。
9月爱因斯坦参与发起反战团体“新祖国同盟”,在这个组织被宣布为非法、成员大批遭受逮捕和迫害而转入地下的情况下,爱因斯坦仍坚决参加这个组织的秘密活动。
10月德国的科学界和文化界在军国主义分子的操纵和煽动下,发表了“文明世界的宣言”,为德国发动的侵略战争辩护,鼓吹德国高于一切,全世界都应该接受“真正德国精神”。在“宣言”上签名的有九十三人,都是当时德国有声望的科学家、艺术家和牧师等。就连能斯脱、伦琴、奥斯特瓦尔德、普朗克等都在上面签了字。当征求爱因斯坦签名时,他断然拒绝了,而同时他却毅然在反战的《告欧洲人书》上签上自己的名字。这一举动震惊了全世界。
1915年11月,提出广义相对论引力方程的完整形式,并且成功地解释了水星近日点运动。
爱因斯坦
1916年3月,完成总结性论文《广义相对论的基础》。5月提出宇宙空间有限无界的假说。8月完成《关于辐射的量子理论》,总结量子论的发展,提出受激辐射理论。
1917年,列宁领导的苏联社会主义革命胜利后,爱因斯坦热情地支持这个伟大的革命,赞扬这是一次对全世界将有决定性意义的、伟大的社会实验并表示:“我尊敬列宁,因为他是一位有完全自我牺牲精神,全心全意为实现社会正义而献身的人。我并不认为他的方法是切合实际的,但有一点可以肯定:像他这种类型的人,是人类良心的维护者和再造者。”
1918年11月,德国工人和士兵在俄国十月革命胜利的影响和鼓舞下,发动起义,推翻了德皇威廉二世下台第三天,爱因斯坦寄给他的母亲连续写了两张明信片,欢呼“伟大的事变发生了……亲身经历了这个事变是多么荣幸!”二十年代到三十年代初期,爱因斯坦基本是个绝对的和平主义者。但侵略和掠夺战争不断发生的现实,打破了他美好的梦想。特别是1933年希特勒上台后,德国日益法西斯化,使爱因斯坦意识到新的野蛮战争不可避免,促使他改变了自己的观点。他明确表示:“当法律和人类尊严必需保卫时,我们一定要战斗。自从法西斯的危险到来后,现在我不再相信绝对的被动的和平主义是有效的了。只要法西斯主义统治欧洲,那就不会有和平。”由于爱因斯坦的进步活动,又因为他是犹太人,因而被德国纳粹分子列为重要的迫害对象,幸而他1932年底离开德国到美国讲学,才未遭毒手。他在柏林的住屋被查抄和捣毁,他的财产被没收,他的着作被焚毁,纳粹还悬赏二万马克要杀害他。面对纳粹分子暗杀的危险,爱因斯坦没有丝毫的畏惧,而是更坚定地战斗。当他的挚友劳厄写信劝他对政治问题采取明哲保身的态度时,他不顾个人安危,大声疾呼,指出法西斯就意味着战争,和平必须用武装来保卫,呼吁美国人民起来同法西斯作斗争。当爱因斯坦后来从无线电广播知道美国对广岛、长崎投下原子弹,杀伤许多平民时他感到非常痛心。他后来写了一封告美国公民书,说:“我们将此种巨大力量解放的科学家们,对于一切事物都要优先负起责任,必须限制原子能绝对不能使用来杀害全人类,而是用来增进人类的幸福方面。”
1919年爱因斯坦的理论被视为“人类思想史中最伟大的成就之一”。12月,接受德国唯一的名誉学位:罗斯托克大学的医学博士学位。
1921年4月2日到5月30日间,为了给耶路撒冷的希伯莱大学的创建筹集资金,同魏茨曼一起首次访问美国。
1922年1月,完成关于统一场论的第一篇论文。7月受到被谋杀的威胁,暂离柏林。10月8日,爱因斯坦和艾尔莎在马赛乘轮船赴日本。沿途访问科伦坡、新加坡、香港和上海。11月9日,在去日本途中,爱因斯坦因对光电效应作出解释而被授予1921年“诺贝尔物理学奖”。11月17日-12月29日,访问日本。
1923年7月,到哥德堡接受1921年度诺贝尔奖金。12月,第一次推测量子效应可能来自过度约束的广义相对论场方程。
1924年,发现了“波色-爱因斯坦凝聚”。
1925年以后,爱因斯坦全力以赴去探索统一场论。开头几年他非常乐观,以为胜利在望;后来发现困难重重,他认为现有的数学工具不够用。
1925年-1955年这30年中,除了关于量子力学的完备性问题、引力波以及广义相对论的运动问题以外,爱因斯坦几乎把他全部的科学创造精力都用于统一场论的探索。
