Ⅰ 高一物理V--T图像中的斜率怎么算
此类题详解,转给你们大一的,哈哈!
有疑问可以私聊的,物理我的爱好!
第一部分
v-t图象
1.容易出现的几点困惑:
①认为图像是物体运动的轨迹
②认为两个图象交点是质点相遇的时刻
③认为速度方向就是位移的方向
④很难想象质点运动的情景图
2.解读图象上面的几个要素:
①:点:图象上的点表示在那个时刻质点的瞬时速度
②:线:图象上的线不代表质点运动轨迹、方向只与在v轴正负有关
③:面:图象的线与时间轴为成的面积为质点位移的绝对值
④:斜率:图象的斜率为物体的加速度
⑤:截距:质点运动的初速度
3.高一物理中几种常见的图象:
此图象是比较简单的图象、它表示质点做匀速直线运动。随着时间的增加。质点逐渐地朝正方向远离出发点
此图象表示质点做匀加速直线运动。△t=t2.△v=v2-v1.加速度a>0根据加速度公式a=△v÷△t得到。△v>0.△t>0所以加速度a>0.。再从数学的角度来理解这个图象:此图象是一次函数的图象。其中v随t增大而增大。可见k>0.即斜率>0.所以加速度a>0
此图象中。速度先为负值后为正值。质点还是在做匀加速直线运动。0-t1时间间隔内质点速度大小均匀减小。但是加速度为正值。除了从斜率看加速度为正以外。看图象上速度由负值到了0,所以加速度为正。到t1时刻时速度为0、之后速度为正。所以速度的方向相反了。质点往相反的方向做匀加速直线运动直到t2s末速度达到v2此时质点位于出发点的正方向上。
再来考虑上图的一种特殊情况、即v1=-v2.t2=2×t1既然是特殊情况。上图的结论仍然适用、只是最后一句话应该改为质点在t2s末回到出发点、因为位移为图象与时间轴构成的面积、时间轴以上为正值。以下为负值。所以合位移为0.质点回到出发点。
再来考虑与以上几个很相似的几种情况:此时质点做匀速直线运动。随着时间的增加。质点逐渐地朝负方向远离出发点
此图表示质点朝负方向上渐渐远离出发点。并且速度大小在均匀增大。但加速度为负值△t=t2.△v=v2-v1.加速度a<0根据加速度公式a=△v÷△t得到。△v<0.△t>0所以加速度a<0.。再从数学的角度来理解这个图象:此图象是一次函数的图象。其中v随t增大而减小。可见k<0.即斜率<0.所以加速度a<0
此图象中。速度先为正值后为负值。质点还是在做匀减速直线运动(或者说做加速度为负值的匀加速直线运动)。0-t1时间间隔内质点速度均匀减小。所以加速度为负值。除了从斜率看加速度为负以外。看图象上速度由正值到了0,所以加速度为负。到t1时刻时速度为0、之后速度为负。所以速度的方向相反了。质点往相反的方向做匀加速直线运动直到t2s末速度达到v2此时质点位于出发点的负方向上。
再来考虑上图的一种特殊情况、即v2=-v1.t2=2×t1既然是特殊情况。上图的结论仍然适用、只是最后一句话应该改为质点在t2s末回到出发点、因为位移为图象与时间轴构成的面积、时间轴以上为正值。以下为负值。所以合位移为0.质点回到出发点。
再来看这个奇特的图象。这是一条抛物线。显然速度在增大。但是这个增大不是均匀的。这样加速度就要区分平均加速度与瞬时加速度。在图象上有三个点、分别作出它们的切线。切线的斜率即为加速度。可以看出。这些切线的斜率慢慢变大。可见加速度在慢慢增大。质点做加速度不断增大的加速运动
再给大家看3个图象。希望大家能按照上面方法自己分析、质点做加速度不断减小的加速运动
质点做加速度不断减小的减速运动
质点做加速度不断增加的减速运动
Ⅱ 有谁知道高中物理斜率的计算原理
类比数学中导数的观点,斜率表示纵轴随横轴变化的快慢,即变化率,这在物理上也适用,很多物理题都需要写出物理量之间的函数式,通过求导函数求解
Ⅲ 斜率怎么算
斜率计算:ax+by+c=0中,k=-a/b。
直线斜率公式:k=(y2-y1)/(x2-x1)
两条垂直相交直线的斜率相乘积为-1:k1*k2=-1。
曲线y=f(x)在点(x1,f(x1))处的斜率就是函数f(x)在点x1处的导数
当直线L的斜率存在时,斜截式y=kx+b 当k=0时 y=b
当直线L的斜率存在时,点斜式y2—y1=k(X2—X1),
