‘壹’ 物理选修3-3 热学 密闭气体,缓慢加热还有其他的一定量的理想气体缓慢变化类的题怎么做
用PV=NRT这个公式,只要是一定量的气体,N和R就是一定的。
△U=W+Q,内能的变化量=做正/负功+吸/放热量
1.W是指外界对气体做功的±。
气体膨胀,气体对外界做正功,外界对气体做负功,W为-值,内能减小。
气体压缩(反之)。
对于理想气体,内能的变化量只与温度有关——内能的变化量只与气体所有分子热运动的动能之和,只与T有关。
但要注意的是,吸热和放热并不能决定温度的变化。
吸热不代表温度升高,放热也不代表温度就降低。
比如,理想气体,密闭、一定量,绝热(代表没有热传递),压缩气体。
由绝热知Q=0,△U=W+Q。压缩气体,外界对气体做正功,W为+,△U为+,内能就是增加的。PV=NRT中,V↓,P↑,NR一定,由于△U↑——理想气体,只与T有关,那么T一定是升高的!(就是说PV的乘积实际上比较大,P的↑>V的↓)
又比如,理想气体、一定量、温度不变,吸收了热量,那么各物理量变化是这样的:
T不变——△U一定不变。△U=W+Q,热量为+,W一定为-,就是说外界要对气体做负功(或者气体对外界做正功)——气体膨胀,V↑,PV=NRT,NR一定,P↓,T恒定。(PV的乘积一定)。
(这样解释不知道对吗?)
‘贰’ 高中物理选修3-3的一个小问题,急急急急急急急急急急急急急急急急急急急急急急急急急急急急急急急急急
此类问题实际上是非常简单的,主要是选择研究对象出问题了!
首先,要知道选水银柱为研究对象,对其受力分析,应该是P上S=P下S+mg,("P上"为上面气体的压强,"P下"是下面气体的压强,PS为压力,)当将m=ρSH带入,两边S约掉,便得到压强关系:
P下=P上+ρgh,再结合“同一密闭气体压强处处相等”和“同一深度处压强相等,就可以分析问题了,如果实在不懂,我明天再编制一个专题来分析吧!
‘叁’ 高中物理3-3,看图,前两条式子的理解,还有p2是什么。顺便说下这题怎么做
F=PS的意思是压力等于压强乘以面积,P1S1是管内气体对水银柱的压力(向上撑),这个力应该与“水银重力mg、外界大气压力p0s1之和”平衡即P1S1=mg+p0s1,而mg=ρghs1,代入P1S1=mg+p0s1得P1S1=ρghs1+p0s1,两边同时除以s1,得P1=ρgh+p0
P2是自由落体时管内空气压强
‘肆’ 高中物理选修3-3问题
弄清分子力做功和分子势能变化的关系:分子力对分子做正功,分子势能减少.分子力做负功,分子势能增加,当分子间距离r=r0时分子力是0,当r>r0时分子力表现为引力,故当r再减小时(r仍大于r0)分子力做正功,分子势能减少,当r<r0时分子力表现为斥力,故分子力做负功,分子势能增大,当r=r0时分子势能最小.