1926年,被选为苏联科学院院士。
1928年以后转入纯数学的探索。他尝试着用各种方法,但都没有取得具有真正物理意义的结果。
1月,被选为“德国人权同盟”(前身为德国“新祖国同盟”)理事。
1929年3月,50岁生日,躲到郊外以避免生日庆祝会。6月28日获“普朗克奖章”。
1930年12月11日至1931年3月4日,爱因斯坦第二次到美国访问,在加利福尼亚州理工学院讲学。
1932年7月,同弗洛伊德通信,讨论战争的心理问题;号召德国人民起来保卫魏玛共和国,全力反对法西斯。
1933年1月30日,纳粹上台。
3月10日,在帕莎第纳发表不回德国的声明,次日启程回欧洲。
3月20日,纳粹搜查他的房屋,他发表抗议。后他在德国的财产被没收,着作被焚。
1935年5月,在百慕大正式申请永远在美国居住。是年,为使诺贝尔奖金(和平奖)赠予被关在纳粹集中营中的奥西茨基,而四处奔走。
1937年3月声援中国“七君子”。
1937年,在两个助手合作下,他从广义相对论的引力场方程推导出运动方程,进一步揭示了空间——时间、物质、运动之间的统一性,这是广义相对论的重大发展,也是爱因斯坦在科学创造活动中所取得的最后一个重大成果。在统一场理论方面,他始终没有成功,他从不气馁,每次都满怀信心的从头开始。由于他远离了当时物理学研究的主流,独自去进攻当时没有条件解决的难题,因此,同20年代的处境相反,他晚年在物理学界非常孤立。可是他依然无所畏惧,毫不动摇地走他自己所认定的道路,直到临终前一天,他还在病床上准备继续他的统一场理论的数学计算。爱因斯坦热爱科学,也热爱人类。他没有因为埋头于科学研究而把自己置于社会之外,一直关心着人类的文明和进步,并为之顽强、勇敢地战斗。他说过:“人只有献身于社会,才能找出那实际上是短暂而又有风险的生命的意义”,他自己正是这样去做的。
1938年9月,给五千年后的子孙写信,对资本主义社会现状表示不满。
1939年8月2日,上书罗斯福总统,建议美国抓紧原子能研究,防止德国抢先掌握原子弹。
1940年5月22日,他致电罗斯福,反对美国的中立政策。
10月1日取得美国国籍。
1943年5月,作为科学顾问参与美国海军部工作。
1944年,他为支持反法西斯战争,以600万美元拍卖1905年狭义相对论论文手稿。
1947年,他继续发表大量关于世界政府的言论。
1949年1月,写《对批评的回答》,对哥本哈根学派在文集《阿尔伯特·爱因斯坦:哲学家—科学家》中的批判进行反批判。
1950年2月13日,他发表电视演讲,反对美国制造氢弹。3月18日,在遗嘱上签字盖章。
1951年,连续发表文章和信件,指出美国的扩军备战政策是世界和平的严重障碍。
1952年11月,以色列第1任总统魏斯曼死后,以色列政府请他担任第2任总统,被拒绝。
1954年3月,他被美国参议员麦卡锡公开斥责为“美国的敌人”。
1955年,爱因斯坦与罗素联名发表了反对核战争和呼吁世界和平的《罗素—爱因斯坦宣言》。
1955年4月18日1时25分,他在医院逝世。漫长艰难的探索广义相对论建成后,爱因斯坦依然感到不满足,要把广义相对论再加以推广,使它不仅包括引力场,也包括电磁场。他认为这是相对论发展的第三个阶段,即统一场论。
爱因斯坦的家庭
爱因斯坦与塞尔维亚数学家米列娃有一个未婚私生女丽瑟尔(1902—1903?),不过在1903年到1919年爱因斯坦娶了米列娃,后来米列娃为爱因斯坦生了两个儿子汉斯・阿尔伯特与爱德华。
爱因斯坦罕见童年旧照爱因斯坦的第二任妻子爱尔莎是他的堂姐和表姐,他们的母亲是亲姐妹,
爱因斯坦与他的第二任妻子爱尔莎他们的曾祖父都是鲁普特·爱因斯坦。这个婚姻从1919年到1936年爱尔莎逝世。爱因斯坦的二儿子爱德华受米列娃家庭遗传的影响患精神分裂,一生未娶。大儿子汉斯・阿尔伯特是美国伯克利加州大学的水利工程教授,有三个孩子,大儿子伯恩哈德·凯撒·爱因斯坦是一名物理学家,二儿子KlausMartin(1932–1938),以及养女。伯恩哈德·凯撒·爱因斯坦有五个孩子,其中最小的孩子成为了一名医生。
