‘壹’ 物理的曲率半径计算问题
用它的公式计算为:
GoMm/R²=mg
GoM/R²=g
GoM=R²g
GoMm/ρ²=mv²/ρ
GoM/ρ=v²
ρ=GoM/v²=R²g/v²=R²g/(2Rg/3)=3R/2
以我看计算如下:
ρ=v²/an
=(2Rg/3)/(1/4g)
=8/3g
(近地点的加速度为1/4g)
‘贰’ 怎样用物理方法求抛物线的曲率半径
众所周知,平抛运动的轨迹是一条抛物线,于是可以从这个角度展开,把问题转化为一个物理问题,即求平抛运动轨迹的曲率半径。具体求解方法如下:
在水平方向是匀速直线运动:
x=vt
在竖直方向是匀加速直线运动:
y=[1/2]gt2
得到:
y=[1/2]gt2=[1/2]g[x/v]2=[g/2v2]x2
在任意时刻,重力的沿运动轨迹法向的分量提供向心力,对于任意曲线运动,向心力等于mv'2/p,其中p为曲率半径。
mgcosa=mv'2/p
cosa=v/v'
因此p=v'3/gv
=[√[v2+g2t2]]3/gv
=[√[v2+g2x2/v2]]3/gv
=[√[v4+g2x2]]3/gv4
对于一个一般的抛物线表达式y=kx2
k=g/2v2,g=2kv2
所以p=v'3/gv
=[√[1+4k2x2]]3/2k
曲率半径主要是用来描述曲线上某处曲线弯曲变化的程度,特殊的如:圆上各个地方的弯曲程度都是一样的故曲率半径就是该圆的半径;直线不弯曲 ,和直线在该点相切的圆的半径可以任意大,所以曲率是0,故直线没有曲率半径,或记曲率半径为:
‘叁’ 怎样计算曲率半径
最低0.27元/天开通网络文库会员,可在文库查看完整内容>
原发布者:astra32
曲率及其曲率半径的计算一、弧微分弧微分有向弧段的值、弧微分公式二、曲率及其计算公式曲率及其计算公式曲率、曲率的计算公式三、曲率圆与曲率半径曲率圆与曲率半径曲率圆曲率半径一、弧微分有向弧段M0M的值s(简称为弧s):s的绝对值等于这弧段的长度,当有向弧段的方向与曲线的正向一致时s>0,相反时s0MMs<0M0xxx0xOx0xO下面来求s(x)的导数及微分.设x,x+∆x为(a,b)内两个邻近的点,它们在曲线y=f(x)上的对应点为M,M′,并设对应于x的增量∆x,弧s的增量为∆s,于是(22∆sMM′MM′MM′=MM′(∆x)+(∆y)⋅⋅==2MM′(∆x)2∆x∆xMM′(∆x)(222222MM′∆y=⋅1+MM′∆x2∆sMM′=±∆xMM′(((yM′∆sM0Ox0M∆xxx+∆xx(2∆y2⋅1+∆x∆y∆sMM′=±∆xMM′((∆yMM′MM′=lim=y′,因为lim=1,又lim∆x→0∆x∆x→0MM′M′→MMM′ds2因此=±1+y′.dxdsds=1
‘肆’ 曲率半径的公式推导
对于直线上任一点,和直线在该点相切的圆的半径可以任意大,所以直线的曲率半径为无穷大(对应于曲率为零,也就是“不弯曲”)。而在圆上,每一点的密切圆就是其本身,故其曲率半径为其本身的半径。抛物线顶点曲率半径为焦准距(顶点到焦点距离的两倍)。
对于y=f(x),曲率半径等于(1+(f ')^2)^(3/2)/ |f "| 。
主要作用:
曲率半径主要是用来描述曲线上某处曲线弯曲变化的程度,特殊的如:圆上各个地方的弯曲程度都是一样的故曲率半径就是该圆的半径;直线不弯曲 ,和直线在该点相切的圆的半径可以任意大,所以曲率是0,故直线没有曲率半径。
圆形半径越大,弯曲程度就越小,也就越近似于一条直线。所以说,曲率半径越大曲率越小,反之亦然。
‘伍’ 大学物理曲率半径的计算公式是什么
曲率半径的公式为κ=lim|Δα/Δs|。
平面曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。
对于曲线,它等于最接近该点处曲线的圆弧的半径;对于表面,曲率半径是最适合正常截面或其组合的圆的半径。
应用:
(1)对于差分几何上的应用,请参阅Cesàro方程。
(2)对于地球的曲率半径(由椭圆椭圆近似),请参见地球的曲率半径。
(3)曲率半径也用于梁的弯曲三部分方程中。