答案:D是对的
c→a:
气体温度降低,故内能减小,ΔU<0;
由pV/T=C即p=(C/V)T可知,p-T图象上的点与原点连线的斜率与1/V成正比。故从图象中可以看出,Va<Vc,故气体体积压缩,外界对气体做功,W>0;
由热力学第一定律ΔU=W+Q可知,Q<0,即气体对外放热。
‘伍’ 高中物理选修3的所有公式
物理定理、定律、公式表
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
1)平抛运动
1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径�0�3:米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N�6�1m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N�6�1m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N�6�1m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F�0�7{负号表示方向相反,F、F�0�7各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N�6�1s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’�0�7也可以是m1v1+m2v2=m1v1�0�7+m2v2�0�7
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1�0�7=(m1-m2)v1/(m1+m2) v2�0�7=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N�6�1m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω�6�1m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
‘陆’ 高考物理选修3-3 3-4 3-5这三本书的选做题哪个比较简单,容易拿分
一般都选3-4,因为它比较固定,而且数比较好算一定要注意振动的特征和光学性质,是很好拿分的,3-3的题目最简单但是数不太好算,3-5就不要选了干嘛非要找道难题做呢。
‘柒’ 高中物理选修3-3在复习中应该如何复习应该注意些什么
。回归课本,夯实基础,强调的基本知识和技能的强化训练
常言道:万变不离其宗。高考试题,无论多么灵活,应紧密联系在一起的教科书,围绕教学大纲的命题。我们的坚实的基础知识和基本技能,掌握教材内容为出发点,我们就可以从容地面对任何形式的高考!因此,在第一轮复习中,我们一定要加强对“基地”训练。在理解的基础上,特别是对那些感觉更抽象的和不熟悉的知识点,掌握基本的物理概念和规律的,我们必须先弄清楚“为什么要引入相应的概念?如何介绍?如何界定?是什么这意味着什么?典型的应用是什么?“和其他方面的问题,并加强对知识的理解。在这方面,考虑到学生的时间和精力分配的问题,我个人更倾向于练习多项选择问题中的一个审查阶段,多项选择题的知识点比较单一及时巩固知识是有帮助,和不费时,效率是比较高的。
要明确,不要复习题的问题是不相等的,换句话说,审查工作的过程中,不能简单地做所谓的“大主题”,“问题”,而忽略了基本的问题,其实,高考问题培训问题的一小部分过度影响学生的基本概念和规律的理解也??影响心情和自信的学生,所以这将是浪费。
2。重点知识点之间的横向和纵向的联系,建立自己的知识网络框架