成功的秘诀
有一次,一个美国记者问爱因斯坦关于他成功的秘诀。他回答:“早在1901年,我还是二十二岁的青年时,我已经发现了成功的公式。我可以把这公式的秘密告诉你,那就是A=X+Y+Z!A就是成功,X就是努力工作,Y是懂得休息,Z是少说废话!这公式对我有用,我想对许多人也一样有用。”
爱因斯坦性格类型:intp-智多星类型
重要贡献
相对论
相对论的意义:
狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现代人类思想的发展都有巨大的影响。相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系数的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。
狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相当,给出了质能关系式。这两项成果对低速运动的宏观物体并不明显,但在研究微观粒子时却显示了极端的重要性。因为微观粒子的运动速度一般都比较快,有的接近甚至达到光速,所以粒子的物理学离不开相对论。质能关系式不仅为量子理论的建立和发展创造了必要的条件,而且为原子核物理学的发展和应用提供了根据。
对于爱因斯坦引入的这些全新的概念,当时地球上大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。甚至有人说“当时全世界只有两个半人懂相对论”。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔物理学奖授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对爱因斯坦的诺贝尔物理学奖颁奖辞中竟然对于爱因斯坦的相对论只字未提。
E=mc^2
物质不灭定律,说的是物质的质量不灭;能量守恒定律,说的是物质的能量守恒。(信息守恒定律)
虽然这两条伟大的定律相继被人们发现了,但是人们以为这是两个风马牛不相关的定律,各自说明了不同的自然规律。甚至有人以为,物质不灭定律是一条化学定律,能量守恒定律是一条物理定律,它们分属于不同的科学范畴。
爱因斯坦认为,物质的质量是惯性的量度,能量是运动的量度;能量与质量并不是彼此孤立的,而是互相联系的,不可分割的。物体质量的改变,会使能量发生相应的改变;而物体能量的改变,也会使质量发生相应的改变。
在狭义相对论中,爱因斯坦提出了着名的质能公式:E=mc^2(这里的E代表物体的能量,m代表物体的质量,c代表光的速度,即3×10^8m/s)。
爱因斯坦的理论,最初受到许多人的反对,就连当时一些着名物理学家也对这位年青人的论文表示怀疑。然而,随着科学的发展,大量的科学实验证明爱因斯坦的理论是正确的,爱因斯坦才一跃而成为世界着名的科学家,成为20世纪世界最伟大的科学家。
爱因斯坦的质能关系公式,正确地解释了各种原子核反应:就拿氦4来说,它的原子核是由2个质子和2个中子组成的。照理,氦4原子核的质量就等于2个质子和2个中子质量之和。实际上,这样的算术并不成立,氦核的质量比2个质子、2个中子质量之和少了0.0302原子质量单位[57]!这是为什么呢?因为当2个氘[]核(每个氘核都含有1个质子、1个中子)聚合成1个氦4原子核时,释放出大量的原子能。生成1克氦4原子时,大约放出2.7×10^12焦耳的原子能。正因为这样,氦4原子核的质量减少了。
这个例子生动地说明:在2个氘原子核聚合成1个氦4原子核时,似乎质量并不守恒,也就是氦4原子核的质量并不等于2个氘核质量之和。然而,用质能关系公式计算,氦4原子核失去的质量,恰巧等于因反应时释放出原子能而减少的质量!