(4)曲率半径(光学)。
(5)半导体结构中的应力。
‘陆’ 如何用物理方法求曲率半径
求曲率半径的方法:
在曲线上取一小段弧长,过两个点做切线,和法线,两条法线的交点为等效圆的圆心,圆心到交点的距离为曲率半径。
‘柒’ 大学物理 第二问曲率半径怎么求求大神给详解
此题曲率半径为2v^2/根下3g
对加速度进行矢量分解并结合向心加速度公司,具体做法如下:
(7)物理中曲率半径怎么求扩展阅读:
在微分几何中,曲率的倒数就是曲率半径,即R=1/K。平面曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。对于曲线,它等于最接近该点处曲线的圆弧的半径。 对于表面,曲率半径是最适合正常截面或其组合的圆的半径。
圆形半径越大,弯曲程度就越小,也就越近似于一条直线。所以说,曲率半径越大曲率越小,反之亦然。
如果对于某条曲线上的某个点可以找到一个与其曲率相等的圆形,那么曲线上这个点的曲率半径就是该圆形的半径(注意,是这个点的曲率半径,其他点有其他的曲率半径)。也可以这样理解:就是把那一段曲线尽可能地微分,直到最后近似为一个圆弧,此圆弧所对应的半径即为曲线上该点的曲率半径。
‘捌’ 曲率半径物理
1、曲率半径的概念如下:
曲率的倒数就是曲率半径
2、曲率的概念如下:
曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。
曲率越大,表示曲线的弯曲程回度越大
3、曲率的求法如下:
曲率半径求法:ρ=|[(1+y'^2)^(3/2)/y'']|,K=1/ρ。或
K就是曲率
拓展内容:
曲率
简介
曲线的曲率(qū lǜ)(curvature)就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。
曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径
二、曲率半径
在微分几何中,曲率的倒数就是曲率半径,即R=1/K。平面曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。对于曲线,它等于最接近该点处曲线的圆弧的半径。 对于表面,曲率半径是最适合正常截面或其组合的圆的半径
‘玖’ 什么是大学物理中的曲率半径
曲率半径,符号以Rho:ρ表示,是曲率的倒数,单位为米。曲率,符号以Kappa:κ表示,是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意义。
拓展资料:
对于平面曲线C,在一点P的曲率大小等于密切圆半径的倒数,它是一个指向该圆圆心的向量。其大小可用屈光度(dioptre)衡量,1屈光度等于1(弧度)每米。此密切圆的半径即为曲率半径。
密切圆的半径越小,曲率越大;所以曲线接近平直的时候,曲率接近0,而当曲线急速转弯时,曲率很大。
直线曲率处处为0;半径为r的圆曲率处处为1/r。
‘拾’ 求曲线的曲率计算公式
曲率k=y''/[(1+(y')^2)^(3/2)],其中y',y"分别为函数y对x的一阶和二阶导数。
1、设曲线r(t) =(x(t),y(t)),曲率k=(x'y" - x"y')/((x')^2 + (y')^2)^(3/2).
2、设曲线r(t)为三维向量函数,曲率k=|r'×r"|/(|r'|)^(3/2),|x|表示向量x的长度。
3、向量a,b的外积,若a=(a1,a2,a3),b=(b1,b2,b3),a×b=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1).
曲线的曲率(curvature)就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。
曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径。
曲线是动点运动时,方向连续变化所成的线,也可以想象成弯曲的波状线。同时,曲线一词又可特指人体的线条。