零散的知识是很难全面掌握,但如果他们构建成一个完整的网络架构,我们可以把一些关键的知识的出发点,以点带面,全面了解和掌握的所有知识。这就要求我们专注于在第一轮复习的知识点之间的横向和纵向的联系,而单独审查每一个知识点。在每章检讨自己应该先看看本章主要学习什么知识点还不是太熟悉,与他过去的章节审查结束后,应根据进一步的反思,自我构建的框架本章一个完整的知识网络,并尝试去思考的知识,本章可能是他的,之后其他章节有联系的建立尽可能完整的知识框架。这个框架的帮助下,在未来,我们遇到的任何问题都可以快速找到相关的知识或法律,这将有助于我们更好地理解有关的问题,有助于我们理解能力,分析能力和使用能力。
3。舞台上回顾,重点强调物理思想,物理方法总结
我们绝不能只是读一本书,做题。练习和考试太多,使学生疲于应付缺失和总结,有没有时间去反映和纠正。然而,有没有“提炼”,哪来的“升级”?所以在这种情况下,更多的关注应支付的舞台,回顾,注意总结了物理思想,物理方法,只有这样,才能运用所学知识和方法融入的能力,不仅在学习过程中“丢失”,以了解如何开始解决这个问题。
4。要注意审查的实验
由于实施新课程,高考今年,力争以反映新的物理课程理念,体现了基本的高中物理教学内容,时间和选择性,有利于学生的创新意识和实践能力,以改善“,强调”高考物理坚持知识,能力,检查和尝试的能力摆在首位“的测试。实验相对最好的反映学生的思维过程,学生可以最好体现在能力的差异,因此,在最近几年,在大学门口实验的问题是更灵活,有着很大的区别。在应对这一趋势,我们必须以支付充分重视的检讨,实验,从实验原理,实验过程中完成审查实验的实验设备和实验误差分析这组,并应掌握教科书的学生尝试更早的基础上,再扩大和探索实验的问题,这是因为实验问题的能力要求是比较高的,但是做起来是比较困难的处理,审查,使一些学生在自由地把实验问题必须采取所有跳走了绝对避免这种情况。
a>
5。要注意把重点放在生活和生产实践中的物理现象和科学活动
在审查过程中,要注意选做STS全面的问题,开发自己的大量信息的能力,培养一个简单的物理模型的能力,以适应新课程的物理学习抽象关键信息的要求,以提取有用的信息,这就要求我们在平时的检讨,你可以要注意积累各种简单的物理模型,并可以应用到具体的问题。
6。
人们能够正确地对待和处理与现有的错误的圣贤,孰能无过?错在某些方面,我们还没有正确把握问题的实质,是从我们的错误,我们能够认识到自己的不足之处,及时解决问题的方法或过程中值得改进和完善的地方。调整我们的思想和方法,因此,我们不能回避的错误,错误的地方,但在红色突出强调,及时,最关键的是要注意错误的原因和纠正问题的解决过程下,为了进一步巩固在今后的审查也尽量避免在未来再犯同样的错误。
7。要注意解决问题的标准化培训
标准化的解决问题的过程中,不仅反映了解决问题的思路,帮助的话题作进一步的分析,也有利于评论评论有助于避免误判标志。考试,高考评卷过程结束,将有更多的的误判书面或解决问题是不规范或降分的现象,这是像足球比赛还清,并没有发挥好,没有得分,这是一个习惯问题,一旦形成很难纠正。这是重要的是要注意平时的学习和复习,养成良好的解决问题的习惯和规范的解决问题的过程中,要注意的第一个写原来的公式,然后代数据的操作,而不是一个代表的混合成数字或数字与字母的一些假设或讨论过程中要简单,必要的文字说明,最后的结论在过去清晰;注意一定要使用的标题给定的符号表示相应的物理量;必须书面指定单位的单位。所以,以确保更好地学习,而且可以做得很好。
‘捌’ 高中物理选修3-3中关于压强的解题方法
压强用的公式就一个克拉佩龙方程
只是在读题的时候要从题目找到方程里面的条件
打气是n增加v不变引起pT变化
抽气是n减少v不变引起pT变化
放气是p变成外界压强v不变引起n变化
‘玖’ 高中物理的热学总结,就是玻意耳定律.......还有气体变化与内能的变化,,总之是物理选修3-3的总结问题。
改变内能的两种方法:做功和热传递
结果等效,都能改变内能。
(2)内能与热量区别:内能状态量,热量是过程量,只有发生热传递,内能发生变化时,才有吸收或放出热量。
3. 内能变化——热力学第一定律
状态变化过程通常是做功和热传递同时发生,系统内能的增加等于外界对系统做功与热传递系统从外界吸收热量的总和。