这样一来,爱因斯坦就从更新的高度,阐明了物质不灭定律和能量守恒定律的实质,指出了两条定律之间的密切关系,使人类对大自然的认识又深了一步。
“上帝不掷骰子”
爱因斯坦曾经是量子力学的催生者之一,但是他不满意量子力学的后续发展,爱因斯坦始终认为“量子力学(以玻恩为首的哥本哈根诠释:“基本上,量子系统的描述是机率的。一个事件的机率是波函数的绝对值平方。”)不完整”,但苦于没有好的解说样板,也就有了着名的“上帝不掷骰子”的否定式呐喊!其实,爱因斯坦的直觉是对的,决定论的量子诠释才是“量子论诠释”的本真、根源。爱因斯坦到过世前都没有接受量子力学是一个完备的理论。爱因斯坦还有另一个名言:“月亮是否只在你看着他的时候才存在?”
个人着作
1901-1904年,在德国权威杂志《物理学年鉴》上发表了5篇有关热力学和黑体辐射等方面的研究。
1905年3月,《关于光的产生和转变的一个启发性观点》,文中提出光量子学说和光电效应的基本定律,并在历史上第一次揭示了微观物体的波粒二象性,从而圆满地解释了光电效应。(为此获得1921年诺贝尔物理学奖)
1905年4月,《分子尺度的新测定》(获苏黎世大学哲学博士学位)
1905年5月,《根据分子运动论研究静止液体中悬浮微粒的运动》(有力地提供了原子真实存在布朗运动的证明)
1905年6月,长篇文献《论动体的电动力学》(完整提出了着名的狭义相对论理论,开创了物理学的新纪元)
1905年9月,《物体惯性和能量的关系》(提出了质量和能量的关系E=mc^2,为原子核能的释放和利用奠定了理论基础)
1916年《广义相对论基础》(提出了大质量物体的存在可引起时空连续场的弯曲,为黑洞、大爆炸等新的宇宙论提供了理论依据)
1938年9月16日《爱因斯坦给五千年后子孙的信》(1938年10月在纽约东北郊准备于1939年春季开幕的世界展会工地上把一些纪念品装在一只坚固的金属盒里,埋在地下,准备等到五千年后(公元6939年)让后代子孙把它掘出来打开。爱因斯坦的这封信也封在里面。这封信最初发表在1938年9月16日的【纽约时报】上)
爱因斯坦的逝世
当地时间1955年4月18日1时25分,爱因斯坦在美国新泽西州普林斯顿大学医院去世,终年76岁。他生前立有遗嘱,要求把他的骨灰撒在不为人知的地方,不发讣告,不建坟墓,不立纪念碑。火化时免除所有公共集会,免除所有宗教仪式,免除所有花卉布置及所有音乐典礼。根据他的遗嘱,火化时在场的人只有:大儿子汉斯·爱因斯坦,遗嘱执行人、经济学家纳坦,爱因斯坦最忠实的合作者杜卡斯,助手诺伊施泰因,图书管理员范托娃,以及他的妻子等12人。没有奏乐,没有花卉,小教堂里一片寂静。只有遗嘱执行者纳坦在结束仪式时,念了歌德悼念席勒的诗,表达自己的哀思:
我们全都获益匪浅,
全世界都感谢他的教诲;
那专属他个人的东西,
早已传遍广大人群。
他像行将陨灭的彗星,光华四射,
把无限的光芒同他的光芒永相结合。