当直线L在两坐标轴上存在非零截距时,有截距式X/a+y/b=1
对于任意函数上任意一点,其斜率等于其切线与x轴正方向的夹角,即tanα
(1)顾名思义,“斜率”就是“倾斜的程度”。过去我们在学习解直角三角形时,教科书上就说过:斜坡坡面的竖直高度h与水平宽度l的比值i叫做坡度;如果把坡面与水平面的夹角α叫做坡度,那么;坡度越大<=>α角越大<=>坡面越陡,所以i=tanα可以反映坡面倾斜的程度。
现在我们学习的斜率k,等于所对应的直线(有无数条,它们彼此平行)的倾斜角(只有一个)α的正切,可以反映这样的直线对于x轴倾斜的程度。实际上,“斜率”的概念与工程问题中的“坡度”是一致的。
(2)解析几何中,要通过点的坐标和直线方程来研究直线通过坐标计算求得,使方程形式上较为简单。如果只用倾斜角一个概念,那么它在实际上相当于反正切函数值arctank,难于直接通过坐标计算求得,并使方程形式变得复杂。
(3)坐标平面内,每一条直线都有唯一的倾斜角,但不是每一条直线都有斜率,倾斜角是90°的直线(即x轴的垂线)没有斜率。在今后的学习中,经常要对直线是否有斜率分情况进行讨论。
曲线的上某点的斜率则反映了此曲线的变量在此点处的变化的快慢程度。
斜率曲线的变化趋势仍可以用过曲线上一点的切线的斜率即导数来描述。导数的几何意义是该函数曲线在这一点上的切线斜率。
f'(x)>0时,函数在该区间内单调增,曲线呈向上的趋势;f'(x)<0时,函数在该区间内单调减,曲线呈向下的趋势。
在(a,b)f''(x)<0时,函数在该区间内的图形是凸(从上向下看)的;f''(x)>0时,函数在该区间内的图形是凹的。
(3)物理斜率怎么求扩展阅读
我们可以看到斜率,它是中学生学习的一个非常重要的概念。为什么说它重要,下面我们可以从以下几个方面来看:
第一个,从课标的这个角度,我们可以知道在义务教育阶段,我们学习了一次函数,它的几何意义表示为一条直线,一次项的系数就是直线的斜率,只不过当直线与X轴垂直的时候无法表示。虽然没有明确给出斜率这个名词,但实际上思想已经渗透到其中。
在高中阶段对必修一以及还有必修二当中都讨论了有关直线问题,选修一还有选修二也都提到了与直线相关的一些问题。上述列举的内容,实际上都涉及到了斜率的概念,因此可以说斜率这个概念是学生逐渐积淀下来的一个重要的数学概念之一。
第二个,从数学的视角,我们可以从以下四个角度来理解如何刻划一条直线相对于直角坐标系中X轴的倾斜程度。首先就是从实际意义看,斜率就是我们所说的坡度,是高度的平均变化率,用坡度来刻划道路的倾斜程度。
也就是用坡面的切直高度和水平长度的比,相当于在水平方向移动一千米,在切直方向上升或下降的数值,这个比值实际上就表示了坡度的大小。这样的例子实际上很多,比如楼梯及屋顶的坡度等等。
其次,从倾斜角的正切值来看;还有就是从向量看,是直线向上方向的向量 与X轴方向上的单位向量的夹角。
最后是从导数这个视角来再次认识斜率的概念,这里实际上就是直线的瞬时变化率。认识斜率概念不仅仅是对今后的学习起着很重要的作用,而且对今后学习的一些数学的重要的解题的方法,也是非常有帮助的。
第三个,从教材这个视角看。
(1)从大纲来看,教材在处理直线的斜率这一部分知识的时候,首先讲直线的倾斜角,然后再讲直线的斜率,之后再来引入经过直线上的两点的斜率公式的推导;从新课程标准来看,可以看到人教版A版的教材是先讲直线的倾斜角。
然后再讲直线的斜率,只不过在处理上,是以问题的提出的形式来说。首先是过点P可以做无数条直线,那么它都经过点P,于是组成了一个直线束,这些直线的区别在哪儿呢,容易看出它们的倾斜程度都不同,那么如何刻画这些直线的倾斜程度呢。
以直线l与x轴相交时,以x轴作为一个基准,x轴的走向与直线l向上的方向之间所成的角α定义为直线l的倾斜角。之后讨论了倾斜角的取值范围,然后提出日常生活中与倾斜程度有关的量,让学生们来自己举例子,比如身高与前进量的比;再比如说进二升三与进二升二去比较,那前者就会更陡一些。
如果用倾斜角这个概念,那么我们会看到坡度实际上就是倾斜角α的正切值,它就刻画了直线的一个倾斜程度,这里要特别强调的是倾斜角不是90度的直线都有斜率。