4. 能的转化和守恒定律:能量既不会凭空产生,也不会凭空消失,只能从一个物体转移到另一个物体(热传递),或从一种形式转化成另一种形式(做功)。即热力学第一定律。注:第一类永动机不可能制成。
5. 热力学第二定律:自然界进行的涉及热现象的过程都具有方向性,是不可逆的。热传递中,热量自发的从高温物体传向低温物体。功可以完全生热,即机械能可以完全转化为内能。不可能使热量由低温物体传递到高温物体,而不引起其它变化。(空调制冷,消耗电能做功)不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化。(理想气体等温膨胀,体积变大)不存在热效率为100%的热机(热机的工作物质是汽油从高温热源获得热量,只能一部分用来做功,另一部分热量要排给大气,即热机肯定要排出热量。)
6. 第二类永动机(从单一热源不断吸收热量。使其完全转变成机械能的发动机)不可能制成,违背了热力学第二定律。
7. 热力学第三定律:绝对零度(0 k)不可能达到。
(三)、气体压强、体积、温度间的关系
1. 气体状态参量:
(1)体积V(气体几何参量)
一定质量气体所占据容器的容积。(并不是气体分子体积的总和)
(2)温度T(t) (气体热学参量)
摄氏温标、热力学温标关系:T=273+t 绝对零度不能实现
(3)压强 p (气体力学参量)
气体分子频繁碰撞器壁,作用在器壁单位时间单位面积上的压力。
①温度一定,气体体积小(分子数密度大,单位体积的分子数)碰撞分子数大,压强大。
②体积一定,温度越高,分子碰撞力越大,压强大。
2. 气体、压强、温度的关系:
(2)热力学第一定律应用:
四、2009年高考题解析
1、气体
(09年全国卷Ⅰ)14.下列说法正确的是
A. 气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力
B. 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均冲量
C. 气体分子热运动的平均动能减少,气体的压强一定减小
D. 单位面积的气体分子数增加,气体的压强一定增大
答案:A
解析:本题考查气体部分的知识.根据压强的定义A正确,B错.气体分子热运动的平均动能减小,说明温度降低,但不能说明压强也一定减小,C错.单位体积的气体分子增加,但温度降低有可能气体的压强减小,D错。
2、气体
(09年全国卷Ⅱ)16. 如图,水平放置的密封气缸内的气体被一竖直隔板分隔为左右两部分,隔板可在气缸内无摩擦滑动,右侧气体内有一电热丝。气缸壁和隔板均绝热。初始时隔板静止,左右两边气体温度相等。现给电热丝提供一微弱电流,通电一段时间后切断电源。当缸内气体再次达到平衡时,与初始状态相比
A.右边气体温度升高,左边气体温度不变
B.左右两边气体温度都升高
C.左边气体压强增大
D.右边气体内能的增加量等于电热丝放出的热量
答案:BC
解析:本题考查气体.当电热丝通电后,右的气体温度升高气体膨胀,将隔板向左推,对左边的气体做功,根据热力学第一定律,内能增加,气体的温度升高.根据气体定律左边的气体压强增大.BC正确,右边气体内能的增加值为电热丝发出的热量减去对左边的气体所做的功,D错。
3、布朗运动
(09年北京卷)13.做布朗运动实验,得到某个观测记录如图。图中记录的是
A.分子无规则运动的情况
B.某个微粒做布朗运动的轨迹
C.某个微粒做布朗运动的速度——时间图线
D.按等时间间隔依次记录的某个运动微粒位置的连线
答案:D
解析:布朗运动是悬浮在液体中的固体小颗粒的无规则运动,而非分子的运动,故A项错误;既然无规则所以微粒没有固定的运动轨迹,故B项错误,对于某个微粒而言在不同时刻的速度大小和方向均是不确定的,所以无法确定其在某一个时刻的速度,故也就无法描绘其速度-时间图线,故C项错误;故只有D项正确。
4、内能
(09年上海物理)2.气体内能是所有气体分子热运动动能和势能的总和,其大小与气体的状态有关,分子热运动的平均动能与分子间势能分别取决于气体的
A.温度和体积 B.体积和压强
C.温度和压强 D.压强和温度
答案:A