爱因斯坦大脑没有被火化,现存放在美国新泽西州的普林斯顿大学。
[编辑本段]十个宝贵建议
阿尔伯特•爱因斯坦是20世纪最伟大的物理学家。他提出了很多的普遍定理和方程式,使他一直超越其他科学家。但是,人们也因为另一件事而记住他:一种令人们都称他为天才的才能:他所说过的话。爱因斯坦教授是一位哲学家,他清楚懂得什么是成功法则,他能像解释他的方程式那般解释这些法则。这里有10句话是从他以前所说过的无数极精彩的话语中提取出来的;这是十条你能用在平时生活之中的宝贵建议。
不曾犯错的人从来不曾尝试新事物。
教育是一个人在学校学到的唯一不被遗忘的东西。
想象力比知识更重要。因为知识是有限的,而想象力却能畅游整个世界。
创意的奥秘是知道如何隐藏你的创意来源。
一个人的价值,在于他贡献什么,而不是他能取得什么。不要渴望成为一个成功的人,而是应该努力做一个有价值的人。
天下只有两种生活方式:人生不存在奇迹;人生处处孕育着奇迹。
在我审视我自己和我的思考方式时,我的结论是:在吸收有益的知识方面,奇思玄想的天赋对我而言,比我的才干更重要。
要成为羊群中优秀的一员,你就必须先成为一只羊。
你必须去学习游戏规则。然后,你还要比别人玩得更好。
最重要的是不要停止问问题。好奇心的存在,自有它的道理。
[编辑本段]个人名言
1、在真理和认识方面,任何以权威者自居的人,必将在上帝的戏笑中垮台!
2、凡在小事上对真理持轻率态度的人,在大事上也是不足信的。
3、苦和甜来自自己和外界,而坚强则来自于内心,来自于一个人坚持不懈的努力!
4、智慧并非学而可取,而是毕生追求所得。
5、我们把教育定义如下:人的智慧决不会偏离目标。所谓教育,是忘却了在校学的全部内容之后剩下的本领。
6、真正有价值的东西不是出自雄心壮志或单纯的责任感;而是出自对人和对客观事物的热爱和专心。
7、A=X+Y+Z!A就是成功,X就是努力工作,Y是懂得休息,Z是少说废话!
8我从来不把安逸和享乐看作生活目的本身——这种伦理基础,我叫它猪栏的思想。
9科学研究好像钻木板,有人喜欢钻薄的,而我喜欢钻厚的。
10、每个人都有一定的理想,这种理想决定着他的努力和判断的方向。
11、通向人类真正的伟大境界的通道只一条苦难的道路。
12、不管时代的潮流和社会的风尚怎样,人总可以凭着自己高贵的品质,超脱时代和社会,走自己正确的道路。
13、实笃一个人只有以他全部的力量和精神致力于某一事业时,才能成为一个真正的大师。因此,只有全力以赴才能精通。
14、我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。
15、没有牺牲,也就决不可能有真正的进步。
16、一个人的价值,应当看他贡献什么,而不应看他取得什么。
17、想象力比知识更重要。
18、时间和空间是人们认知的错觉。
19,我已经熟悉一切人际关系的变幻无常,也学会漠视这种世态炎凉,以保证我的心态平衡。