由于倾斜角不同,直线的斜率不同,因此可以用倾斜角表示直线的倾斜程度,然后引导同学们去探索如何用过直线上的两个点来推导有关直线的斜率公式,同样在这里牵扯到有关的倾斜角是0度到90度、以及倾斜角是90度、还有90度到180度不同取值范围的斜率的表达形式。
再来看人教版的数学时,在这里再次提到了直线的斜率的概念,但只不过是在总复习题B组当中涉及到有关斜率的提法,此时用向量的方式来再次提到斜率公式的引进。
第四个,物理学习平均速度,瞬时速度,加速度等时需要运用其求解,推算。
第五个,斜率可以帮助我们更好的理解,推导,理解公式以及其他各个方面。
Ⅳ 高中物理中的斜率怎么算
如果坐标系的横轴为x轴,纵轴为y轴,斜率为k,则斜率k=Δy/Δx
Ⅳ 图像的斜率公式(物理)
如果是一次函数图像
就是数学里y=kx+b中的k
k就是斜率
Ⅵ 高中物理,斜率是什么意思怎么计算
时间位移图像x-t,斜率k=△x/△t,有没有发现这个斜率刚好是速度,V=k=△x/△t
速度时间图像v-t,斜率k=△v/△t,这个斜率刚好是加速度,a=k=△v/△t,所形成的图形面积就是位移
这是图像是直线的情况,还可以求导,比如:位移时间函数,x=3t²+5t+10。位移对时间求导就是速度即V=x'=6t+5,这是速度和时间函数关系。速度对时间求导就是加速度,即a=v'=6
Ⅶ 关于物理中的斜率!
斜率不是划的,是v/t,的比值.
当加速度为负直时斜率为负,因为速度为矢量,有方向
Ⅷ 直线方程一般式求斜率怎么求
直线方程的一般式:Ax + By + C = 0 (A≠0 && B≠0)【适用于所有直线】。
斜率是指一条直线与平面直角坐标系横轴正半轴方向的夹角的正切值,即该直线相对于该坐标系的斜率, 一般式公式:k = -A/B。
横截距是指一条直线与横轴相交的点(a,0)与原点的距离,一般式的公式:a = -C/A。
纵截距是指一条直线与纵轴相交的点(0,b)与原点的距离,一般式的公式:b = -C/B。
例:已知一条直线方程2x - y + 3 = 0
1、横截距(-C/A): -3/2 = -1.5;
2、纵截距(-C/B): -3/-1 = 3;
3、斜率(-A/B): -2/-1 = 2。
(8)物理斜率怎么求扩展阅读
直线方程的种类:
1、点斜式:y-y0=k(x-x0) 【适用于不垂直于x轴的直线】
表示斜率为k,且过(x0,y0)的直线。
2、截距式:x/a+y/b=1【适用于不过原点或不垂直于x轴、y轴的直线】
表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线。
3、斜截式:y=kx+b【适用于不垂直于x轴的直线】
表示斜率为k且y轴截距为b的直线。
4、两点式:【适用于不垂直于x轴、y轴的直线】
表示过(x1,y1)和(x2,y2)的直线。
5、两点式
(y-y1)/(y2-y1)=(x-x1)/(x2-x1) (x1≠x2,y1≠y2)
交点式:f1(x,y) *m+f2(x,y)=0 【适用于任何直线】
表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线。
6、点平式:f(x,y) -f(x0,y0)=0【适用于任何直线】
表示过点(x0,y0)且与直线f(x,y)=0平行的直线。
7、法线式:x·cosα+ysinα-p=0【适用于不平行于坐标轴的直线】
过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度。
8、点向式:(x-x0)/u=(y-y0)/v (u≠0,v≠0)【适用于任何直线】
表示过点(x0,y0)且方向向量为(u,v )的直线。
9、法向式:a(x-x0)+b(y-y0)=0【适用于任何直线】
表示过点(x0,y0)且与向量(a,b)垂直的直线。
Ⅸ 物理中直线斜率怎么算
直线上找两个点(x1,y1)(x2,y2)
k=(y1-y2)/(x1-x2)
或者找一个点的话,k=tanθ,θ是直线和x轴的夹角