解析:由于温度是分子平均动能的标志,所以气体分子的动能宏观上取决于温度;分子势能是由于分子间引力和分子间距离共同决定,宏观上取决于气体的体积。因此答案A正确。
5、气体状态方程
(09年上海物理)9.如图为竖直放置的上细下粗的密闭细管,水银柱将气体分隔成A、B两部分,初始温度相同。使A、B升高相同温度达到稳定后,体积变化量为VA、VB,压强变化量为pA、pB,对液面压力的变化量为FA、FB,则
A.水银柱向上移动了一段距离 B.VA<VB
C.pA>pB D.FA=FB
答案:AC
解析:首先假设液柱不动,则A、B两部分气体发生等容变化,由查理定律,对气体A: ;对气体B: ,又初始状态满足 ,可见使A、B升高相同温度, , ,因此 ,因此 液柱将向上移动,A正确,C正确;由于气体的总体积不变,因此VA=VB,所以B、D错误。
6、热学基础知识
(09年广东物理)13.(10分)
(1)远古时代,取火是一件困难的事,火一般产生于雷击或磷的自燃。随着人类文明的进步,出现了“钻木取火”等方法。“钻木取火”是通过 方式改变物体的内能,把
转变为内能。
(2)某同学做了一个小实验:先把空的烧瓶放到冰箱冷冻,一小时后取出烧瓶,并迅速把一个气球紧密的套在瓶颈上,然后将烧瓶放进盛满热水的烧杯里,气球逐渐膨胀起来,如图所示。这是因为烧瓶里的气体吸收了水的 ,温度 ,体积 。
答案:(1)做功,机械能;(2)热量,升高,增大
解析:做功可以增加物体的内能;当用气球封住烧瓶,在瓶内就封闭了一定质量的气体,当将瓶子放到热水中,瓶内气体将吸收水的热量,增加气体的内能,温度升高,由理气方程 可知,气体体积增大。
8、压强的围观意义、理想气体状态方程、热力学第一定律
(09年山东卷)36.(8分)[物理——物理3-3]
一定质量的理想气体由状态A经状态B变为状态C,其中A B过程为等压变化,B C过程为等容变化。已知VA=0.3m3,TA=TB=300K、TB=400K。
(1)求气体在状态B时的体积。
(2)说明B C过程压强变化的微观原因
(3)没A B过程气体吸收热量为Q,B C过 气体 放出热量为Q2,比较Q1、Q2的大小说明原因。
解析:设气体在B状态时的体积为VB,由盖--吕萨克定律得, ,代入数据得 。
(2)微观原因:气体体积不变,分子密集程度不变,温度变小,气体分子平均动能减小,导致气体压强减小。
(3) 大于 ;因为TA=TB,故A B增加的内能与B C减小的内能相同,而A B过程气体对外做正功,B C过程气体不做功,由热力学第一定律可知 大于
9、热学综合 物理3-3”模块
(09年浙江自选模块)14. “物理3-3”模块(10分)一位质量为60 kg的同学为了表演“轻功”,他用打气筒给4只相同的气球充以相等质量的空气(可视为理想气体),然后将这4只气球以相同的方式放在水平放置的木板上,在气球的上方放置一轻质塑料板,如图所示。
(1)(本小题共3分,在给出的四个选项中,可能只有一个选项正确,也可能有多个选项正确,全部选对得3分,选对但不全的得1分,有选错的得0分)
关于气球内气体的压强,下列说法正确的是
A.大于大气压强
B.是由于气体重力而产生的
C.是由于气体分子之间的斥力而产生的
D.是由于大量气体分子的碰撞而产生的
(2)(本小题共3分,在给出的四个选项中,可能只有一个选项正确,也可能有多个选项正确,全部选对得3分,选对但不全的得1分,有选错的得0分)
在这位同学慢慢站上轻质塑料板中间位置的过程中,球内气体温度可视为不变。下列说法正确的是
A.球内气体体积变大
B.球内气体体积变小
C.球内气体内能变大
D.球内气体内能不变
(3)(本小题共4分)
为了估算气球内气体的压强,这位同学在气球的外表面涂上颜料,在轻质塑料板面和气球一侧表面贴上间距为2.0 cm的方格纸。表演结束后,留下气球与方格纸接触部分的“印迹”如图所示。若表演时大气压强为1.013 105Pa,取g=10 m/s2,则气球内气体的压强为
Pa。(取4位有效数字)
气球在没有贴方格纸的下层木板上也会留下“印迹”,这一“印迹”面积与方格纸上留下的“印迹”面积存在什么关系?
答案:(1)AD ;(2)BD;(3)1.053*105Pa 面积相同
10、热力学定律
(09年四川卷)16.关于热力学定律,下列说法正确的是
A.在一定条件下物体的温度可以降到0 K
B.物体从单一热源吸收的热量可全部用于做功
C.吸收了热量的物体,其内能一定增加
D.压缩气体总能使气体的温度升高
答案:B
11、热力学第一定律
(09年重庆卷)14.密闭有空气的薄塑料瓶因降温而变扁,此过程中瓶内空气(不计分子势能)
A.内能增大,放出热量 B.内能减小,吸收热量
C.内能增大,对外界做功 D.内能减小,外界对其做功
答案:D
12、热学综合
选修模块3—3(09年江苏卷物理)12(选做题)A.(选修模块3—3)(12分)
(1)若一气泡从湖底上升到湖面的过程中温度保持不变,则在此过程中关于气泡中的气体,下列说法正确的是 。(填写选项前的字母)
(A)气体分子间的作用力增大 (B)气体分子的平均速率增大
(C)气体分子的平均动能减小 (D)气体组成的系统地熵增加
(2)若将气泡内的气体视为理想气体,气泡从湖底上升到湖面的过程中,对外界做了0.6J的功,则此过程中的气泡 (填“吸收”或“放出”)的热量是 J。气泡到达湖面后,温度上升的过程中,又对外界做了0.1J的功,同时吸收了0.3J的热量,则此过程中,气泡内气体内能增加了 J。
(3)已知气泡内气体的密度为1.29kg/ ,平均摩尔质量为0.29kg/mol。阿伏加德罗常数 ,取气体分子的平均直径为 ,若气泡内的气体能完全变为液体,请估算液体体积与原来气体体积的比值。(结果保留一位有效数字)。
答案:A. (1) D ;(2) 吸收;0.6;0.2;(3) 设气体体积为 ,液体体积为 ,
气体分子数 , (或 )
则 (或 )
解得 ( 都算对)
解析:(1)掌握分子动理论和热力学定律才能准确处理本题。气泡的上升过程气泡内的压强减小,温度不变,由玻意尔定律知,上升过程中体积增大,微观上体现为分子间距增大,分子间引力减小,温度不变所以气体分子的平均动能、平均速率不变,此过程为自发过程,故熵增大。D 项正确。
(2)本题从热力学第一定律入手,抓住理想气内能只与温度有关的特点进行处理。理想气体等温过程中内能不变,由热力学第一定律 ,物体对外做功0.6J,则一定同时从外界吸收热量0.6J,才能保证内能不变。而温度上升的过程,内能增加了0.2J。
(3)微观量的运算,注意从单位制检查运算结论,最终结果只要保证数量级正确即可。设气体体积为 ,液体体积为 ,气体分子数 , (或 )
则 (或 )
解得 ( 都算对)
13、模块3-3 热学综合
(09年海南物理)17.模块3-3试题(12分)
(I)(4分)下列说法正确的是 (填入正确选项前的字母,每选错一个扣2分,最低得分为0分)
(A)气体的内能是分子热运动的动能和分子间的势能之和;
(B)气体的温度变化时,其分子平均动能和分子间势能也随之改变;
(C)功可以全部转化为热,但热量不能全部转化为功;
(D)热量能够自发地从高温物体传递到低温物体,但不能自发地从低温物体传递到高温物体;
(E)一定量的气体,在体积不变时,分子每秒平均碰撞次数随着温度降低而减小;
(F)一定量的气体,在压强不变时,分子每秒对器壁单位面积平均碰撞次数随着温度降低而增加。
(II)(8分)
一气象探测气球,在充有压强为1.00atm(即76.0cmHg)、温度为27.0℃的氦气时,体积为3.50m3。在上升至海拔6.50km高空的过程中,气球内氦气逐渐减小到此高度上的大气压36.0cmGg,气球内部因启动一持续加热过程而维持其温度不变。此后停止加热,保持高度不变。已知在这一海拔高度气温为-48.0℃。求:
(1)氦气在停止加热前的体积;
(2)氦气在停止加热较长一段时间后的体积。
答案:(1)ADEF (4分,选对一个给1分,每选错一个扣2分,最低得分为0分)
(II)(1)在气球上升至海拔6.50km高空的过程中,气球内氦气经历一等温过程。
根据玻意耳—马略特定律有
式中, 是在此等温过程末氦气的体积。由①式得
②
(2)在停止加热较长一段时间后,氦气的温度逐渐从 下降到与外界气体温度相同,即 。这是一等过程 根据盖—吕萨克定律有
③
式中, 是在此等压过程末氦气的体积。由③式得
④
评分参考:本题8分。①至④式各2分。
14、气体 状态方程
(09年上海物理)21.(12分)如图,粗细均匀的弯曲玻璃管A、B两端开口,管内有一段水银柱,右管内气体柱长为39cm,中管内水银面与管口A之间气体柱长为40cm。先将口B封闭,再将左管竖直插入水银槽中,设整个过程温度不变,稳定后右管内水银面比中管内水银面高2cm,求:
(1)稳定后右管内的气体压强p;
(2)左管A端插入水银槽的深度h。(大气压强p0=76cmHg)
解析:(1)插入水银槽后右管内气体:由玻意耳定律得:p0l0S=p(l0-h/2)S,
所以p=78cmHg;
(2)插入水银槽后左管压强:p’=p+gh=80cmHg,左管内外水银面高度差h1=p’-p0g =4cm,中、左管内气体p0l=p’l’,l’=38cm,
左管插入水银槽深度h=l+h/2-l’+h1=7cm。
15、选修3-3 热学综合
(09年宁夏卷)34. [物理——选修3-3](15分)
(1)(5分)带有活塞的汽缸内封闭一定量的理想气体。气体开始处于状态a,然后经过过程ab到达状态b或进过过程ac到状态c,b、c状态温度相同,如V-T图所示。设气体在状态b和状态c的压强分别为Pb、和PC,在过程ab和ac中吸收的热量分别为Qab和Qac,则 (填入选项前的字母,有填错的不得分)
A. Pb >Pc,Qab>Qac
B. Pb >Pc,Qab<Qac
C. Pb <Pc,Qab>Qac
D. Pb <Pc,Qab<Qac
答案:C
解析:略
(2)(10分)图中系统由左右连个侧壁绝热、底部、截面均为S的容器组成。左容器足够高,上端敞开,右容器上端由导热材料封闭。两个容器的下端由可忽略容积的细管连通。
容器内两个绝热的活塞A、B下方封有氮气,B上方封有氢气。大气的压强p0,温度为T0=273K,连个活塞因自身重量对下方气体产生的附加压强均为0.1 p0。系统平衡时,各气体柱的高度如图所示。现将系统的底部浸入恒温热水槽中,再次平衡时A上升了一定的高度。用外力将A缓慢推回第一次平衡时的位置并固定,第三次达到平衡后,氢气柱高度为0.8h。氮气和氢气均可视为理想气体。求
(i)第二次平衡时氮气的体积;
(ii)水的温度。
解析:
(i)考虑氢气的等温过程。该过程的初态压强为 ,体积为hS,末态体积为0.8hS。
设末态的压强为P,由玻意耳定律得
①
活塞A从最高点被推回第一次平衡时位置的过程是等温过程。该过程的初态压强为1.1 ,体积为V;末态的压强为 ,体积为 ,则
②
③
由玻意耳定律得
④
(i i) 活塞A从最初位置升到最高点的过程为等压过程。该过程的初态体积和温度分别为 和 ,末态体积为 。设末态温度为T,由盖-吕萨克定律得
⑤
‘拾’ 物理选修3-3第4业2 3 4题咋做
2、首先求出每滴溶液的体积 V溶=1mL/75
再求出溶液中油膜的体积 V油=V溶*(6mL/10^4mL)=8*10^-6mL
S油=n(1cm*1cm)=n平方厘米(注n为油膜所占面积超过一半的小方格个数,图中看不全,没法数)
由V=Sd可求得d=V油/S油
3、先求出摩尔体积: V=M/ρ(题中有数据,可代入计算求得)
再求出每个分子的体积:V0=V/NA(NA=6.02*10 ^23)
最后由V0=1/6πd^3(球体模型)可求出 d
4、在标准状态下气体的摩尔体积为V=22.4L/mol
可求出每个分子的体积为V0=V/NA
最后由V0=d^3(正方体模型)可求出 d(这里的d为正方体的边长,同时也就是气体分子间的平均距离)